
EasyChair Preprint
№ 13945

Tuning Glovo’s Dispatching Engine at Scale via
Optimal Treatment Rules

David Masip and Ponç Palau

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 12, 2024



Tuning Glovo’s dispatching engine at scale via optimal treatment
rules

David Masip∗
david.masip@glovoapp.com

Glovo
Barcelona, Spain

Ponç Palau∗∗
ponc.puigdevall@glovoapp.com

Glovo
Barcelona, Spain

ABSTRACT
Glovo operates a three-sided marketplace connecting vendors, cus-
tomers, and riders to facilitate order delivery. Central to this op-
eration is the dispatching engine, which optimises real-time as-
signment of orders to riders. The dispatching engine employs a
matching cost function to balance customer delivery times and
rider efficiency. The matching cost function depends on a num-
ber of tunable coefficients that give more or less weight to several
important operational metrics. This paper details Glovo’s method-
ology for optimising the coefficients of the matching cost function,
focusing on the optimisation pipeline used to determine optimal
coefficient configurations and to test them in the real world. We use
event-based simulation and multi-objective optimisation to tune
these coefficients, ensuring a desirable trade-off between customer
experience and operational efficiency. Additionally, we run switch-
back experiments and leverage optimal treatment rules to make
informed roll-out decisions for new configurations, improving KPIs
across diverse markets. Using real data from a Glovo experiment we
showcase how our approach based on estimating optimal treatment
rules demonstrates significant improvements over naive global roll-
out strategies. Moreover, we report the results of a simulation study
comparing the results of estimating the optimal treatment rules
using several estimators available in the literature.

CCS CONCEPTS
•Mathematics of computing→Hypothesis testing and confi-
dence interval computation; • Computing methodologies→
Genetic algorithms; Discrete-event simulation; Supervised learning
by classification.

KEYWORDS
Simulation, Optimisation, Genetic Algorithms, AB Testing, Switch-
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1 INTRODUCTION
Customers use Glovo’s mobile or web app to place orders from
vendors, that are then delivered by riders to the customer’s loca-
tion. Vendors include restaurants, grocery shops and also general
retailers. With a footprint in 25 countries, hundreds of millions of
orders are served every year in our platform.

At the core of Glovo’s operation lies the dispatching engine,
the system charged with assigning orders to riders in real time in
each city we operate in. The dispatching engine: (i) solves a series
of combinatorial optimisation problems to first generate possible
sequences of orders to be delivered by a same rider, which we call
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routes, (ii) solves an assigment problem to assign routes to riders.
This final stage which assigns routes to riders solves an assignment
problem using a taylor-made objective function, which we call the
matching cost function.

The matching cost function takes as inputs delivery time and dis-
tance travelled estimations from machine learning models. These
estimations are weighted according to some tunable coefficents
and then summed to form the final matching cost function. The
choice of the matching cost function coefficients, which can be
done individually for each city Glovo operates in, heavily influ-
ences operations, with trade-offs between different metrics arising
naturally. In particular, prioritizing the lower customer delivery
times can lead to inefficient use of the available rider fleet. On the
other hand, optimising for fleet efficiency might increase customer
delivery times, risking the delivery of cold food, and as a result,
worsening customer experience.

In the present paper, we will deep-dive into our pipeline for
optimising the coefficients in the matching cost function, with a
particular emphasis on how we do experimentation to decide when
and where to roll out changes. We will review how optimal roll
out decisions are related to the estimation of optimal treatment
rules ([13]) and in turn how the later are related to estimators for
the conditional average treatment effect. Using both simulated and
real data sets, we will assess the impact of the decisions made by
optimal treatment rules versus more naive approaches, like a global
roll-out decision.

The rest of the paper is organized as follows. In section 2 we
briefly review related work by other players in our industry. In
section 3 we provide a high level overview of a stylised version of
the matching step in our dispatching engine. In section 4 we review
how event based simulation can be leveraged to approximately
tune the coefficients in the matching cost function. In section 5
we describe how we run and analyse experiments to decide in
which geogaphies to roll out the new coefficients, showing how
optimal treatment rules can be used to make these decisions, both
in simulated and real data sets.

2 RELATEDWORK
Using simulation to improve the operations in a platform like Glovo
is a common practice in the industry. Some examples of this are the
works of [3], where they present how to use simulation in order
to explore possible improvements to the dispatching algorithms,
specially in cases of undersupply. Following a similar fashion, in
[2] they present how event-based simulation is used to test new
features and improve current ones in their marketplace. While
these articles focus on explaining the details of their simulation
frameworks, our paper focuses on:
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• How to use simulation to optimise the dispatching engine
of a global marketplace.

• How to select different configurations of the dispatching
engine from a Pareto front based on regional inputs.

Our work uses the methodology in [9], [12] and [13] in an indus-
try application. In particular, we use a slight modification of their
framework where the unit of analysis, the unit of randomisation
and the unit of rollout are all different. This is a common scenario
in logistics applications, where the unit of randomisation is the
switch, the unit of analysis is the order and the unit of rollout is
the city.

3 OPTIMISING THE DISPATCHING ENGINE
To simplify the presentation, and to be able to focus on the opti-
misation of the coefficients in the matching cost function, we will
present a highly simplified and stylised version of how rider-order
matching works at Glovo. In particular, we will consider only the
case in which individual orders (and not more complex routes)
need to be assigned to riders, and a heavily simplified matching
cost function.

Recall that the whole dispatching system, including the matching
step, operates at a city level, and in near real time. Thus, in what
follows we fix a given city, and a given moment during a day.

We let 𝑅 denote the set of currently available riders in the city.
Similarly, we let 𝑂 be the set of all orders that currently need to
be assigned. Let 𝑐𝑟𝑜 be the cost of assigning order 𝑜 to the rider 𝑟
and 𝑥𝑟𝑜 ∈ 𝜒 be our decision variable, taking the value of one if the
rider 𝑟 is assigned to order 𝑜 and zero otherwise. We define an extra
decision variable 𝑦𝑜 indicating if the order 𝑜 has been assigned to
any rider. For every order-rider eligible matching (A), a cost 𝑐𝑟𝑜 is
computed. For every order 𝑜 , we define 𝑓𝑜 representing the cost
of not assigning it. Typically, 𝑓𝑜 is considerably bigger than 𝑐𝑟𝑜 .
Then, the following minimisation problem is solved to derive the
matches:

min
𝑥∈𝜒

∑︁
(𝑟,𝑜 ) ∈𝐴

𝑐𝑟𝑜𝑥𝑟𝑜 +
∑︁
𝑜∈𝑂
(1 − 𝑦𝑜 ) · 𝑓𝑜

s.t.∑︁
𝑟 ∈𝑅

𝑥𝑟𝑜 = 𝑦𝑜 ∀𝑜 ∈ 𝑂∑︁
𝑜∈𝑂

𝑥𝑟𝑜 ≤ 1 ∀𝑟 ∈ 𝑅

Constraints ensure that each order is assigned to at most one
rider, and that each rider can be assigned at most one order. Not all
the rider-order pairs are eligible. There are a number of constraints
that are checked before a pair is considered eligible. For example,
the distance between the pickup location and the position of the
rider, vehicle constraints according to pickup and delivery areas,
etc.

As stated in the introduction, the matching cost 𝑐𝑟𝑜 depends on
multiple factors. To simplify the presentation, throughout the paper
we will work with a simplified version, that depends on only three
inputs:

• riderDistance𝑟𝑜 Estimated distance traveled by the rider.
• riderDT𝑟𝑜 Estimated time the rider 𝑟 will spend delivering

the order 𝑜 . This term is used for controlling the quality of

Figure 1: Scenario of two orders and two riders. Rider red
(𝑟0) is delivering 𝑜0, rider blue is idle waiting for orders to be
assigned. Numbers indicate space units. Courier speed is 1
space unit/1 time unit.

Figure 2: Order and rider timelines. The top two rows repre-
sent the timelines with order events. The bottom two rows
represent the timelines with rider events. 𝑋 ← 𝑌 stands for
the time that it takes for the rider to go from location 𝑋 to
location 𝑌 . 𝑆 stands for starting position of the rider.

our service at peak times, when the number of orders can
be considerable higher than the number of riders available.

• customerDT𝑟𝑜 Estimated delivery time of order 𝑜 if it is
assigned to rider 𝑟 , that is, the elapsed time since the order
is created until the order is delivered.

All three of these inputs are the predictions of in-house machine
learning models. We define the matching cost 𝑐𝑟𝑜 as:

𝑐𝑟𝑜 = 𝛼0 · riderDistance𝑟𝑜 + 𝛼1 · riderDT𝑟𝑜 + 𝛼2 · customerDT𝑟𝑜
To exemplify the importance of the values of the coefficients

Ω = [𝛼0, 𝛼1, 𝛼2], which weigh each of the terms in the cost 𝑐𝑟𝑜 , we
present an illustrative scenario. Consider the setting depicted in
Fig. 1, where we have two orders and two riders, namely rider red
(𝑟0) and rider blue (𝑟1). At the current time of assignment, order 0
is already being delivered by the rider in red, while order 1 is still
pending to be assigned.

Drawing a timeline of the different elements involved can provide
a clearer visual representation of the various terms in the cost
function, as shown in Fig. 2.
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Figure 3: Pareto front highlighting the trade-off between
rider and customer delivery time.

Based on the cost definition and the values provided in the ex-
ample, the various terms of the cost function take on the following
values:

• Pair 𝑟0 − 𝑜1
– riderDistance01 = 7
– riderDT01 = 7
– customerDT01 = 12

Leading to 𝑐01 (Ω) = 𝛼0 · 7 + 𝛼1 · 7 + 𝛼2 · 12
• Pair 𝑟1 − 𝑜1

– riderDistance11 = 8
– riderDT11 = 8
– customerDT11 = 11

Leading to 𝑐11 (Ω) = 𝛼0 · 8 + 𝛼1 · 8 + 𝛼2 · 11
Let us see how the assignments change as a function of Ω. Set
Ω0 = [1, 1, 1] and Ω1 = [0.5, 0.5, 2]. Then, for Ω0 we have that
𝑐01 (Ω0) = 26 and 𝑐11 (Ω0) = 27 so we would select the red rider
(𝑟0) in this case. On the contrary, for Ω1 we have that 𝑐01 (Ω1) = 31
and 𝑐11 (Ω1) = 30, so we would select the blue rider (𝑟1).

If we look at different metrics for both cases, we see that when
we use Ω0, we are selecting the red rider, which delivers the order
later than the blue rider, providing a worse experience for the final
user, but in a more efficient way because it takes less time for the
rider to deliver it. As commented before, a configuration of Ω that
prioritises riderDistance and riderDT is extremely useful when
there are significantly more orders than riders. Instead, if we assign
orders using Ω1, we are prioritising customer experience because
we select the rider that can deliver the order the earliest.

Clearly, there is a trade-off between decreasing the time it takes
for a rider to deliver an order (riderDT), or what is the same, delay-
ing the dispatch because we are waiting for a rider that is better
positioned to deliver that order more efficiently, and the delivery
time of the order itself (customerDT). Therefore, as we change val-
ues of Ω, we have different results of riderDT and customerDT
forming a Pareto front, such as the one depicted in Fig. 3.

In general, the point in the Pareto front we want to operate at
for a given market is a strategic business decision. Changing the
coefficents in thematching cost function is one way to guarantee we
(approximately) operate at the targeted trade-off between rider and

customer delivery time. In order to determine which combination
of coefficients yields a desired trade-off, we leverage our in-house
logistics simulator, which we describe next.

4 SIMULATION-BASED OPTIMISATION
Our simulator allows us to approximately evaluate the effect of
different configurations of Ω in the KPIs of interest without the
need of running expensive experiments.

The simulation is performed inside the logistics simulator, a tool
designed and implemented internally in Glovo. This simulator is
able to approximately recreate the operations of a city given some
historical data of it and a matching cost function configuration Ω.
Given that in other occasions we already published details about
our dispatching-simulator, in this article we only provide a high
level explanation. For more details, please see [1].

For a given city and date, the simulator loads the following
historical data:

• Riders:
– Check-in/Check-out times to simulate fleet availability
– Starting locations in the city for each rider

• Orders: Historical activation time, pickup and delivery lo-
cations.

Next, given an input configuration of Ω it produces assignments
for the orders. Please note that once we change the values of Ω, we
cannot trust the location of the riders in the historical data because
the dispatching engine could have assigned different orders to them,
changing the final location of the riders at the end of one delivery.
Finally, the simulator provides a report with the average KPIs of
interest for that entire day, such as the average delivery time of the
orders, the average time riders spend delivering the orders, among
others. In what follows, we will refer to the KPIs obtained from a
simulation as avgCustomerDT for the average delivery time of all
the orders in the simulated date and avgRiderDT for the average
time it took riders to deliver all the orders in the simulated date.
Our simulator can either be run for a single date or for a range of
dates, providing the average KPIs for all the dates in the range.

Within this context, we use the simulator as a black box system
that provides us with the estimated values of city level KPIs of inter-
est for a given configuration of Ω for a set of dates. More precisely,
we designed a pipeline that runs a multi-objective optimisation
algorithm to find the Pareto fronts of different Ω. The algorithm in
use is the NSGA-II ([6]) algorithm, which is a well-known algorithm
for multi-objective optimisation problems.

The complete process of the pipeline is depicted in Fig. 4. In
order to prevent overfitting of the coefficients of the cost function
to the historical data of choice, we use two sets of dates: training
and testing dates. We run the NSGA-II algorithm and obtain Pareto
fronts for all the cities in the training dates. Then, we simulate with
every Ω configuration in the latter Pareto front the behaviour of
the cities during the testing dates, and we obtain a set of metrics of
interest averaged over these dates.

We are now interested in selecting a single configuration from
the Pareto front for each city. In the following section, we present
our methodology to do so.
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Figure 4: Entire pipeline for finding the optimal configuration Ω for a city.

4.1 Selecting configurations from the Pareto
front

In order to introduce the methodology to choose the configuration
Ω, we first introduce some notation. For every city 𝑐 ∈ 𝐶 we have
a set of configurations 𝑆𝑐 = {Ω1,Ω2, . . . ,Ω𝑖 , . . . ,Ω𝑛} and a set of
metrics {avgCustomerDT𝑖 , avgRiderDT𝑖 } for each Ω𝑖 .

We assume that cities in the same region have a shared set of
business objectives, and therefore, the final configuration for every
city in the region must satisfy the same constraints. Regions are
defined as a set of countries; a particular case of it is a single coun-
try. Usually, since we have a trade-off between different logistic
metrics, we are interested in minimising one of them while not
compromising the others. For example, we could be interested in
minimising the average customer delivery time while not compro-
mising the average rider delivery time. In what follows, without
loss of generality, we assume that we are indeed interested in min-
imising customer delivery time with a constraint on how much we
can increase rider delivery time.

In our methodology, we first define a set of constraints that the
average simulated rider delivery time of that region must satisfy.
This ensures, that, on average over the whole region, rider delivery
time is not too deviated from the business objective. We then solve
an optimisation problem that minimises customer delivery time
while respecting the constraint on the average rider delivery time.
Before formally defining the optimisation problem, let us recall
some variables and define some new ones:

• 𝐶: set of cities in the region, indexed by 𝑐 .
• 𝑆𝑐 : set of configurations of Ω for city 𝑐 , indexed by 𝑖 .
• ΔriderDT𝑐𝑖 : difference between simulated rider delivery

time for city 𝑐 and Ω𝑖 and the simulated rider delivery time
for city 𝑐 and the configuration that is in production for
that city.

• ΔcustomerDT𝑐𝑖 : difference between simulated rider deliv-
ery time for city 𝑐 and Ω𝑖 and the simulated rider delivery
time for city 𝑐 and the configuration that is in production for
that city. In this case, the metric we are trying to minimise.

• 𝑓𝑐 : Fraction of orders in the region that are created in city
𝑐 .

• 𝑥𝑐𝑖 : binary variable that indicates if we select Ω𝑖 for city 𝑐 .
• 𝐿: maximum deviation allowed for the counter-metric, in

this example, riderDT.

We then define the following minimisation problem:

min
𝑥𝑐𝑖

∑︁
𝑐∈𝐶

∑︁
𝑖∈𝑆𝑐

𝑥𝑐𝑖 · ΔcustomerDT𝑐𝑖 · 𝑓𝑐

s.t.∑︁
𝑖∈𝑆𝑐

𝑥𝑐𝑖 = 1 ∀𝑐 ∈ 𝐶,∑︁
𝑐∈𝐶

∑︁
𝑖∈𝑆𝑐

𝑥𝑐𝑖 · ΔriderDT𝑐𝑖 · 𝑓𝑐 ≤ 𝐿,

Since we know the simulator is not perfect, in order to decide
whether we should roll out the newly optimised matching cost
function coefficients, we run randomised experiments. In the next
section, we describe how this experiments are set up and analysed.

5 EXPERIMENT DESIGN AND ROLL-OUT
The matching problem is solved at the city level, which implies that
exposure to changes in the matching algorithm, such as changes
in the matching cost function coefficients, can only be randomised
at the city level. Because of this, we run switchback experiments
([4]) where, for each day and city, we randomly allocate the city
to treatment (new coefficients) or control (old coefficients). The
goal of these experiments is to evaluate whether the change in the
coefficients will result in a positive impact to a given target metric
𝑌 , which we assume is defined at the order level. Without loss of
generality, we assume that positive changes in 𝑌 are positive for
our business.

The switchback experiment design allows us to estimate the
average treatment effect on the target metric 𝑌 in multiple ways,
for example, using the difference inmeans estimator, and at multiple
levels of aggregation: for each city individually, per region, globally,
etc. Leveraging these estimates we need to make decisions on where
to rollout the optimised coefficients.
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5.1 Global roll-out decision
One way to decide to roll-out the new coefficients is checking if
the global average treatment effect Δ is positive. This leads us to
pose the following hypothesis testing problem:

• Null Hypothesis (𝐻0): Δ ≤ 0
• Alternative Hypothesis (𝐻1): Δ > 0

Using this test, the new configurations are rolled out in all cities
if we reject the null hypothesis. Clearly, this decision may be sub-
optimal. It is possible that in some subset of cities the average effect
is positive while in the rest of the cities it is negative. In this case,
the optimal decision would be roll-out only in cities where the
expected effect is positive, whereas the global roll-out decision will
either be to roll-out in all the cities or in none. This is an instance
of the known issue of treatment effect heterogeneity.

However, there are some scenarios where only a global roll-out
decision makes sense from a product perspective. For instance,
when testing a new user onboarding flow, we would, at some point,
need to have all the new users consuming the same onboarding
flow, in order to avoid maintaining different pieces of software. For
the matching cost function optimisation problem, we do not have
this issue, since we can have different configurations for different
cities, and this does not increase the maintainance complexity at
all.

Being able to make changes to the matching cost function at the
regional or city level also makes change management a lot easier.
Representatives from regional teams, owning the operations over
a given region, will in general not accept to roll out a feature that
can jeopardise the operations in their cities just for the good of
the global average. In the following section, we show how optimal
treatment rules ([9], [12], [13]) can be used to decide in which cities
we should roll-out the new coefficients.

5.2 Optimal treatment rules roll-out
After running a switchback experiment like described in the previ-
ous section, we have the following data, where each observation
corresponds to a delivered order:

• 𝑐𝑖 : The city corresponding to observation 𝑖 .
• 𝑋𝑐𝑖 : A set of features that describe the city 𝑐𝑖 , and only vary

at the city level.
• 𝑇𝑖 : The treatment assignment on observation 𝑖 .
• 𝑌𝑖 : The outcome on metric 𝑌 on observation 𝑖 .

Let X denote the range of 𝑋𝑐𝑖 and consider a function 𝑑 : X →
{0, 1}. Such a function 𝑑 represents a possible roll-out or treatment
rule, which, based on the city characteristics, tells us whether we
should roll out the new coefficients or not. If 𝑑 (𝑋𝑐 ) = 1 then,
according to rule 𝑑 , we should roll-out in any city with features
𝑋𝑐 and if 𝑑 (𝑋𝑐 ) = 0 we should not. The decision rule that encodes
a global roll-out decision is the rule 𝑑 that is always equal to 1.
Let 𝑌 (𝑑) is the potential outcome in the world in which treatment
allocation is decided according to the function 𝑑 .

The optimal treatment rule is defined as the function 𝑑 that
maximises the expected value of the potential outcome 𝑌 (𝑑), that
is

𝑑∗ = arg max
𝑑 :X→{0,1}

𝐸 [𝑌 (𝑑)] ,

It is easy to show that 𝑑∗ (𝑋𝑐 ) = 1 if and only if 𝐸 [𝑌 | 𝑇 = 1, 𝑋𝑐 ] ≥
𝐸 [𝑌 | 𝑇 = 0, 𝑋𝑐 ]. Thus, estimating 𝑑∗ (𝑋𝑐 ) is closely related to esti-
mating the conditional average treatment effect (CATE), and any
estimator of the CATE can be leveraged to estimate an optimal
treatment rule.

Interestingly, the optimal treatment rule can also be estimated
directly, without having to go through the estimation of the CATE.
One way to do so that we have found very useful and easy to imple-
ment was proposed in [13]. Under the usual SUTVA [7] assumptions,
for any 𝑑 : X → {0, 1},

𝐸 [𝑌 (𝑑)] = 𝐸
[
𝐼𝑑 (𝑋𝑐 )=𝑇 · 𝑌
𝜋𝑑 (𝑋 )

]
,

where for any 𝑥 ∈ X, 𝜋𝑑 (𝑥) = 𝑃 (𝑇 = 𝑑 (𝑥)). For designed ex-
periments, which is our case of interest, the function 𝜋 is known.
Moreover, it is often constant and equal to 1/2. In this case, it follows
that

𝑑∗ = arg max
𝑑 :X→{0,1}

𝐸
[
𝐼𝑑 (𝑋𝑐 )=𝑇 · 𝑌

]
= arg min

𝑑 :X→{0,1}
𝐸
[
𝐼𝑑 (𝑋𝑐 )≠𝑇 · 𝑌

]
Now,

𝐸
[
𝐼𝑑 (𝑋𝑐 )≠𝑇 · 𝑌

]
can be thought of as amissclasification loss, where cases areweighted
according to𝑌 . A classifier can then be trained tominimise a smooth
and/or convex proxy of this loss. More precisely, we can train a
classifier with 𝑇 as a target label, 𝑌 as a weight and 𝑋𝑐 as features.
This classifier is then an estimate of the optimal treatment rule 𝑑∗.
In our case, we choose to use boosted trees [5] as the base learning
algorithm. We then use the trained model to predict the treatment
assignment for each city, and we roll-out the new coefficients in the
cities where the model predicts a positive treatment assignment.
We will refer to this estimator of the optimal treatment rule as the
classifier based method, which is the one we use in practice.

5.3 Optimal treatment rules impact assessment
In order to assess the impact of the optimal treatment rules, the
naive methodology is to take the subset of cities 𝑆 where we decide
to rollout and estimate the average treatment effect in there via:

Δ̃𝑆 =

∑𝑛
𝑖=1 𝑌𝑖 ·𝑇𝑖 · 𝐼𝑖∈𝑆∑𝑛
𝑖=1𝑇𝑖 · 𝐼𝑖∈𝑆

−
∑𝑛
𝑖=1 𝑌𝑖 · (1 −𝑇𝑖 ) · 𝐼𝑖∈𝑆∑𝑛

𝑖=1 (1 −𝑇𝑖 ) · 𝐼𝑖∈𝑆
this is the average treatment effect in the cities where we rollout.
We estimate the impact in all cities

Δ̃ = Δ̃𝑆 ·
∑𝑛
𝑖=1 𝐼𝑖∈𝑆
𝑛

(1)

where 𝑛 is the total number of orders and
∑𝑛
𝑖=1 𝐼𝑖∈𝑆 is the number

of orders in the subset of cities 𝑆 . This estimator of the impact is
biased, as we are using the same data to decide in which cities we
should rollout and to estimate the impact of the rollout. In order
to correct this bias, we use a cross-fitting methodology([10], [11],
[14]). We split the data in 𝐾 folds, and in each split:

• We train the model in 𝐾 − 1 folds and predict the treatment
assignment in the 𝐾-th fold.

• We estimate the impact using the Δ̃ in the 𝐾-th fold.
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We then average the estimates from each fold to get an unbiased es-
timator of the impact of the optimal treatment rules rollout decision.
A detail that is important to mention is that, in the cross-fitting
methodology, we use grouped splitting at switch level, that is, data
from every time period over which treatment allocation did not
change in a given city remains in the same fold. If this is not done,
the impact is going to be positively biased again, because of the
intra-cluster correlation within switches, where treatment is con-
stant.

In the next section we report the results of a simulation study
we ran to compare the performance of multiple estimates of the
optimal treatment rules. We will see that both with synthetic and
real data, that decisions based on estimates of optimal treatment
rules always outperform the global roll-out decision described in
Section 5.1. One possible issue with our methodology is that we
are targeting at a single metric, while in practice we have counter
metrics that we want to keep at a certain level. In our experiments,
we address this by combining all metrics in an overall evaluation
criterion. To keep things simpler, the following sections assume
that we have a single target metric, which is customer delivery
time.

5.4 Simulations
5.4.1 Synthetic data simulation. We generate data using the fol-
lowing process:

• We use data from 30 Glovo cities, and we take as the target
metric to optimise the customer delivery time.

• For each city, we take three features that describe the city,
𝑋𝑐1, 𝑋𝑐2 and 𝑋𝑐3.
• We generate a city treatment effect 𝜏𝑐 ∼ 𝑋𝑐1 ∗ 𝑋𝑐2 + 𝑋𝑐3 +
𝑈 (−0.03, 0.05).
• We randomly assign treatment𝑇𝑖 to each order with a prob-

ability of 0.5.
• For treatment orders, we modify customer delivery time

via 𝑌𝑖 = 𝑌𝑖 · (1 + 𝜏𝑐 ).
We will use this data to assess how different rollout rules perform

in a controlled environment. We compare

• the classifier based approach of [13] to the estimate optimal
treatment rulles,

• the method based on estimating the CATE to estimate opti-
mal treatment rulles, using the X-learner and the T-Learner
from [8],

• the global rollout rule, and
• the infeasible rule that performs a roll out in a city only

when its real treatment effect 𝜏𝑐 is positive.

We refer to the later infeasible rule as the optimal rollout.
Let Δ𝑜𝑝𝑡𝑖𝑚𝑎𝑙 be the impact of the optimal rollout. We can also

compute the impact of the global rollout, Δ𝑔𝑙𝑜𝑏𝑎𝑙 , by applying 1 in
all the cities. For any treatment rule, like the classifier approach, the
method based on T-Learner, or the method based on the X-Learner,
we can compute the impact of the rollout, Δ𝑟𝑢𝑙𝑒 , by applying 1 in
the cities where the treatment rule decides to roll-out.

We run 1000 realizations of the data generation process and we
compute the average impact of the optimal rollout, global rollout,
the classifier approach, the T-Learner, and the X-Learner. We also

provide 95% confidence intervals for the impact of each rollout
strategy, which are shown in Table 1.

Table 1: Cross-fitting scores for synthetic data

Rule Mean Impact 2.5% 97.5%

Optimal 0.0131 0.0088 0.0181
XLearner 0.0130 0.0088 0.0180
TLearner 0.0130 0.0088 0.0180
Classifier 0.0127 0.0080 0.0176
Global 0.0009 -0.0080 0.0101

We can see that the global rollout is very far away, impact-wise,
from the optimal rollout (more than 1% on average). Both the T-
Learner and X-Learner are the closest to the optimal rollout. The
mean effect difference between the T-Learner and the classification
approach is of around 0.03%, which is very small compared to the
global rollout. In the next section we see that, in a real experiment,
the classification approach provides more stable cross-validation
results.

5.4.2 Real data simulation. We now repeat a similar analysis with
data from a matching cost function swithcback experiment run at
Glovo. We use the following set of features to train the classification
model:

• Pre-experiment aggregated metrics: Metrics that describe
the city before the experiment, like average courier delivery
time, average customer delivery time, average saturation,
etc.

• City exogenous features: Features that describe the city,
like population, country, size, etc.

• Control coefficients: The matching cost function coeffi-
cients of the control group.

• Treatment coefficients: The matching cost function coeffi-
cients of the treatment group.

• Changes in coefficients: The ratio between the treatment
and control coefficients.

In this case we don’t have a ground truth of the cities that should
be rolled out, but we can compare the cross-validation impact of
the optimal treatment rules with the global rollout impact. A global
rollout decision would have increased our target metric by 0.6%,
while the optimal treatment rules rollout would have increased
it by 1.4%. Using the T-Learner would have decreased the target
metric by 0.8%. For this reason, we prefer to use the classification
approach, since it provides more stable cross-validation results. In
the ideal scenario, we see that both of them are comparable, giving
a slight edge to the CATE estimators, but in a scenario where we
are missing many features explaining the CATE, the classification
approach is more stable.

Table 2 shows the impact of the 5 splits in the cross-fitting rou-
tine.

We can also see how the scores produced by the optimal treat-
ment rules classifier allow us to rank the cities by their treatment
effect. Fig. 5 shows the average actual treatment effect in each
bin. The ordering is not perfect, but we can see that the optimal
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Table 2: Cross-fitting scores for real data

Classification test scores T-Learner test scores

0.74% -0.69%
0.93% -1.43%
5.17% 2.05%
0.21% -3.78%
0.34% -0.20%

Figure 5: Difference in means by bins of optimal treatment
rules classifier scores

treatment rules framework is still able to rank the cities by their
treatment effect in most of the bins.

5.5 Discussion
In this paper we present the methodology we use to tune the match-
ing cost function coefficients in a logistics context. We show how
we use simulation-based optimisation to find a Pareto front of dif-
ferent configurations of the matching cost function coefficients.
We then present a methodology to select a single configuration of
the coefficients for each city, based on region level constraints. We
also show how we run experiments to assess the impact of the new
coefficients, and how we use optimal treatment rules to decide in
which cities we should rollout the new coefficients.

One issue with our methodology is that, although we use optimal
treatment rules for the analysis of the experiment, we do not design
the experiment to have statistical power in a way that is coupled
with the usage of optimal treatment rules. This is a flaw of our
approach, where we may have under-powered experiments for the
optimal treatment rules analysis. We are working on improving the
design of the experiments to decide experiment length based on
the optimal treatment rules analysis.
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