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Abstract. The noise transfer capability of stochastic resonance makes it excellent 

in the field of weak signal detection. The classic bistable potential well has a 

simple structure, few parameters and is easy to observe in the physical system, 

so that a lot of research is carried out based on the bistable stochastic resonance. 

However, multi-stable potential wells can induce multiple stable responses in 

nonlinear systems, thereby improving the signal-to-noise ratio(SNR) of the sys-

tem output signal. In order to break the short-memory effect of the classical sto-

chastic resonance system, a multi-stable stochastic resonance model based on 

high-order time-delay feedback control(HTFMSR) is proposed in this paper, and 

it is used for weak signal detection. First, the stochastic resonance effect of the 

HTFNSR system is demonstrated by deriving the theoretical output SNR. Sub-

sequently, the influence of delay parameters on the system output is studied 

through the generalized potential function of the system, the steady-state proba-

bility density function and the average first transit time. Finally, the weak signal 

detection ability of the proposed method is verified by two different examples. 

The experimental results show that the high-order delay feedback item can im-

prove the memory characteristics of the system and improve the signal-to-noise 

ratio of the output signal of the system. 

Keywords: Stochastic Resonance, Time-delay Feedback, SNR, MFPT, Weak 

Signal Detection. 

1 Introduction 

The term "stochastic resonance" was first used by Benzi, Sutera and Vulpiani et al. 

in the open literature in 1981, and this concept was used to explain the reasons for the 

periodic changes of the earth's paleoc limate and climate [1-3]. After the concept of 

stochastic resonance was proposed for the first time, as a separate branch of the nonlin-

ear system discipline, it has received sufficient attention from researchers. The three 

basic conditions of stochastic resonance include nonlinear system, input signal and 

noise. In a nonlinear system, the input signal and noise act together to cause the ampli-

fication and optimization effect of the system response. The signals collected by sensors 

usually contain characteristic signals that can reflect the health status of mechanical 

equipment, as well as interference signals and noise from other coupling components. 
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Here, signals other than non-characteristic signals can be considered as noise. There-

fore, as long as there is a suitable nonlinear system to match the acquisition signal, 

stochastic resonance can realize weak signal enhancement based on noise utilization, 

so as to obtain a high signal-to-noise ratio signal containing typical fault characteristics 

from the acquisition signal. At present, stochastic resonance has been widely used in 

fault diagnosis of rotating machinery and feature extraction of weak signals[4]. From 

the perspective of its diagnostic objects, it can be classified into four major categories; 

bearings [5-7], gears [8-11], rotors [12-15] and others . Because bearings have an ex-

tremely critical position in the industry, as many as 60% of the literature researches the 

method of bearing fault feature enhancement based on stochastic resonance theory. 

 

Early research on SR models primarily focused on classical bistable systems and 

yielded substantial research outcomes . With the deepening investigation into classical 

bistable systems, SR models gradually extended to monostable and tristable systems.  

Zhang et al. introduced an asymmetric time-delay bistable system, analyzing the impact 

of asymmetric terms and time-delay terms on signal-to-noise ratio and probability den-

sity functions. They concluded that time delay could either suppress or promote the 

occurrence of stochastic resonance phenomena [16]. Gu investigated the time-delay 

feedback phenomenon in bistable systems with colored noise, analyzing the physical 

characteristics of the potential function's square term and fourth-order term. They found 

that delay could significantly enhance the output signal-to-noise ratio. This method can 

be practically applied in weak signal extraction and recovery domains [17]. Mei et al. 

derived formulas for signal-to-noise ratio and studied the effect of time delay on sto-

chastic resonance systems with correlated and uncorrelated multiplicative noise and 

additive noise [18]. Lu et al. proposed a non-stationary weak signal detection strategy 

based on time-delay feedback stochastic resonance model, demonstrating its suitability 

for detecting strongly nonlinear non-stationary signals [19]. He et al. discussed stochas-

tic resonance in time-delay bistable systems under Gaussian white noise influence, an-

alyzing the effects of various parameters on average first-passage time, Shannon en-

tropy, and signal-to-noise ratio [20]. Li et al. introduced a weak signal detection ap-

proach based on time-delay feedback monostable stochastic resonance (TFMSR) sys-

tem and adaptive minimum entropy deconvolution (MED), applied to mechanical fault 

analysis, achieving fault diagnosis for rolling bearings [21]. Shi et al. investigated the 

dynamical complexity and stochastic resonance of time-delay asymmetric bistable sys-

tems, enriching the stochastic resonance model [22].In fact, the classical stochastic res-

onance model is a short memory system, and the physical model considering delay is 

closer to the actual system. However, few studies have focused on the delay in TSR 

system. At the same time, the stochastic resonance system with a high- order time-

delayed feedback has not been studied. Therefore, it is necessary to study the principle 

of SR based on a high- order time-delayed feedback and its practical value. 

This paper proposes a SR system based on a high-order time-delayed feedback and 

discuss the feasibility of the system for weak fault signature extraction. In section sec-

ond, derived from the potential function of the system and the stationary probability 

function. In Section 3, the influence of time delay strength e on the mean first-passage 
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time is analyzed. The influences of e  on the stochastic resonance system from the per-

spective of the transition of the particles in the potential wells are discussed. In Section 

4, the SNR and discuss the effect of the parameters  on the SNR are derived. In Section 

5, faulty bearing data is dealt with and it is compared with traditional time delay feed 

back based on tristable stochastic resonance(TFTSR) using the HTFMSR system. At 

last, Section 6 makes a summary. 

2 High order time-delay feedback multi-stable stochastic 

resonance system 

The multi-stable Stochastic Resonance (SR) model represents a nonlinear dynamical 

system subject to both a periodic driving signal and Gaussian white noise. The under-

lying dynamics of the system can be described by the Langevin equation as follows: 
d𝑥

d𝑡
+

d𝑈(𝑥)

d𝑡
= 𝐴cos(2𝜋𝑓𝑡) + √2𝐷𝜁(𝑡) (1) 

Where the term √2𝐷𝜁(𝑡) represents the Gaussian white noise component, the D de-

notes the noise intensity. 

The multi-stable potential function 𝑈(𝑥) can be formally defined as follows: 

𝑈(𝑥) =
𝑏

2
𝑥2 +

𝑐

4
𝑥4 +

𝑑

6
𝑥6 (2) 

Where parameters b, c, and d are real number. 

When a high order time-delay feedback control term is introduced into system, the 

Langevin equation can be written as follows: 
d𝑥

d𝑡
= −𝑏𝑥 − 𝑐𝑥3 − 𝑑𝑥5 + 𝑒[𝑥(𝑡 − 𝜏)]5 + 𝐴cos(2𝜋𝑓𝑡) + √2𝐷𝜉(𝑡) (3) 

The HTFMSR system potential function can be written as: 

𝑈(𝑥) =
𝑏

2
𝑥2 +

𝑐

4
𝑥4 +

𝑑

6
𝑥6 −

1

6
𝑒[𝑥(𝑡 − 𝜏)]6 (4) 

From Eq. (1) and Eq. (2), the Fokker-Planck equation is given by: 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕[𝐴(𝑥)𝑃(𝑥, 𝑡)]

𝜕𝑥
+
𝜕2[𝐵(𝑥)𝑃(𝑥, 𝑡)]

𝜕𝑥2
 (5) 

Where 𝐴(𝑥) is the conditional mean drift and can be expressed as follows: 

𝐴(x) = ∫ ℎ(𝑥, 𝑥𝜏)
+∞

−∞

𝑃(𝑥𝜏 , 𝑡 − 𝜏|𝑥,t)𝑑𝑥𝜏 (6) 

𝐵(𝑥) = 𝐷 (7) 

Where x𝜏 = 𝑥(𝑡 − 𝜏) , h(𝑥, 𝑥𝜏) = −𝑏𝑥 − 𝑐𝑥3 − 𝑑𝑥5 + 𝑒𝑥𝜏
5 + 𝐴cos(2𝜋𝑓𝑡) ,𝑃(𝑥𝜏 , 𝑡 −

𝜏|𝑥, 𝑡)represents the zeroth-order approximate Markovian transition probability den-

sity, which can be expressed as follows: 

𝑃(x𝜏, 𝑡 − 𝜏|𝑥, 𝑡) =
1

√4𝜋𝐷𝜏
exp(−

(𝑥𝜏
6 − 𝑥6 − ℎ(𝑥)𝜏)2

4𝐷𝜏
) (8) 

Where h(𝑥) = −𝑏𝑥 − 𝑐𝑥3 − 𝑑𝑥5 + 𝑒𝑥5 + 𝐴 cos (2𝜋𝑓𝑡). 
According to the Markov process, Eq. (6) can be simplified as: 

𝐴(𝑥) = (1 + 5𝑒𝜏𝑥4)(−𝑏𝑥 − 𝑐𝑥3 − 𝑑𝑥5 + e𝑥5 + 𝐴cos(2𝜋𝑓𝑡)) (9) 

The equivalent Langevin equation for Equation 1 is: 
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d𝑥

d𝑡
= (1 + 5𝑒𝜏𝑥4)( − 𝑏𝑥 − 𝑐𝑥3 − 𝑑𝑥5) + 𝑒(1 + 5𝑒𝜏𝑥4)𝑥5

+(1 + 5𝑒𝜏𝑥4)𝐴cos(2π𝑓𝑡) + √2𝐷𝜉(𝑡)

 (10) 

By comparing Eq. (10) and Eq. (3), it can be observed that the introduction of a 

control term 5e𝜏𝑥4(−𝑏𝑥 − 𝑐𝑥3 − 𝑑𝑥5 + 𝑒𝑥5 + 𝐴cos(2𝜋𝑓𝑡)) into the HTFMSR sys-

tem. This control term incorporates both the effects of delay and feedback, which sig-

nificantly influence the stochastic resonance output. The resulting generalized function 

can be expressed as follows: 

𝑈e =
1

2
𝑏𝑥2 +

1

4
𝑐𝑥4 +

1

6
(𝑑 − 𝑒 + 5𝑒𝜏𝑏)𝑥6 +

5

8
𝑒𝜏𝑐𝑥8

+
1

2
𝑒𝜏(𝑑 − 𝑒)𝑥10 + (𝑥 + 𝑒𝜏𝑥5)𝐴cos(2𝜋𝑓𝑡)

 (11) 

   
（a） （b） (c) 

Fig. 1 The potential function 𝑈𝑒(𝑥) versus x for different e with b=0.25, c=-0.73, d=0.4, 

A=0.2, and changes of 𝑈𝑒(𝑥) at different time (a) t=π/2, (b) t=3π/4, (c) t=π. 

The noise-induced escape phenomenon has garnered significant attention in the 

realm of nonlinear dynamics. The mean first-passage time (MFPT) plays a crucial role 

as it represents the average time taken for a system to transition from one steady state 

to another across a barrier. It serves as a valuable descriptor of the transient behavior 

exhibited by nonlinear systems and forms a fundamental measure in the analysis of 

escape problems in nonlinear stochastic resonance systems. By employing the defini-

tion of mean first-passage time, we can compute the MFPT for two distinct directions 

within the HTFMSR system, as follows: 

𝑀𝐹𝑃𝑇(𝑥𝑠1 → 𝑥𝑠2) = ∫
d𝑥

𝐵(𝑥)𝑝𝑠𝑡(𝑥)

𝑥𝑠2

𝑥𝑠1

∫ 𝑑𝑦𝑝𝑠𝑡(𝑦)
𝑥

−∞

=
2𝜋

√𝐵(𝑥𝑠1)|𝑈
′′(𝑥𝑠1)𝑈

′′(𝑥𝑢1)|
1
2

exp (
𝑈𝑒(𝑥𝑢1) − 𝑈𝑒(𝑥𝑠1)

𝐷
)
 (12) 

𝑀𝐹𝑃𝑇(𝑥𝑠2 → 𝑥𝑠1) = ∫
dx

𝐵(𝑥)𝑝𝑠𝑡(𝑥)

𝑥𝑠1

𝑥𝑠2

∫ 𝑑𝑦𝑝𝑠𝑡(𝑦)
𝑥𝑢2

𝑥

=
2𝜋

√𝐵(𝑥𝑠2)|𝑈
′′(𝑥𝑠2)𝑈

′′(𝑥𝑢1)|
1
2

𝑒𝑥𝑝 (
𝑈𝑒(𝑥𝑢1) − 𝑈𝑒(𝑥𝑠2)

𝐷
)
 (13) 

 



5 

 

By observing Fig. 1(a), it becomes apparent that when t=π/2, the potential func-

tion exhibits an asymmetric state. In this state, the left side of the potential function 

is characterized by lower values, while the right side demonstrates higher values. 

The disparity in the height of the potential barriers leads to variations in the transit 

time of Brownian particles within the potential well. Fig. 2 illustrates the MFPT of 

Brownian particles in two distinct potential wells, considering different time delay 

strength represented by e. The results demonstrate that the MFPT exhibits an expo-

nential decay as the noise intensity increases. Furthermore, for the same delay in-

tensity, the MFPT of particles decreases with higher noise intensity, indicating that 

noise serves as an external stimulus that enhances the transition behavior of Brown-

ian particles. This behavior aligns with the typical stochastic resonance observed in 

nonlinear systems. Importantly, varying noise intensities exert distinct effects on 

the particle transition rate. Notably, when the noise intensity 𝐷 = 0.1, the transition 

rate of Brownian particles is maximized, indicating an optimal noise level for the 

periodic driving HTFMSR system. The time delay intensity e exerts an influence 

on the mean first passage time of particles, with the MFPT decreasing as the time 

delay intensity of the system increases. This observation indicates that an appropri-

ate time delay intensity can effectively enhance the stochastic resonance behavior 

of the system. Upon comparing Figure 2(a) and Figure 2(b), discernible differences 

emerge in the MFPT of Brownian particles within the two potential wells. Notably, 

the transition time required for particles to move from the first potential well to the 

second potential well is longer than the time taken for the reverse transition. This 

discrepancy in escape times can be attributed to the dissimilarity in potential barrier 

heights encountered during the respective transitions. In summary, optimizing the 

output state of the stochastic resonance system can be accomplished by adjusting 

the parameters e, thereby influencing the MFPT of particles within the potential 

well. Additionally, the escape rate can be enhanced by increasing the intensity of 

additive noise while accounting for time delay effects. 

To provide a comprehensive depiction of the energy distribution of the system's 

  
(a) (b) 

Fig. 2 The MFPT versus the noise intensity D for different delay parameters with b=0.15, c 

=-0.32, d =0.8, A=0.2, t=π/2. 
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output signal, the Signal-to-Noise Ratio (SNR) function can be formulated as fol-

lows: 

𝑆𝑁𝑅 =
∫ 𝑆1(𝜔)𝑑𝜔
∞

0

𝑆2(𝜔 = 2𝜋𝑓)

=
−𝑐 8(𝑑 − 𝑒)⁄ − (1 4⁄ )√𝑏 𝑑 − 𝑒⁄ − (𝑐 + √𝑐2 − 4𝑏(𝑑 − 𝑒)) 8(𝑑 − 𝑒)⁄

𝑐 8(𝑑 − 𝑒)⁄ + (1 4⁄ )√𝑏 𝑑 − 𝑒⁄ − (𝑐 + √𝑐2 − 4𝑏(𝑑 − 𝑒)) 8(𝑑 − 𝑒)⁄

⋅
𝜋𝑅0𝐴

2[−𝑐 (𝑑 − 𝑒) − 2√𝑏 (𝑑 − 𝑒)⁄⁄ ]

4𝐷2

 (14) 

 
Fig. 3 SNR versus noise intensity D with b=0.35, c=-0.12, d=0.9, e=0.2, τ=0.2 and A=0.2. 

Figure 3 illustrates the correlation between the transformed noise intensity and Sig-

nal-to-Noise Ratio (SNR). The high-order delayed feedback stochastic resonance ex-

hibits analogous characteristics to classical stochastic resonance: The SNR rises with 

escalating noise intensity, attains a peak value, and subsequently decreases. 

3 Weak Fault Signal Detection of Bearing Inner Ring 

In this section, we utilize a dataset comprising a set of faults-bearing data provided 

by CWRU (Case Western Reserve University) to validate the effectiveness of the 

HTFMSR method for fault diagnosis [49]. Additionally, we compare this method with 

the traditional multi-stable processing approach. We have previously performed theo-

retical analyses on HTFMSR systems, it is important to note that the former method 

must adhere to the adiabatic approximation theory and is confined to small parameter 

limits. In the case of discrete HTFMSR systems, the output can be computed using the 

RK4 (Runge-Kutta fourth-order) equation. 
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Fig. 4 Test rig 

Table 1. The main parameters of the rolling bearings. 

Inner di-

ameter 

/ mm 

Outer di-

ameter 

/ mm 

Pitch di-

ameter 

/ mm 

Ball diameter 

/ mm 

Ball 

number 

contact 

angle 

/(°) 

25.001 51.999 39.040 7.940 10.000 0 

In this research, the fault data is obtained from the Case Western Reserve University 

(CWRU) Bearing Data Center website. The experimental setup, as illustrated in Figure 

4, utilizes deep groove ball bearings of type 6205-2RS JEM SKF operating at a speed 

of 1730 r/min, with a sampling frequency of 12 kHz. The geometrical details of this 

bearing type are presented in Table 1, and the corresponding characteristic frequencies 

are listed in Table 1. For the specific case of inner raceway faults, the theoretical fault 

frequency of the inner ring is determined to be 156.14 Hz. However, due to the presence 

of large project-related frequency faults, the small parameter condition is not met. Con-

sequently, a twice sampling frequency transformation method is employed in the data 

processing algorithm. The twice sampling frequency is set at 6 Hz. Initially, the theo-

retical fault frequency is considered to be 156.14 Hz.  

The frequency spectrum of the inner race fault signal is depicted in Figure 5, reveal-

ing a pronounced periodicity in the time domain waveform. Analysis of Figure 5(b) 

demonstrates that the high-frequency signals predominantly concentrate within the 0-2 

kHz range. However, due to substantial background noise interference, it is challenging 

to extract the fault characteristic frequency from the waveform. Consequently, the pro-

posed method is employed for fault feature detection. In this section, we conduct an 

analysis and comparison of the potential of the time delay feedback tristable stochastic 

resonance (TFTSR) system and HTFMSR system in  actual fault feature extraction with 

the following parameter values: a=0.1, b=−0.2, c= 
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Fig. 5 Waveform (a) and spectra (b) of a bearing inner ring fault signal 

 
Fig. 6 Comparison of the waveform and spectra of TFTSR and HTFMSR 

0.15, e=0.08, and τ=0.05. As depicted in Figure 5, the original signal is notably suscep-

tible to noise interference. Upon processing the signal using the TFTSR method, as 

shown in Figure 6 (b), it can be observed that the pulse profile becomes discernible. 

The filtering process significantly reduces most of the high-frequency interference and 

also enhances the amplitude of the characteristic frequency. However, some intermedi-

ate frequency interference remains, leading to less prominent characteristic frequency 

peaks. By analyzing Figures 6 (b) and (d), it is determined that the frequency of the 

inner fault is approximately 156 Hz, which closely aligns with the theoretical value of 

156.14 Hz. Comparing the spectra of the TFTSR with the HTFMSR, both methods 

demonstrate the ability to detect weak fault signals. However, the HTFTSR exhibits a 

more pronounced filtering effect on the noise interference. HTFMSR system exhibits a 

higher amplitude at the fault frequency compared to the TFTSR system, increasing 

from 0.2811 to 0.4036. Furthermore, the signal-to-noise ratio (SNR) analysis indicates 
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an increase from 0.9723 dB to 2.1840 dB in this processing result. In this section, the 

fault-bearing data obtained from CWRU is utilized to validate the effectiveness of the 

HTFMSR method in fault diagnosis. The results demonstrate that the proposed 

HTFMSR method exhibits superior filtering capabilities compared to the TFTSR 

method. 

In order to quantitatively assess the superiority of the system, faulty bearing data 

from CWRU is utilized as input. Additionally, the system is driven by noise, and the 

SNR of both the TFTSR and HTFMSR systems is analyzed to study the impact of noise 

on the systems. SNR is a critical metric used to quantify the effectiveness of Stochastic 

Resonance (SR), as it allows for the assessment of the system's ability to distinguish 

the signal of interest from the background noise. 

𝑆𝑁𝑅 = 10log10 (
𝐴𝑑

𝐴𝑛

) 
(10) 

Where 𝐴𝑑 represents the amplitude value corresponding to the forcing frequency, and 

𝐴𝑛 signifies the sum of all amplitude values except 𝐴𝑑 in the amplitude spectrum. 

 
Fig. 7 The SNR of TFTSR and HTFMSR system 

Stochastic resonance is a phenomenon observed in negative feedback systems. In 

the absence of delay, stochastic resonance relies on the negative feedback provided by 

the potential trap force within the system. In contrast, delay stochastic resonance incor-

porates an additional long memory feedback term, which introduces historical infor-

mation into the current output. Under suitable conditions, this feedback mechanism en-

ables the system to enhance the detection of periodic weak signals, thereby improving 

the overall detection performance. Figure 7 illustrates the SNR in different systems with 

noise intensity D. Notably, the observed trend aligns with the theoretically derived SNR 

as reported in our previous analysis. It is evident that the HTFMSR system exhibits 

significantly higher SNR values compared to the TFTSR system. Specifically, the SNR 

reaches its maximum value of 2.0738 at D=0.3 in the HTFMSR system. Meanwhile, 

the SNR attains its maximum value of 0.9314 at D=0.15 in the TFTSR system. Further 

examination of the HTFMSR system indicates that the SNR slowly fluctuates between 

2.001 and 2.006 for D=0.05−0.6, highlighting the system's substantial processing capa-

bility within this range of noise intensities. Through a comparative analysis of the sig-

nal-to-noise ratios of actual signals, it is evident that the HTFMSR system possesses 



10 

superior capacity to transform noise energy into weak signal energy when compared to 

the TFTSR system, ultimately resulting in an improved amplitude of the fault signal. 

Hence, in comparison to the conventional TFTSR system, the HTFMSR system pro-

posed in this study demonstrates enhanced efficacy in extracting weak fault character-

istic signals amidst significant noise interference. 

4 Conclusion 

This paper addresses the issue of insufficient detection capability for periodic weak 

signals in stochastic resonance systems due to their short memory effects. To address 

this, a multi-stable stochastic resonance model based on high-order time-delay feed-

back control item is proposed. The incorporation of time-delay feedback control item 

improves the memory characteristics of the SR model. The research focuses on the 

generalized potential function, MFPT and SNR of the HTFMSR system. The results 

indicate that adjusting the time-delay parameter can enhance the transition efficiency 

of Brownian particles within the potential well, thus improving the system's capability 

to detect weak signals effectively. In conclusion, the proposed HTFMSR system is val-

idated using a set of publicly available experimental data and is compared with the 

traditional time-delay feedback stochastic resonance model. The experimental findings 

demonstrate that the HTFMSR system proposed in this study effectively enhances the 

detection efficiency of weak periodic signals. 
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