
EasyChair Preprint

№ 681

Simulating Software Defined Networking Using

Mininet to Optimize Host Communication in a

Realistic Programmable Network.

Lindinkosi Zulu, Kingsley A. Ogudo and Patrice Umenne

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 14, 2018

Simulating Software Defined Networking Using Mininet to Optimize

Host Communication in a Realistic Programmable Network.

Abstract— In this paper, Mininet-WiFi was used to simulate

a Software Defined Network to demonstrate Mininet-

WiFi’ s ability to be used as the Software Defined Network

emulator which can also be integrated to the existing

network using a Network Virtualized Function. A typical

organization’s computer network was simulated which

consisted of a website hosted on the LAMP (Linux,

Apache, MySQL, PHP) virtual machine, and an F5

application delivery controller (ADC) which provided load

balancing of requests sent to the web applications. A

website page request was sent from the virtual stations

inside Mininet-WiFi. The request was received by the

application delivery controller, which then used round

robin to send the request to one of the web servers on the

LAMP virtual machine. The web server then returned the

requested website to the requesting virtual stations using

the simulated virtual network. The significance of these

results is that it presents Mininet-WiFi as an emulator,

which can be integrated into a real programmable

networking environment offering a portable, cost effective

and easily deployable testing network, which can be run on

a single computer. These results are also beneficial to

modern network deployments as the live network devices

can also communicate with the testing environment for the

data center, cloud and mobile provides.

Keywords—SDN; Mininet; Mininet-WiFi; 802.11, Virtual

machine, Artificial Intelligence, Internet protocol, NVF, VNF

I. INTRODUCTION

Moving to Software Defined-based networking is not without

its challenges. Converting from a proprietary to an open

system involves more moving parts, including controllers,

clients, orchestration systems, and business applications. In

many cases, Software Defined Networking (SDN) components

must interact with legacy components introducing further

complexity. This has created a room for testbeds which can be

used to test the SDN network before being implemented in

real network to minimize down time and to provide a test

environment which is close to real world where issues can be

identified and rectified. A suitable tool or emulator, which

must produce close to real live situation, must be used to

obtain outcomes, which can be implemented as is in real

world.

Traditional Internet Protocol (IP) networks are complex and

many enterprises find it a challenge to manage as network

operators need to configure each individual network device

separately and most often having to use vendor-specific

commands. This is because each device has it own control,

management and forward planes.

Fig. 1. Traditional network device

SDN gives hope to address these challenges which current

network infrastructures are not able to address. It does so by

separating the network's control logic from routers and

switches that forward the traffic. It also separates the control

and data planes leaving network switches being simple

forwarding devices and the control logic is implemented in a

logically centralized controller [1].

Software defined networking (SDN) is the physical separation

of the network control plane from the forwarding plane, where

a control plane can control several devices. This creates a

three-layer architecture, which are infrastructure, control and

application layers [2]. SDN makes it easier for network

operators to evolve network capabilities. Before, network

devices used to use closed proprietary features but with SDN,

a single software program can control the behavior of the

entire network [3].

This intelligence makes it possible to offer networking-as-a-

Service (NaaS), which significantly reduces expenses both

capital and operational and enables fast service architecture.

This is due to the fact that the data plane is highly

programmable from the remote-control plane at the controlling

application [4]. SDN also offers enhanced configuration,

improved performance and encouraged innovation [5].

Fig. 2. Software Defined network device communication

The high demand for data has affected the telecommunication

industry, more specially the mobile network providers. This

hunger for data is one of the catalysts for connectivity speeds

of 5G networks. Service providers are facing challenges in

complying with connectivity demands without substantial

financial investments [6]. To address this issue, the industry

had to look for initiatives aiming at cost reduction, increase of

network scalability and service flexibility. The two

networking architectures introduced to meet these

requirements are Network Functions Virtualization and

Software Defined Networking [7].

Software Defined Networking is classically defined as the

separation of the control plane from the forwarding plane

where the control plane is centralized while Network

Functions Virtualization is the virtualization of services

instead of using the hardware purposefully built to provide

that service.

Network Functions Virtualization is a framework defined by

the European Telecommunications Standards Institute (ETSI)

that specifies the virtualization of various network services

such as firewalls, load balancers and any other services

typically associated with dedicated purpose-built hardware. In

the telecommunication industry, NFV proposes to run the

mobile network functions as software instances on commodity

servers or datacenters, while SDN supports a decomposition of

the mobile network into control-plane and data-plane

functions. The combination of both SDN and NFV is

considered as a very promising combination in achieving a

cost efficient mobile network architecture within the mobile

network environment [8].

NFV has been proposed as a model that resolves the functions

of placement and aims at minimizing the transport network

load overhead against several parameters such as data-plane

delay, number of potential data centers and SDN control

overhead. By moving network appliance functionality from

proprietary hardware to software, Network Function

Virtualization promises to bring the advantages of cloud

computing to network packet processing [9]. It is for this

reason that this paper looks to Mininet and its wireless

extension Mininet-WiFi as the emulator, which can be used to

emulate a Software Defined Network, intergraded on the

network using a Network Virtualized Function (NVF) in the

form of an application delivery (load balancer).

A. Mininet

Recent Software-Defined Networking (SDN) approaches

propose new means for network virtualization and

programmability advancing the way networks can be designed

and operated, including user-defined features and customized

behavior at run-time [10]. The need for fault tolerance and

scalability is leading to the development of distributed

Software Defined Networking operating systems and

applications. These developments in innovations calls for an

emulator, which will be able to produce reliable results when

emulating such networks [11].

Mininet provides the platform to understand how actual

Software Defined Networking works by creating a virtual

network similar to the real network. This can be applied to run

on small as well as very large-scale networks. One of the

advantage of using Mininet is that, an application that works

on it can be easily deployed to a real network [12].

Mininet is a network rapidly prototyping system which

support, testing and simulation of Software Defined networks.

The greatest value of Mininet is supporting collaborative

network research by enabling self-contained Software Defined

Network prototypes, which anyone with a personal computer

(PC) or laptop can download, and use [13]. To achieve this,

Mininet uses lightweight approach of OS-level virtualization

features ranging from processes and network namespaces,

which make it possible to scale to hundreds of nodes and

represents a qualitative change in workflow through its ability

to run and debug in real-time [14].

Among the main reasons for emulating, a network is to be able

to test and prove concepts. Current information on Software

Defined Networking can be found in research papers and in

white papers [15]. In the case that an organization, needs to

prove these concepts or plans to deploy Software Defined

Networks, the results can be easily reproduced. Mininet

enables virtual network systems, where an environment of

virtual hosts, switches, and links runs on a modern multicore

server, using real application and kernel code with software-

emulated network elements. An experiment has been

conducted using Mininet to reproduce key results from

published network experiments such as DCTCP, Hedera, and

router buffer sizing which were successfully reproduced

highlighting another important ability of Mininet [16].

Mininet is not the only simulator, which can be used to

simulate SDN networks. Other specialized hardware network

devices require specialized programming languages [17] to

run. Other notable simulators available include the used of

Raspberry-Pi [18] to develop a cost-effective OpenFlow

testbed for a small scale SDN networking and Fs-SDN [19].

Although some of these other simulators do have advantages

over Mininet on some aspects of simulation [20], Mininet

remains the simulator of choice for SDN networks due to its

flexibility and many advantages. Other simulators use full

system virtualization, heavyweight containers with increasing

complexity and overheads while decreasing usability. Mininet

support the development of SDN systems and applications

reliably without access to an expensive testbed [21].

Networks emulated in Mininet have produced reliable results,

which has made Mininet to be used as a reference system

when other emulators like Fs-SDN were being developed or

tested. Fs-SDN is a Python-based tool developed for

generating network flows records and interface counters. To

evaluate fs-SDN accuracy, scalability, and speed, a side by

side setting up between fs-SDN and Mininet was done with a

series of identical network and traffic configurations. After

which network traffic and system-level measurements where

compared between the two. In this investigation, Mininet was

discovered to be a better tool.

B. Mininet-WiFi

Mininet can also be used to emulate Software Defined

Wireless Networks. To achieve this, the base code of Mininet

must be extended by modifying classes and scripts to support

wireless functionalities while also keeping all Software

Defined Networking capabilities from the standard Mininet

network emulator. Mininet-WiFi is a fork of Mininet

emulator, which extends its functionality by adding virtualized

Wi-Fi stations and access points based on the standard Linux

wireless drivers and the 802.11_hwsim wireless simulation

driver. It adds classes to support the addition of wireless

devices in a Mininet network scenario and to emulate the

attributes of a mobile station such as position and movement

relative to the access points. The 802.11 is the wireless

standard by Institute of Electrical and Electronics (IEEE),

which provides specifications for implementing wireless

communications using the Wi-Fi (Wireless Fidelity). [22]

Mininet-WiFi developers have showcased it in a scenario with

ad hoc and infrastructure wireless modes using a single

experimental platform integrating virtual and physical nodes.

This demonstration featured Mininet-WiFi as an emulator with

the ability to run realistic experiments in hybrid physical-

virtual environments, where users were able to experience it

first hand by connecting their devices and interacting with

virtual Wi-Fi stations in a wireless mesh network. They were

able to connect to the internet through the emulated Software

Defined Wireless Network infrastructure. Mininet-WiFi

enhances Mininet emulator with virtual wireless stations and

access points while keeping the original SDN capabilities and

the lightweight virtualization software architecture [23].

II. METHODOLOGY (NETWORK DESIGN)

Fig. 3. Logical network simulated on this paper

The network consists of website hosted on the LAMP (Linux,

Apache, MySQL, PHP) virtual machine, an F5 application

delivery controller (ADC) to provide load balancing of

requests sent to the web applications and Mininet-WiFi to

simulate a Software Defined wireless network. All these

network components are integrated to form a typical computer

network of an organization.

A. LAMP Server

LAMP is a group of open source software used to setup and

run webservers. The acronym stands for Linux, Apache,

MySQL, and PHP. This is because it uses Linux as the

operating system, Apache as the Web server, MySQL as the

relational database management system and PHP as the

object-oriented scripting language.

LAMP is mostly referred to as a LAMP stack because it has

four layers. This stack can be built on different operating

systems and the acronym changes to reflect that operating

system. For an example, with Windows operating system, it is

called WAMP; with Macintosh system, it is called MAMP;

and with a Solaris system, it is called SAMP.

For this simulation, LAMP server virtual machine with five

(5) websites already configured was downloaded from F5 and

integrated to this SDN network. The configured servers’

names are from server 1 to server 5 with Internet Protocol (IP)

addresses 10.1.20.11 up to 10.1.20.15. All these configured

servers deliver the same web application.

This already configured LAMP was chosen because of its

ability to simulate real world web application as deployed by

many organizations.

B. F5 BIG-IP Virtual Edition (VE)

F5 is a company that specializes in application delivery

networking (ADN) technology. It is involved in the delivery

of web applications, security, performance, availability of

servers, data storage devices, and other network and cloud

resources.

To do this, F5 uses BIG-IP platform which is a blend of

software and hardware which is a load balancer and a full

proxy. It gives the ability to control the traffic that passes

through the network and comes in two (2) forms, physical

hardware and virtual Edition (VE).

The virtual editions of BIG-IP products offer the same variety

of features available in hardware solutions and can be

deployed on a public or private cloud.

The company name F5 was inspired by the 1996 movie

Twister in which reference was made to the fastest and most

powerful tornado on the Fujita Scale: F5.

F5 founders believed that this company will cause the most

powerful change in the networking field.

BIG-IP is not an acronym for anything either, F5 got the

concept from TCP/IP (Transmission Control Protocol/ Internet

Protocol) notation. The BIG part of the name is from F5 view

of this technology as being a full proxy, which presents a

virtual IP on behalf of many devices that are behind it. This

makes it according to F5 an IP bigger that a normal IP address,

hence it is called BIG-IP.

This simulation uses BIG-IP Virtual Edition (VE) which after

downloading from F5 was licensed and then configured. The

configured network features include the internal VLAN,

which is the network part that communicates with backend

servers running on the LAMP stack and the external VLAN,

which is the network part that communicates with Mininet-

WiFi.

On The BIG-IP application controller, a virtual server was

created which is accessible only from the external VLAN and

is used to request web applications from the backend servers.

These are grouped on a pool program to provide load

balancing to the LAMP virtual machine using round-robin

load balancing algorithm.

C. Mininet-WiFi

A Mininet-WiFi virtual machine was created by installing

Mininet-WiFi on an Ubuntu Server virtual machine. Two (2)

interfaces were configured and associated with Mininet-WiFi

virtual machine (VM).

The first interface was for management so that Mininet-WiFi

can be accessed using any terminal emulator, which offers

better command line interface, compared to Mininet-WiFi

command prompt.

The second interface was then used to intergrade Mininet-

WiFi onto the simulated network and was configured with the

IP address on the same subnet as the external VLAN of the

BIG-IP application delivery controller.

Mininet-WiFi basic network topology was used which consist

of a wireless access point (AP1) with two wireless stations

(Sta1, Sta2) and the controller. The access point is connected

to a controller (C0) using virtual connection and the two (2)

stations are attached to the access point (AP) using the

simulated wireless interface.

Once the basic network was created, the external VLAN

interface was then added to the access point (AP) interface

using OpenFlow commands. Both stations (Sta1 and Sta2)

internet protocol (IP) addresses were modified such that they

are also on the same external VLAN subnet.

Fig. 4. Network inside Mininet-WiFi

III. RESULTS

To test our simulated network functionality, a hypertext

terminal protocol (http) website page request was sent to the

virtual server on the BIG-IP application delivery controller

from the virtual stations (Sta1 and Sta2) connected to the

access point (AP1) via simulated wireless interface inside

Mininet-WiFi. The controller (C0) was able to create flow

entries on the access point directing traffic to the external

VLAN interface of the access point.

The request was received by the virtual server, which then

used round robin to load balance the request to one of the web

servers on the LAMP virtual machine. The web server

returned the requested website in the hypertext terminal

protocol (http) format to the requesting virtual stations using

the simulated virtual network.

Fig 5 shows that from 0.016 s to about 0.032 s, a command to

“GET” an (http) packet was issued from the virtual stations to

the virtual server and then the (http) packet was received at the

virtual stations signified by the “OK” message. If this is

related to the information in fig 6 we notice that the round-trip

time initially decreases from (0.016 – 0.027 s) indicating that

no data is travelling during this time and then increases from

(0.027 – 0.033 s), indicating that the (http) packet is being

transmitted relative to time. Fig 7 shows that the average data

throughput remains constant at 600 bits/s over a time period of

(0.016 – 0.032 s) which means that there are no dropped

packets during this period and that the data travels over the

round trip without dropping any packets.

 Fig. 5. TCP flow

 Fig. 6. Round Trip Time

Fig. 7. Throughput

The result of this project is a successful communication

between the Software Defined network devices inside the

Mininet-WiFi emulator with the virtualized application

delivery controller (load balancer) which is a Network

Virtualized Function. This result shows Mininet and its

wireless extension Mininet-WiFi as the suitable emulator

which can be integrated into a realistic programmable

networking environment using the combination of both SDN

and NFV. These offer a portable, cost effective and easily

deployable testing network, which can be run on a single

computer.

CONCLUSION

Modern network technologies are moving away from

traditional architecture, which is proprietary, and opting for

more flexible and automated architectures, which support

intelligent business models by allowing network

programmability. The advent of Software Defined Networking

and Network Functions Virtualization resulted in a need for an

emulator, which can be able to emulate networks even in

realistic programmable networking environments.

Although developments of Mininet and it wireless extension

Mininet-WiFi is an ongoing process, but results from this

project are encouraging as it demonstrates that this emulator

can be of benefit to even wireless network providers and

organizations with virtualized network functions and cloud

solutions. This project open doors for Mininet integration

research with other technologies like Orchestrators,

datacenters, Cloud, Business Support Systems (BSS) and

Operations Support Systems (OSS).

REFERENCES

[1] Kreutz D, Fernando M, Ramos V, Esteves Verı´ssimo P,

Rothenberg C. Azodolmolky S, Uhlig S. Software-Defined

Networking: A Comprehensive Survey. Proceedings of the

IEEE Vol. 103, No. 1, January 2015

[2] Open Networking Foundation (ONF). 2016. The SDN

Solutions Showcase: Technical Report & Analysis version

Number 1.0. Paper presented at SDN & OpenFlow world

congress, Dusseldorf, Germany.

[3] Feamster N, Woodrow S, Sundaresan S, Kim H, Clark R.

Voellmy A, 2012. The Past, Present, and Future of Software

Defined Networking

[4] Lin Y, Pitt D, Hausheer D, Johnson E, Lin Y. 2014.

Software-Defined Networking: Standardization for Cloud

Computing Second Wave

[5] Xia W, Wen Y, Foh C, Niyato D, Xie H, 2015. A Survey

on Software-Defined Networking.

[6] Hawilo H, Shami A, Mirahmadi M. 2014. NFV: state of

the art, challenges, and implementation in next generation

mobile networks (vEPC)

[7] Arsany Basta A, Kellerer W, Hoffmann M, Morper H,

Hoffmann K. 2014. Applying NFV and SDN to LTE mobile

core gateways, the functions placement problem

[8] Palkar S, Lan C, Han S, Jang K, Panda A,

Ratnasamy S, Rizzo L, Shenker S.2015. A Framework for

NFV Applications

[9] Matias J, Garay J, Toledo N. 2015. Toward an SDN-

enabled NFV architecture

[10] Vitaly Antonenko V. 2013. Global Network Modelling

Based on Mininet Approach.

[11] Handigol M, Heller B, Jeyakumar V, Lantz B, McKeown

N. 2012. Reproducible Network Experiments Using

Container-Based Emulation

[12] Lantz B, O’Connor B. 2015. A Mininet-based Virtual

Testbed for Distributed SDN Development

[13] Lantz B, Heller B, McKeown N. 2010. A Network in a

Laptop: Rapid Prototyping for Software-Defined Networks.

[14] Syrivelis D, Parisis G, Trosse D, Flegkas P, Sourlas V,

Korakis T, Tassiulas L. Pursuing a Software Defined

Information-Centric Network. Paper presented at the European

workshop on Software Defined Networks in Darmstadt,

Germany from 25-26 October 2012

[15] Frömmgeny A, Stohr D, Fornoffy J, Effelsberg W,

Buchmanny A. 2016. Capture and Replay: Reproducible

Network Experiments in Mininet

[16] Kumar D,

Sood M. 2016. Software Defined Networks

(S.D.N): Experimentation with Mininet Topologies

[17] Wang S. 2014. Comparison of SDN OpenFlow network

simulator and emulators: EstiNet vs Mininet

[18] Weerawardhana J.L.M.N, Chandimal N.J.A.W,

Bandaranayake A. 2015. SDN Testbed for Undergraduate

Education

[19] Kim H, Kim J, Ko Y. 2014. Developing a Cost-Effective

OpenFlow Testbed for Small-Scale Software Defined

Networking

[20] Gupta M, Sommers J, Barford P. 2013. Fast, Accurate

Simulation for SDN Prototyping

[21] Lantz B, O’Connor B. 2015. A Mininet-based Virtual

Testbed for Distributed SDN Development.

[22] Fontes R, Afzal S, Brito S, Santos M, Rothenberg, C,

2015. Mininet-WiFi: Emulating software-defined wireless

network.

[23] Fontes R, Rothenberg C. 2016. Mininet-WiFi: A Platform

for Hybrid Physical-Virtual Software-Defined Wireless

Networking Research

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ramon%20R.%20Fontes.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Samira%20Afzal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Samuel%20H.%20B.%20Brito.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mateus%20A.%20S.%20Santos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christian%20Esteve%20Rothenberg.QT.&newsearch=true

