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Abstract. Generative adversarial networks (GANs) could be used effi-
ciently for image and video generation, where labeled training data are
available in bulk. In general, building a good machine learning model re-
quires a reasonable amount of labeled training data. However, there are
areas such that the biomedical field where the creation of such a data set
is time-consuming and requires expert knowledge. Our goal is to use data
augmentation techniques as an alternative to data collection to improve
data classification. We propose the use of a modified version of GAN
named Gene Expression Generator (GEG) to augment data samples at
hand. The proposed approach was used to generate synthetic data for
binary biomedical data sets to trains existing supervised machine learn-
ing approaches. Experimental results showed that using GEG for data
augmentation with a modified version of leave one out cross-validation
increased the performance of classification accuracy.

Keywords: Data generation · Generative adversarial networks · Gene
expression data · Cancer classification

1 Introduction

The automated diagnosis of oncology diseases such as colon cancer is extremely
complex and requires careful attention. Gene expression profiling is widely adopt-
ed to learn and analyze the conditions of cells and their response to diverse states,
which is helpful in the pathogenesis of diseases. Gene expression microarrays
can be used for diagnostic purposes as well as for insights into biology. Gene
Expression Data (GED) is a high dimensional data having a high number of
features that indicate gene levels, however, with only a very few records. Usually,
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we have a satisfying amount of measurements for each tumor sample, where each
measurement belongs to a particular gene.

Getting accurate results while training a classifier becomes difficult due to
the lack of available, variant, and meaningful data. Thus, adding more samples is
recommended to train the classifier. Augmenting the original data, i.e. generating
supplementary samples from the existing ones, for the imbalanced class would
steer clear of overfitting situation and improve the classification process.

1.1 Motivation

Building a satisfying Machine Learning (ML) model usually requires a large
number of samples. In the biomedical domain, collecting such data is very costly
and time-consuming: Experts should store, examine and annotate the recorded
data (which can be either an image, information or clinical tests) to obtain a
clean, meaningful and useful data set. Recently, Deep Neural Networks (DNNs)
[9] has brought many improvements in ML, mainly where massive datasets are
available. The popularity of DNNs led to their use also in cases where only a
small number of samples are available, and simpler ML techniques, requiring
less computational effort, would perform considerably well or even better than
DNNs. However, in the case of very few data samples, training of any type of ML
models with reasonable performance is difficult. For this reason, we will show
that even the performance of simple classification techniques can be improved
by providing the appropriate augmentation technique.

In the classification of cell dysplasia (cancer data), the sensitivity of the data
should be maintained. This means that when we generate new instances using
data augmentation techniques we need to be sure that the generated data is
close to the original data not only in terms of values but also in terms of the
semantics of the data.

Generative Adversarial Networks (GANs) [6], established over the last few
years, have attracted the attention of researchers (see Fig. 1). Several variants
of GAN have been proposed for generating high-quality synthetic data, where
they have been used for data augmentation in the case where traditional data
augmentation methods do not yield good results. Thus, the feasibility of using
GANs as a data augmentation technique to enhance classifier performance in
GED classification is worth exploring. According to our knowledge, the use of
GAN in connection with cancer classification by gene expression has not been
done so far.

1.2 Contributions

As collecting a large number of medical data is expensive and hard to acquire due
to some privacy constraints, data generation is an alternative to data collection,
notably when synthetic data can be generated from a small number of existing
samples. Our contributions in this paper are the following :
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– Proposal of a modified version of GAN named Gene Expression Generator
(GEG). GEG learns the GED distribution and tries to synthesize new sam-
ples that are consistent with the original data. GEG’s discriminator uses the
Wasserstein distance to reflect the similarity between original and synthetic
data distributions providing more stability when training. GEG also uses
data restriction, i.e. the discriminator is fed only with data belonging to a
single class, which helps us to avoid unnecessary steps leading to labeled
generated data after the GEG training is completed. Although we only used
GEG for binary classification, it would work for multi-class classification
problems as well;

– Introduction of a modified version of leave one out cross-validation (LOOCV)
by not merging the synthetic data with the original data but instead using
the generated instances only for training the classifiers. By using the gen-
erated data as an extension of the samples for training, testing the perfor-
mance of the model with the original data only, and improving the results
pays more attention to data sensitivity. The generated data helps the model
to understand the data better while did not interfere with the original data.

2 Related work

GAN, introduced by Goodfellow et al. [6], gained more interest very fast and
researchers started to explore its capacity in a wide variety of applications [27].
The most successful application of GAN is computer vision including image
translation [8], image super-resolution [10], image synthesis [28], video generation
[25], face aging [2], 3D object generation [23] or detection of small objects [29].
Another application domain of GAN concerns natural language processing [5],
speech processing [13], and also for text generation [26].

Fig. 1: Cumulative number of paper publications/journals related to GANs per
year since its introduction in 2014
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Many variant of GAN has been proposed during the last years, for instance, a
conditional version of generative adversarial nets named CGAN [18] is extending
GAN by conditioning the generator and discriminator with extra information.
Deep Convolutional GAN (DCGAN) [20] has certain architectural constraints
and is powerful while dealing with unsupervised learning problems. Another
variant, called GRAN [7] was used to generate images with recurrent adversarial
networks. MGAN [12] is a Markovian GAN, a technique for training generative
neural networks for efficient texture synthesis. GAN-CLS [21] demonstrated the
capability to generate plausible images of birds and flowers just by using textual
descriptions. An alternative of GAN called VIGAN [22], an extended version of
CycleGAN[30], handled imputations of missing data of MNIST. A distributed
adversarial network called DAN was proposed in [11] where the adversarial train-
ing relies on the entire sample as a unit and not its sample points. Compared
to researchers where they usually use thousands of images, Marchesi et al. [16]
investigated the possibility of applying GAN to produce high-quality megapixel
images where a restricted amount of data was utilized. Lu et al. [15] suggested a
new approach named Bi-GAN that uses two generators dedicated only for gen-
erating synthetic data from Gaussian noise, two evaluators, and a discriminator
for data classification. Later on, Wang et al. [27] suggested working with a set
of generators against a single discriminator. Last, but not least, Ian Goodfellow,
introduced a new a robust and simple to train method called latent adversarial
generator (LAG) [3] that generates high-resolution images using latent spaces.

Reviewing GAN and its application domains revealed that most of the re-
searchers are focusing on image/video data generation, while there are still some
unexplored areas such as biomedical field, which is a delicate, sensitive and costly
area (in terms of data acquisition), virus mutations (such as COVID-19), text
generation, and also genetic data generation. Recently, there were some attempts
to use GAN for genetic data [17]. Due to the minority of researchers operating
on GAN for gene data we accepted the challenge to examine GAN beside GED.

3 Proposed gene expression generator

Generative adversarial networks (GANs) are deep neural networks based on
game theory [6], they are considered as smart and creative machines. As de-
scribed in Fig. 2 with red boxes, GAN has two principal components, a generator
G and a discriminator D where G and D are neural networks. The output of G
i.e. x′ where x′ = G(z) is directly linked to the input of D beside original data
x. G produces synthetic instances x′ starting from random Gaussian noise z in
such a way that x′ and x are consistent. Whereas D checks how close synthetic
data is comparable to the original ones and returns probability for each created
instance between 0 and 1. In basic GAN, a cross-entropy loss is used to estimate
the error between predicted / actual label from D output and the actual labels.
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Fig. 2: Process of creating synthetic data using GAN

3.1 GEG architecture

Gene expression generator i.e. GEG is a variant of GAN that tries to replicate
gene expression probability distribution. GEG uses original samples of a single
class as input to generate more artificial instances referring to the same class
label. Wasserstein distance WD is used as a loss function to reflect the similarity
between the distribution of original and synthetic data generated by GEG. When
a discriminator uses the Wasserstein loss function, it does not try to classify
instances by giving them a class label (i.e. synthetic or real instance), but it
attaches a number for each instance in such a way that high values are used for
original data and low values to the synthetic data. However, in simple GANs,
the discriminator gives a probability p for each instance, where p ∈ [0..1] and
based on a threshold (0.5, for example) it can classify instances either as artificial
(negative) or original (positive) instances. A GAN may use a unique loss function
θ for both G and D. Therefore, one of them (G or D) should use −θ (same loss
function differing only in sign). In our case, GEG uses different loss functions, a
generator loss − D(x′) where G tries to maximize this function, in other words
it tries to maximize discriminator’s output for its negative instances, and a
discriminator loss D(x′)−D(x) where D tries to maximize WD defined as the
difference between D(x) and D(x′), in other words it tries to maximize the
difference between its output on positive instances and its output on negative
instances 4.

The training data of D belongs to two groups, original data denoted by x
and synthetic data denoted by x′ which is generated by G. During the training
of D, x and x′ are used as positive and negative instances respectively. It is
important to note that during the training of D, G is semi-suspended, i.e. its
weights are kept constant, but at the same time G remains to generate new
instances to feed D with more training data. The stopping criterion is when the

4 x denotes original (positive) instances, x′ denotes synthetic (negative) instances, z
is a random Gaussian noise. D(x) and D(x′) are discriminator’s outputs for original
and synthetic instances respectively, and G(z) is the generator’s output
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critic can not distinguish between original and synthetic samples. In other words,
the output of the critic for negative samples is as high as for positive samples,
which makes WD very close to 0. After the training of GEG ends, we will have
a set of unlabeled synthetic data. For all data belonging to that set, a class label
is automatically added that’s due to the way GEG is trained for (class-based
data restriction). That makes the process of identifying class label for synthetic
data much easier by avoiding extra steps, that is classifying unlabeled instances
with a semi-supervised or a supervised approach.

Original

data

LOOCV

Training
classifier

Testing
classifier

Left out
sample

Extract a
subclass

GEG

Generated

data

Repeat until
exhausted

Result

Fig. 3: Proposed LOOCV training diagram

3.2 Proposed LOOCV training diagram

Before starting the classification process, it is essential to pre-process the data.
As GED features (genes) have different ranges, it might influence the classifica-
tion accuracy which will result in a miss classification of the data. To avoid such
a situation, the normalization step is incorporated. Normalization is the process
of scaling the values of numerical columns into a unique range such as [0, 1]
which will guarantee the allocation of balanced weights for each feature. Con-
sequently, normalization minimizes training error, by this means demonstrating
the classification issue’s accuracy. The gene-level of each feature is normalized
by Eq. 1:

newvalue =
actualvalue − valmin

valmax − valmin
× (upper − lower) + lower (1)

Where valmax and valmin are the maximal and minimal original value of a
given gene respectively. upper is the upper bound (which is 1), while lower is
the lower bound (which is 0). newvalue is the normalized expression level. After
normalization, all genes will be included between [0, 1].
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Since we are dealing with very small and sensitive data, we use leave one
out cross-validation (LOOCV) which is suitable for performance validation of
models. LOOCV is a cross-validation technique where N data samples are sliced
into two sets, a training set trnds containing N − 1 samples and a test set tstds
containing a single sample. A classifier is trained with trnds, and the constructed
model is tested with tstds by adopting any performance measurement (such as
accuracy). The procedure is repeated N times so that all instances are used
once in trnds and once in tstds, but nevermore in both sets simultaneously. In
addition to the traditional LOOCV training process described in Fig. 3 with the
gray color, we suggest to improve training classifiers by adding more instances
to trnds (purple color in Fig. 3), these instances are generated using GEG to
further learning methods and improve the classification performance only on
original data. It means that our models are only tested with the original GED.

4 Experiments, results and discussion

4.1 Datasets description

We used publicly available GED5 of colon cancer tissues and breast cancer tis-
sues [4]. These tissues are either healthy (normal histological structure tissues)
or belong to one of the subtypes of cell dysplasia (cancerous tissues), for a better
comprehension of gene datasets see [14]. As described in Table 1, the datasets had
expression levels of 6500 and 24,481 genes measured from 62, and 99 patients
respectively, both data sets are binary classification data sets. During experi-
ments, we adopted a refined (filtred) datasets instead of original datasets as an
alternative to features selection (the refined datasets contains only important
genes that have a high impact factor for GED classification)

Table 1: Description of datasets used for the experiments
Dataset Nbr of original genes Nbr of used genes Classes distribution

Colon cancer 6500 2000 40/22

Breast cancer 24481 4997 44/34

– Colon cancer dataset is composed of 40 different types of dysplasia colon
tumors and 22 normal cell and histological structure of tissue samples from
an Affymetrix oligonucleotide array that has 6500 genes. A clustering algo-
rithm revealed wide consistent patterns that suggest a high degree of orga-
nization underlying gene expression in these tissues [1]. The filtered dataset
has 2000 gene expressions (instead of the original 6500 genes).

5 DNA microarray data: https://homes.di.unimi.it/∼valentini/DATA/
MICROARRAY-DATA/

https://homes.di.unimi.it/~valentini/DATA/MICROARRAY-DATA/
https://homes.di.unimi.it/~valentini/DATA/MICROARRAY-DATA/
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– Breast cancer dataset consists of 99 tumor samples from breast cancer
patients originally with 24,481 genes then decreased to 7650 genes in [24].
From the estrogen receptor i.e ER, we can divide cancer tumors into two
subgroups. Subjects with ER+ tumors have better survival than those with
ER− because, the patients with ER+ can benefit from anti-estrogen, such
as tamoxifen. As breast cancer is strongly correlated with ER, only genes
which had a connection with ER are considered and thus approximately
5000 genes were kept. Of the 99 patients, only 78 patients were considered.
Out of 78 patients 34 had a poor prognosis and thus were labeled as ER−

patients while 44 had a good prognosis which makes them ER+ patients.

4.2 Used methods

To investigate the effect of GEG on classification accuracy, we compared the
baseline results (simple classifiers without data augmentation) against classifiers
using GEG as a data augmentation technique. The used classifiers are support
vector machine (SVM), K-nearest neighbors (KNN), and decision trees (DT). We
used supervised learning methods because cancer datasets are labeled. For the
implementation of the algorithms, we used the sklearn library [19] with default
hyper-parameters. SVM with a linear kernel and C = 1, KNN with K = 5,
and DT with max depth = 2. It’s important to note that for all performed
experiments with GEG, synthetic samples are only used during the training
stage as extra training data and not as test data. Details of generated samples
per class are given in Table 2:

Table 2: Number of generated samples per class for each dataset using GEG.
Dataset Original C1/C2 Generated C1/C2 Total samples

Colon cancer 40/22 10/28 100

Breast cancer 44/34 6/16 100

4.3 Evaluation metric

To evaluate the performance of GEG, we adopted classification accuracy as an
evaluation metric. Accuracy is a good metric in our case because for each dataset,
every classifier is trained with a balanced dataset (original data + generated data
by a data augmentation technique). Accuracy is defined as the ratio between the
total number of correctly classified instances and the total number of instances.
Formally, accuracy can be computed by Eq. 2:

Accuracy =
TP + TN

Total
(2)

Where: True Positive (TP) (resp. True Negative (TN)) are correctly classified
positive (resp. negative) samples by the classifier, False Positive (FP)(resp. False
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Negative (FN)) are incorrectly classified negative samples as positive (resp. pos-
itive samples as negative), and Total (Total = TP + FP + FN + TN) is the
total number of samples.

In ML, we usually divide the dataset into a training set and test set. To give
a more accurate estimate of a model’s performance, we used cross-validation. In
our experiments, we used LOOCV training described in Fig. 3 where the result
of each iteration is the accuracy. It means that the comparative study between
the proposed models and the baseline is performed using the following formula:

Model accuracy % = 100× 1

N
×

N∑
i=1

Ai (3)

Where N is the number of samples, Ai is the calculated accuracy of iteration i,
and of course we multiply by 100 to reflect model accuracy in %.

4.4 Classification results

We ran multiple tests for classification using different classifiers with different
training approaches, for each case we used solely the original data (OD) without
data augmentation and synthetic data generation using proposed GEG (pro-
posed approach).

Table 3: Summary of experimental results based on classification accuracy
Dataset Used method SVM KNN DT

Colon OD 87.10 82.26 75.81
cancer GEG 88.71 83.87 83.87

Breast OD 60.26 51.28 57.69
cancer GEG 75.64 57.69 73.08

Results in bold shows that the used data augmentation i.e. GEG improved
the classification accuracy compared with the baseline (original data solely).

As described in Fig. 4 and Table 3 that depicts the comparative results for
classification accuracy, GEG could be seen as a promising data augmentation
technique that enhances classification accuracy, we can summarize the results
for each dataset as the following:

– Colon cancer dataset: Despite using three classifiers, GEG produced the
best results in term of classification accuracy. The highest result was achieved
by using GEG as a data augmentation technique and SVM as a classifier and
could reach 88.71% of accuracy and 55 out 62 as a number of correctly clas-
sified instances. The results achieved by SVM are due to the linearity of the
data, it means that data classes are linearly separable, this justifies the initial
good results achieved without the usage of data augmentation. Therefore,
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using GEG gave a slightly higher result, which means that support vectors
used by SVM have been adjusted (due to the usage of GEG’s synthetic data).

– Breast cancer dataset: For this dataset, the combination of GEG and
SVM is winning again, it could improve the classification accuracy by more
than 15% to reach the value 75.64% and 59 out of 78 as a number of cor-
rectly classified instances compared with the baseline using solely SVM which
could only correctly classify 47 out of 78 instances. Similar to the colon can-
cer dataset, the improvement in results has been caused by the adjustment
of support vectors, and thus the optimal hyper-plane when synthetic data
generated by GEG has been used during the training process.

(a) Comparative classification accuracy
on colon cancer dataset

(b) Comparative classification accuracy
on breast cancer dataset

Fig. 4: Graphical representations of comparative classification accuracy on gene
expression datasets

5 Conclusion

Collecting medical data for cancer detection is costly and arduous to obtain due
to privacy constraints. As the available data has a disproportionate ratio between
the number of available instances and the number of features and analyzing GED
using solely a short amount of available samples could yield inappropriate clas-
sification outcomes, using sophisticated data augmentation approaches such as
GANs with appropriate hyper-parameters could be very beneficial in such appli-
cation domain. As an alternative to data collection, generating synthetic samples
and expand the number of training data is suggested. However, to provide good
achievements, these generated instances have to be very consistent with the orig-
inal instances. The results of the classification accuracy of the duality between
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GEG and simple supervised learning methods are promising. Applying GAN to
more datasets and comparing it against other data augmentation techniques is
yet to be done, however, at the initial stage we saw that GAN can be successfully
used for producing synthetic samples that are harmonious with real samples not
entirely for images, videos, and text. But also for gene expression data.
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