
EasyChair Preprint
№ 6092

Implementable Simple Quantum Genetic
Algorithm

Mikel Garcia de Andoin and Javier Echanobe

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 16, 2021

Implementable Simple Quantum Genetic Algorithm
1st Mikel Garcia de Andoin

Department of Electricity and Electronics
University of the Basque Country UPV/EHU

Bilbao, Spain
mikelgda@gmail.com

2nd Javier Echanobe
Department of Electricity and Electronics

University of the Basque Country UPV/EHU
Bilbao, Spain

franciscojavier.echanove@ehu.es

Abstract—Quantum machine learning (QML) is a relatively re-
cent field of research in which the areas of Quantum Computing
(QC) and Machine Learning (ML) are merged in different ways
and at different levels. In this paper, we propose a quantum ge-
netic algorithm (QGA) that is a direct translation of the classical
genetic algorithm (GA). Compared to other existing works, our
proposal allows a simpler and more direct implementation, and
therefore with less hardware requirements. QGA is compared
with its classical counterpart through a function optimization
benchmark, showing that both algorithms are equivalent. The
results suggest future work of exploring similar algorithms and
strategies in the search of quantum advantages.

Index Terms—Quantum Computing, Quantum Algorithms,
Genetic Algorithms, Optimization.

I. INTRODUCTION

The theoretical and experimental scientific developments
of the last decades have made it possible to advance and
consolidate the discipline known as quantum computing (QC)
[1]. This paradigm takes advantage of the particular laws of
the quantum world such as superposition and entanglement, to
perform calculations more quickly and efficiently. Although at
the moment the systems developed are on a very small scale
and are almost always limited to laboratory systems, it has
been shown that for certain types of problems such as number
factoring or search problems, quantum computers would be
infinitely faster than conventional computers. For this reason,
there are currently numerous research groups working hard to
make quantum computers a reality in the near future.

The paradigm known as machine learning (ML) [2], encom-
passes a series of techniques and algorithms aimed at provid-
ing computers with prediction, generalization, and decision-
making capabilities based on knowledge extracted from col-
lections of reference data or learning data. This field has also
experienced strong development in recent years due to the
increasing capacity of computers as well as the availability
of huge amounts of data to be processed. Among the most
representative ML algorithms we can mention clustering,
decision trees, support vector machines (SVM), Bayesian
networks, neural networks or genetic algorithms. All these
techniques have demonstrated their potential in many different
applications, offering truly impressive results on numerous
occasions. Today, ML techniques are at the heart of many so-
called artificial intelligence systems. However, all these tech-
niques require a large amount of hardware resources and have
high computational complexity. Therefore, new techniques or

methods to speed up its execution will be always of great value
and interest.

In an effort to obtain joint benefit from ML and QC
techniques, the area of research known as Quantum Machine
Learning (QML) [3] has more recently emerged. This dis-
cipline aims to merge the two aforementioned paradigmes
to obtain techniques that allow to address different problems
more efficiently. It can be found in the literature different ways
in which that merge or fusion can be carried out. For example,
classical ML algorithms can be applied to address problems
in the field of QM [4], [5]. Also, classical ML algorithms
can be implemented in quantum computers to speed-up its
execution. See for example [6] for a review of the field. The
work proposed here, falls in this second type; that is, we
propose a quantum genetic algorithm (QGA) that can be truly
implemented in a quantum computer in a very simple and
direct way. In Section II we will make a review of existing
quantum genetic algorithms and explain how our proposal has
in comparison, interesting advantages.

The rest of the paper is organised as follows. Section II
describe some of the main existing works dealing with the
QGA topic. Section III explain the proposed QGA. In Section
IV we present some experiments that show the feasibility
of the proposal. Finally Section V is devoted to concluding
remarks.

II. RELATED WORKS

Quantum genetic algorithms can be divided into two main
groups, depending on the strategy used to test the fitness of
the solution. On the one hand, algorithms based on different
versions of the Grover’s algorithm [7], use an oracle (some-
times called black-box) to inquire the state about its fitness.
These algorithms are based on quantum circuits; i.e., they
are implemented by means of basic quantum logic gates (e.g.
Hadamard, Toffoli, Fredkin, CNOT). Examples of recent work
for this kind of algorithms can be found in [8]–[10]. In these
algorithms, an oracle Q̂ takes the quantum state |x〉 as an
input, and without altering it, it deposit the fitness value in
some ancilla qubits

Q̂ |x〉 |0〉 = |x〉 |F (x)〉 , (1)

where F (x) is expressed as its binary expansion, F (x) =∑`
k=0 2

`F (x)`. This way, one could access the information
about the evolution of the fitness function at each iteration

|cr〉

|mr〉

|p1〉 |c1〉

|p2〉 |c2〉

Fig. 1. Circuit for the simple QGA that implements the quantum crossover and mutation for a problem size n=3. Here, p1,2 are the parents, and c1,2 the
children solutions. Each time the crossover or the mutation qubits are used, they are reset back to the state |cr〉 or |mr〉 respectively.

while not destroying the quantum state. At the end, the
measurement of the state yields the solution to the problem. In
general, constructing such oracle for a given fitness function
is non trivial, and it takes up to 2n−1(2n − 1) gates. That is,
the complexity of the circuit (i.e. hardware resources) grows
exponentially [11].

On the other hand, there are algorithms based on quantum
annealing [12]. In this case, the problem is coded by means
of a Hamiltonian and the solution is obtained once the ground
state of the Hamiltonian is found. The system is initialized
with a well known Hamiltonian and an easily preparable
ground state. Then, the system is adiabatically evolved towards
the problem Hamiltonian; i.e. maintaining the state of the
system in the ground state at every time. At the end of the
evolution, the state is measured, with high probability of being
in the ground state of the system, thus, the solution of the
problem. The main drawback of this algorithm is that the
construction of a suitable Hamiltonian can be a non-trivial
task. Sometimes it may not be implementable on an adiabatic
computer or annealer (e.g. QWave) or it is required to apply
separation techniques and implement small problems (e.g.
’qbsolv’). Moreover, the Hamiltonian can be somewhat funny,
so that it is necessary to apply STA techniques or CD terms
[13].

In this paper we propose a QGA, implemented as quantum
circuit, that does not precise an oracle. In consequence, the
computation scheme is much simpler and therefore, its im-
plementation is easy and straightforward, requiring much less
hardware resources. In the next section we carefully explain
the details of this algorithm showing how it is able to converge
to a solution despite not using an oracle.

III. PROPOSED ALGORITHM

Let us describe in this Section how is the Quantum Genetic
algorithm proposed in this work.

The codification of the solutions into a quantum state in
the computational basis is straightforward. A classical bit
corresponding to 0(1) is coded in the ground(excited) state
of a qubit |0〉(|1〉). This way, any solution can be generated
by starting from the ground state and applying a Pauli-x gate

(|0〉 = X |1〉 , |1〉 = X |0〉) to every qubit that has a 1 in the
corresponding position.

Our algorithm is based on a simple Genetic Algorithm
schema [14], [15]. It starts by generating m random solutions
of size n. The algorithm evolves towards the optimal solution
iteratively, generating new solutions until a stop condition is
met. Each iteration can be divided into 3 main steps: parent
selection, crossover and mutation.

Parent selection: At the start of each iteration 2 different
parents are selected depending on its fitness. The algorithm
favours the selection higher fitness solutions, so that the
better individuals advance in the evolution process. For this
task we can use various strategies, from which we decided
to use the traditional Roulette Wheel selection. This strategy
assigns to each individual a probability of being chosen (pi),
that is proportional to its relative fitness, pi = fi/

∑m
j=1 fj .

Crossover: This step combines the bits of the parents
into two new solutions. In the classical algorithm, first it is
decided whether or not the crossover happens, depending on
the crossover rate cr ∈ [0, 1]. Then, using the single-point
crossover, a random point on the string is selected. The two
children will be the combination of the opposite halfs of the
parents. This crossover can be applied in our algorithm just
relabeling the qubits.

We propose to use a more quantum approach by implement-
ing a quantum version of the uniform crossover. We can use
Fredkin (or controlled SWAP) gates acting on the correspond-
ing qubits of both parents (Fig. 1). The control qubit contains
the information of cr, such that the qubits of the parents are
flipped with probability cr, |cr〉 =

√
1− cr |0〉+

√
cr |1〉. This

state can be generated by applying a rotation on the y axis of
an angle of θcr = 2arcsin(

√
cr), |cr〉 = Ry(θcr) |0〉.

Mutation: In the mutation step, each bit of the children
can flip with a probability mr ∈ [0, 1]. This can be directly
implemented in a quantum algorithm using CNOT gates.
Similar to the previous step, this probability can be coded
into a qubit that acts as the control of the CNOT gates acting

on the children’s qubits.

The crossover and mutation steps are implemented using
a quantum circuit (Fig. 1). At the end of each circuit run,
the children qubits are measured in the z axis. Once the new
solutions are converted to bits, we can compute and assign the
fitness to each one.

A new generation is completed after a new population is
full, that’s it, after m/2 − 1 iterations. To prevent the best
individuals from being lost, we use replacement-with-elitism.
The 2 individuals with the best fitness value are automatically
introduced in the next generation. This assures that the solution
that the algorithm returns is the best solution found so far.

The GA produces new generations until it meets the stop-
ping condition. The most naive condition is to preset a maxi-
mum number of iterations, maxIter. We can also set a certain
number of iterations to let the GA to evolve, converIter. If
after converIter generations no new best solution is found,
the algorithm finishes.

The No Free Lunch Theorem [16] states that we can not
find the set of parameters that optimizes an algorithm for
every possible problem. In other words, there is no universal
optimization strategy. The input parameters used to run GA
have to be chosen by intuition or by running similar problems,
i.e. empirically.

The proposed algorithm (Alg. 1) can be run on quantum
computers without the need to use quantum error correction.
Flip-errors can be absorbed as an extra probability to the
mutation rate. Gate errors, in both Fredkin and CNOT gates,
reduce the effective cr and mr. Dephasing noise dones not
interfere with our algorithm, as all the information is coded
into the probabilities to measure the excited and the ground
state. The only noise that could affect the outcome of the
algorithm is the decoherence. Fortunately, the number of gates,
and therefore the time the quantum state must be preserved,
is linear with the size of the individuals O(n).

Algorithm 1 Simple Quantum GA
Require: Fitness function F , crossover rate cr, mutation rate

mr, generation size m, stopping condition
1: Generate m random solutions
2: repeat
3: for i = 1 : m/2− 1 do
4: Select 2 parents
5: Run the quantum circuit to generate 2 children (see

Alg. 2)
6: Evaluate the children fitness value
7: end for
8: Merge the children and the 2 best individuals into the

next generation
9: until stopping condition is met

10: return The best individual

Algorithm 2 Quantum circuit description
Require: Parents p1,2, crossover rate cr, mutation rate mr

1: N = bit length of parent
2: θcr = 2 arcsin(

√
cr)

3: Initialize quantum state, |0〉⊗2N+2

4: Apply Ry(2 arcsin(
√
cr)) gate to the crossover qubit

5: Apply Ry(2 arcsin(
√
mr)) gate to the mutation qubit

6: for all bits of both parents do
7: if bit j of parent i == 1 then
8: Apply X gate to qubit j of parent i
9: end if

10: end for
11: for j = 1 : N do
12: Apply Fredkin to qubit j of both parents as the targets

with the crossover qubit as the control
13: Reset the crossover qubit and apply Ry(2 arcsin(

√
cr))

14: end for
15: for all qubits of both parents do
16: Apply CNOT gate to the parent qubit with mutation

qubit as the control
17: Reset the mutation qubit and apply Ry(2 arcsin(

√
mr))

18: end for
19: return The measure of parent qubits in the z axis

IV. EXPERIMENTS

To test the proposed algorithm we have realized some
simulation experiments over commonly used benchmarks.
More precisely, the problem to solve is to find the x =
[x1, x2, . . . , xi, . . . , xn] with xi = {0, 1} that minimizes a
given function F (x) = f . We have used the same 5 bench-
marking functions as in [17]:

F1(x) =

n∑
i=1

x2i , |xi| < 5.12, min(F1) = 0 for xi = 0, (2)

F2(x) = 20+e−20 exp

(
−1

5

√∑
x2i
n

)
−exp

(∑
cos(2πxi)

n

)
,

|xi| < 30, min(F2) = 0 for xi = 0, (3)

F3(x) = 10n+

n∑
i=1

(
x2i − 10 cos(2πxi)

)
,

|xi| < 5.12, min(F3) = 0 for xi = 0, (4)

F4(x) =

n∑
i=1

x2i +

(
n∑

i=1

xi
2

)2

+

(
n∑

i=1

xi
2

)4

,

− 5 ≤ xi ≤ 10, min(F4) = 0 for xi = 0, (5)

F5(x) =

n∑
i=1

ix2i , |xi| < 5.12, min(F5) = 0 for xi = 0, (6)

where n is the dimension of the problem.

TABLE I
RESULTS OF THE BENCHMARKING

Functions QGA GA uniform GA single-point
Val 1 Val 2 Val 3 Mean Mean

F1 0.0019 0.0013 0.0015 0.0066 0.0094
F2 3.6 6.8 1.4 2.9 3.3
F3 17 8.6 6.7 4.1 3.4
F4 0.0011 0.00064 0.0020 0.011 0.042
F5 0.0022 0.27 0.61 0.017 0.024

For the coding, we have used a Gray coding, achieving
the maximum attainable accuracy [18, Sec 8.2]. The fitness
is calculated using the all-vs-all simple sampling method [18,
Sec 15.2.1]. To obtain the fitness of the initial population the
individuals are compared with themselves. As the simulation
of a quantum circuit has a limit on the number of qubits we
can work with, we have used 30 bit solutions with dimension
3 problems. That is, we have coded each number with 10 bits.

For running the classical GA we used Matlab R2021a. In
order to have a fair comparison, we used two versions of
GA, one with the uniform and the other with the single-
point crossover strategy. We repeated the algorithm 100 times,
taking the mean value.

The QGA has been simulated using the Matrix Product State
simulator from IBM [19]. As this is an ideal simulator, there is
no restriction on the topology of the circuit. However, we are
limited to the open access services. This limits the response
times of the queries to process the simulations. To avoid
overflowing the system, we have only run QGA thrice per
benchmark function, with a maximum of 3×5×50×9 = 6750
circuit runs.

In order to compare the 3 versions of the algorithm, we
have used the same input parameters in all of them (Tab. II).
The results of the benchmarking are presented on the table I.
If we compare the results we obtained with QGA to the mean
values of those of GA, we see that the performance of the two
is similar.

TABLE II
INPUT PARAMETERS

Length of individual (n) 30
Population size (m) 20
Crossover rate (cr) 0.7
Mutation rate (mr) 0.01
maxIter 50
converIter 10

If we wanted to run QGA in a real quantum computer, we
have to take into account the topology of the circuit. In the
proposed algorithm, ideally we only need 1 qubit to code the
mutation and the crossover rate. However, this qubit has to be
connected with all other qubits at the same time. This is far
from doable in the current and near-term quantum computers.
One solution to this problem is to use SWAP gates to move the
qubit around the circuit. Although this is possible, each time
a SWAP gate is used there is an increasing probability that
the information on the qubit gets destroyed due to gate errors.

To avoid this, we can instead duplicate the qubit in different
positions on the circuit. This would minimize the information
loss by using more qubits than the required. An example of
this is shown in Fig. 2, where we have a topology of the circuit
corresponds to a plane graph. This feature makes it suitable to
be built with the current superconducting circuits technology.

mr

p1,1

p2,1

cr

p1,2

p2,2

mr

p1,3

p2,3

cr • • •• • •

Fig. 2. Proposed circuit topology and qubit distribution for QGA. Here, each
parent qubit pi,j is connected such way we can implement the circuit in Fig.
1 without using SWAP gates, at the cost of adding n− 2 extra qubits.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we present a simple algorithm that imple-
ments a quantum version of GA. The proposed QGA directly
translates the crossover and mutation strategies into a quantum
circuit. This algorithm does not require any oracle, leading
thus to a more simple and direct implementation. Through
a benchmarking of QGA against the classical GA, we are
confident that both approaches are equivalent in terms of
obtaining the optimal solution of a problem, up to a reasonable
uncertainty.

The quantum version of GA we proposed here does not sup-
pose any speedup in the computational complexity. However,
it is shown that the algorithm can be implemented efficiently
in a quantum computer. This could open the door to develop a
quantum version of other heuristic or metaheuristic algorithms
based on the coding of classical probabilities directly as the
probability of measuring a quantum state in a certain basis.
This could lead to the finding of new strategies that truly
take advantage of the quantum behaviour of the system,
such as superposition of states, entanglement or quantum
parallelization.

REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine, “Quantum
Computing: Progress and Prospects,” Washington, DC: The National
Academies Press, 2019.

[2] C. M. Bishop, “Pattern Recognition and Machine Learning,” Springer,
2006.

[3] M. A. Nielsen, I. L. Chuang, (2010), “Quantum Computation and
Quantum Information (2nd ed.),” Cambridge, Cambridge University
Press, 2010.

[4] D. G. Cory, N. Wiebe, C. Ferrie, C. E. Granade,“Robust Online
Hamiltonian Learning”, in New J. Phys., Vol. 14 (10), 2012.

[5] M. Krenn, “Automated Search for new Quantum Experiments,” Physical
Review Letters”, Vol. 116 (9), 2016.

[6] V. Dunjko, H.J. Briegel “Machine learning & artificial intelligence in
the quantum domain: a review of recent progress,” Reports on Progress
in Physics, vol. 81(7), 2018.

[7] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th An. ACM STOC, pp. 212-219, 1996.

[8] M. Udrescu, L. Prodan, and M. Vlăduţiu, “Implementing quantum
genetic algorithms: a solution based on Grover’s algorithm,” in Proc.
3th CF, pp. 71-82, 2006.

[9] A. Malossini, E. Blanzieri, and T. Calarco, ”Quantum Genetic Opti-
mization,” in IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 231-241,
2008.

[10] R. Ibarrondo, ”Quantum Genetic Algorithms: towards the design of
evolutionary algorithms in a quantum computer,” in ADDI, 2020.

[11] C. K. Li, R. Roberts, and X. Yin, “Decomposition of unitary matrices
and quantum gates,” in Int. J. Quant. Inf., vol. 11, no. 1, pp. 1350015,
2013.

[12] W. Shu, and B. He, “A Quantum Genetic Simulated Annealing Algo-
rithm for Task Scheduling,” in ISICA 2007: Adv. Comput. Int., vol.
4683, pp. 169-176, 2007.

[13] N. N. Hegade, K. Paul, et al, “Shortcuts to Adiabaticity in Digitalized
Adiabatic Quantum Computing,” in Phys. Rev. Appl., vol. 15, pp.
024038, 2021.

[14] D. E. Golberg, “Genetic Algorithms in Search, Optimization and Ma-
chine Learning,” MA: Addison-Wesley, 1989.

[15] J. McHall, “Genetic algorithms for modelling and optimisation,” J.
Comput. Appl. Math., vol. 184, pp. 205-222, 2005.

[16] Y. C. Ho, and D. L. Pepyne, “Simple Explanation of the No-Free-Lunch
Theorem and Its Implications,” J. Optim. Theory Appl., vol. 1, pp. 549-
570, 2002.

[17] S. P. Lim, and H. Haron, “Performance of Different Techniques Applied
in Genetic Algorithm towards Benchmark Functions,” In Proc. 5th
ACIIDS, vol. 1, pp. 255-264, 2013.

[18] A. P. Engelbrecht, “Computational Intelligence: an introduction Second
Edition,” Wiley Publishing, 2007.

[19] IBM Quantum. https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/

	Introduction
	Related Works
	Proposed Algorithm
	Experiments
	Conclusions and future perspectives
	References

