Download PDFOpen PDF in browser

Doppler Radar Data Assimilation for Mesoscale Numerical Rainfall Prediction

8 pagesPublished: September 20, 2018


Hydrological prediction needs high-resolution and accurate rainfall information, which can be provided by mesoscale Numerical Weather Prediction (NWP) models. However, the predicted rainfall is not always satisfactory for hydrological use. The assimilation of Doppler radar observations is found to be an effective method through correcting the initial and lateral boundary conditions of the NWP model. The aim of this study is to explore an efficient way of Doppler radar data assimilation from different height layers for mesoscale numerical rainfall prediction. The Weather Research and Forecasting (WRF) model is applied to the Zijingguan catchment located in semi-humid and semi-arid area of Northern China. Three-dimensional variational data assimilation (3-DVar) technique is adopted to assimilate the Doppler radar data. Radar reflectivity and radial velocity are assimilated separately and jointly. Each type of radar data are divided into seven data sets according to the observation heights: (1) <500m; (2) <1000m; (3) <2000m; (4) 500~1000m; (5) 1000~2000m; (6) >2000m; (7) all heights. Results show that the assimilation of radar reflectivity leads to better results than radial velocity. The accuracy of the predicted rainfall deteriorates as the rise of the observation height of the assimilated radar data. Conclusions of this study provide a reference for efficient utilisation of the Doppler radar data in numerical rainfall prediction for hydrological use.

Keyphrases: data assimilation, Doppler radar data, numerical rainfall prediction

In: Goffredo La Loggia, Gabriele Freni, Valeria Puleo and Mauro De Marchis (editors). HIC 2018. 13th International Conference on Hydroinformatics, vol 3, pages 2073--2080

BibTeX entry
  author    = {Jiyang Tian and Jia Liu and Chuanzhe Li and Fuliang Yu},
  title     = {Doppler Radar Data Assimilation for Mesoscale Numerical Rainfall Prediction},
  booktitle = {HIC 2018. 13th International Conference on Hydroinformatics},
  editor    = {Goffredo La Loggia and Gabriele Freni and Valeria Puleo and Mauro De Marchis},
  series    = {EPiC Series in Engineering},
  volume    = {3},
  pages     = {2073--2080},
  year      = {2018},
  publisher = {EasyChair},
  bibsource = {EasyChair,},
  issn      = {2516-2330},
  url       = {},
  doi       = {10.29007/h6dv}}
Download PDFOpen PDF in browser