
EasyChair Preprint
№ 2855

Detecting Banking Phishing websites using Data
Mining Classifiers

M. Kanchana, Prabodhan Chavan and Arjun Johari

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 3, 2020

Detecting Banking Phishing Websites Using Data

Mining Classifiers

Dr. M Kanchana

Computer Science Engineering

Chennai, India

Prabodhan Chavan

Computer Science Engineering

Chennai, India

prabodhanwork@gmail.com

Arjun Johari

Computer Science Engineering

Chennai, India

arjun201997@gmail.com

Abstract—Phishing is a malicious, criminal activity executed

by obtaining the credentials of system user by unethical means.

Phishing has always been a menace in world of internet as it

threatens the privacy as well as security of the user. It is

executed by multiple means like creating unauthentic webpages,

user logins, made-up emails targeting banking sector as well as

the ecommerce sector of digital industry. Since the booming of

digital market in society the threat of Phishing is eminent. This

document explains the existing work and additional work done

to counter such conditions and secure the use of internet for the

users. Modern day data mining techniques and use of machine

learning is used to counter such attacks. We are putting dynamic

extension to use for easy access and user protection is enabled

for user and is highly optimal.

Keywords— Phishing, Security, Machine learning, Dynamic

Extension.

I. INTRODUCTION

Phishing is defined as malicious, criminal attack carried
out on users for the sole purpose of obtaining their credentials
unethically and using it to steal their information or mess with
their bank accounts. It is done by various methods and many
tricks in books are used to carry out such attacks. Phishing is
basically creating fake webpages or website that resemble the
original websites and then redirecting the credentials to
personal database of attacker. This can be done by many
means such as creating fake links or URLs that redirect to
phoney webpages and rest is history. Attackers choose areas
such as ecommerce websites, gaming websites or webpages
that show unbelievable deals on various things that will attract
users. Once the user fills the detail information and tries to log
in the information is relayed back to database of attacker
which is accessible to him then he uses that same information
to log in to your account and steal whatever is available to him.
Detecting phishing websites often include lookup in a
directory of malicious sites since most of the phishing
websites are short lived the directory cannot always keep track
of all including new phishing websites. The attackers can use
these credentials to even steal money from bank accounts or
steal important information from your accounts. Only way for
an end user to benefit from this is to implement detection in a
browser plugin. So that the user can be warned in real time as
he browses a phishing site. However, browser extensions have
restrictions such as they can be written only in JavaScript and
they have limited access to page URLs and resources. Existing
plugins send the URL to a server, so that the classification can
be done in the server and the result is returned to the plugin.
With this approach, user privacy is questioned and also the
detection may be delayed due to network latency and the
plugin may fail to warn the user in right time. As it is an
important security problem and also considering the privacy
aspects, we decided to implement this on a chrome browser

plugin which can do the classification without an external
server. To develop a browser plugin which once installed,
should warn the user on the event of he/she visiting a phishing
website. The plugin should not contact any external web
service for this which may leak the user’s browsing data. The
detection should be instant so that the user will be warned
before entering any sensitive information on the phishing
website. In the first half of 2019 businesses and residents of
India were hit with more than 93,570 phishing events in a
month span. With increase in number of internet users, there
is a prominent need for security solutions again attacks such
as phishing. Hence this plugin would be a good contribution
for the chrome users. This is the first implementation of
phishing website detection in browser plugin without use of
an external web service. This makes use of existing works
done on phishing detection and implements them in a manner
that it will benefit end users. This involves porting the existing
python classifier (random forest) to JavaScript. The plugin
with a one-time download of the learned model, will be able
to classify websites dynamically. This involves developing
such a model (random forest) in JavaScript, as browser plugin
supports only JavaScript. Thus, this project contributes to
better privacy and rapid detection of phishing.

II. LITERATURE SURVEY

A. Direcory Based Approaches

This chapter gives a survey of the possible approaches to
phishing website detection. This survey helps to identify
various existing approaches and to find the drawbacks in
them. The difficulty in most of the approaches is that they are
not implemented in real time so that an end user will benefit
from it. Most popular one of this kind is Phish Tank.
According to Phish-Tank , it is a collective group of data and
information about phishing on the Internet. Phish Tank also
gives an open Application Programming Interface for
developers as well as researchers to install anti-phishing data
into their Apps for free. Thus Phish Tank is a directory of all
phishing websites that are found and reported by people across
the web so that developers can use their API for detecting
phishing websites. Google has a Application Programming
Interface called Google Safe Browsing API which also
follows directory based approach and also provides open API
similar to Phish Tank. This kind of approach clearly can’t be
effective as new phishing web sites are continuously
developed and the directory can’t be kept up to date always.
This also leaks users browsing behaviour as the URLs are sent
to the Phish Tank API.

B. Rule Based Approaches

 An existing chrome plugin named PhishDetector uses a
rule based approach so that it can detect phishing without
external web service. Although rule based approaches support
easier implementation on client side, they can’t be accurate
compared to ML based approaches. Similar work by
Shreeram.V on detection of phishing attacks using genetic
algorithm uses a rule that is generated by a genetic algorithm
for detection.PhishNet is one such Predictive blacklisting
approach. It used rules that can match with TLD, directory
structure, IP address, HTTP header response and some other.
SpoofGuard by Stanford is a chrome plugin which used
similar rule based approach by considering DNS, URL,
images and links.

C. ML Based Approaches

Intelligent phishing website detection using random

forest classifier (IEEE-2017) by Abdulhamit Subasi, Esraa

Molah, Fatin Almkallawi and Touseef J. Chaudhery

discusses the use the random forest classifier for phishing

detection.[2] PhishBox: An Approach for Phishing

Validation and Detection (IEEE-2017) by Jhen-Hao Li, and

Sheng-De Wang[5] discusses ensemble models for phishing

detection. As a result, the false-positive rate of phishing

detection is dropped by 43.7% in average. They were able to

come up with a detection mechanism that scans various types

of phishing attacks maintaining a low rate of false alarms.

Netcraft is one popular phishing detection plugin for chrome

that uses server-side prediction.

D. Drawbacks

Based on the above-mentioned related works, it can be

seen that the plugins either use rule-based approach or server-

side ML based approach. Rule based approach doesn’t seem

to perform well compared to ML based approaches and on

the other side ML based approaches need libraries support

and so they are not implemented in client-side plugin. All the

existing plugins send the target URL to an external web

server for classification. This project aims to implement the

same in browser plugin removing the need of external web

service and improving user privacy.

III. PRPOSED WORK

A. Functional Requirements

The plugin warns the user when he/she visits a phishing

website. The plugin should be fast enough to prevent the user

from submitting any sensitive information to the phishing

website. The plugin should not use any external web service

or API which can leak user’s browsing pattern. The plugin

should be able to detect newly created phishing websites. The

plugin should have a mechanism of updating itself to

emerging phishing techniques.

B. Non Functional Requirements

There must be a simple and easy to use user interface
where the user should be able to quickly identify the phishing
website. The input should be automatically taken from the
webpage in the current tab and the output should be clearly
identifiable. Further the user should be interrupted on the
event of phishing. No special hardware interface is required
for the successful implementation of the system. The plugin
should be always available and should make fast detection
with low false negatives.

Figure 1:System Architecture

C. Constraints and Assumptions

Certain techniques use features such as SSL, page rank

etc. Such information cannot be obtained from client-side

plugin without external API. Thus, those features can’t be

used for prediction. Heavy techniques can’t use considering

the processing power of client machines and the page load

time of the website. Only JavaScript can be used to develop

chrome plugins. Machine learning libraries support for

JavaScript is far less compared to python and R. The plugin

is provided with the needed permissions in the chrome

environment. The user has a basic knowledge about phishing

and extensions.

IV. IMPLEMENTATION

Random Forest classifier[10] is trained on phishing sites
dataset using python scikit-learn. The implementation of
Architecture is shown in Figure 1. A JSON format to represent
the RFC has been devised and the learned classifier is
exported to the same. A browser script has been implemented
which uses the exported model JSON to classify the website
being loaded in the active browser tab. The system aims at
warning the user in the event of phishing. Random Forest
classifier on features of a website is used to classify whether
the site is phishing or legitimate. The dataset arff file is loaded
using python arff library and features are chosen from the
existing features. Features are selected on basis that they can
be extracted completely offline without being dependent on a
web service or third party. The dataset with chosen features
are then separated for training and testing. Then the Random
Forest is trained on the training data and exported to the above
mentioned JSON format. The JSON file is hosted on a URL.
The client side chrome plugin is made to execute a script on
each page load and it starts to extract and encode the above
selected features. Once the features are encoded, the plugin
then checks for the exported model JSON in cache and
downloads it again in case it is not there in cache. With the
encoded feature vector and model JSON, the script can run the
classification. Then a warning is displayed to the user, in case
the website is classified as phishing. The entire system is
designed lightweight so that the detection will be rapid.

Pre-processing dataset is downloaded from UCI repository
and loaded into a NumPy array. The dataset consists of 8
features, which needs to be reduced so that they can be
extracted on the browser. Each feature[1] is experimented on
the browser so that it will be feasible to extract it without using
any external web service or third party. Based on the
experiments, 8 features have been chosen out of 30 without
much loss in the accuracy on the test data. More number of
features increases the accuracy and reduces the ability to
detect rapidly considering the feature extraction time. Thus a
subset of features is chosen in a way that the trade-off is
balanced. Then the dataset is split into testing set and training
with 30% for testing. Both the training and testing data are
saved to disk

A. Trainig

The training data from the preprocessing module is loaded

from the disk. A random forest classifier is trained on the data

using scikit learn library. Random Forest is an ensemble

learning technique and thus an ensemble of 10 decision tree

estimators is used. Each decision tree follows CART

algorithm and tries to reduce the Gini impurity.

The cross-validation score is also calculated on the training

data. The F1 score is calculated on the testing data. Then the

trained model is exported to JSON using the next module.

The formula for the f1 score is f1 = 2 * precision * recall /

precision + recall the precision recall and f1 score of the

phishing classifier is calculated manually using JavaScript on

the test data set

B. Exporting Model

Every machine learning algorithm learns its parameter

values during training. In Random Forest, each decision tree

is an independent learner and each decision tree learns node

threshold values and the leaf nodes learn class probabilities.

Thus, a format needs to be devised to represent the Random

Forest in JSON. The overall JSON structure consists of keys

such as number of estimators, number of classes and etc.

Further it contains an array in which each value is an

estimator represented in JSON. Each decision tree is encoded

as a JSON tree with nested objects containing threshold for

that node and left and right node objects recursively.

C. Classification

The feature vector obtained from the content script is ran

through the Random Forest for classification. The Random

Forest parameters JSON is downloaded and cached in disk.

The script tries to load the JSON from disk and incase of

cache miss, the JSON is downloaded again. it contains an

array in which each value is an estimator represented in JSON

More number of features increases the accuracy and reduces

the ability to detect rapidly considering the feature extraction

time. A JavaScript library has been developed to mimic the

Random Forest behavior using the JSON by comparing

feature vector against the threshold of the nodes. The output

binary classification is based on the leaf node values and the

user is warned if the webpage is classified as phishing.

V. RESULTS AND DISCUSSION

We used Kaggle Datasets in this study to check the

performance of our project to test various accuracies with
different datamining techniques. The result is displayed in
figure 2. The test set consists of data points separated from the
dataset by ratio 70:30. Also the plugin is tested with websites
that are listed in dataset. New phishy sites are also added to
dataset as soon as they are found. The 8 features[1] extracted
for the webpage are logged in to the console. The features are
stored as key value pairs and the values are encoded from -1
to 1

VI. CONCLUSION

A. Summary

This is a phishing website detection system that focuses

on client side implementation with rapid detection so that the

users will be warned before getting phished. The main

implementation is porting of Random Forest classifier to

javascript. Similar works often use webpage features that are

not feasible to extract on the client side and this results in the

detection being dependent on the network. On the other side,

this system uses only features that are possible to extract on

the client side and thus it is able to provide rapid detection

and better privacy. Although using lesser features results in

mild drop in accuracy, it increases the usability of the system.

This work has identified a subset of webpage feature that can

be implemented on the client side without much effect in

accuracy. The port from python to JavaScript and own

implementation of Random Forest in JavaScript further

helped in rapid detection as the JSON representation of the

model and the classification script is designed with time

complexity in mind. The plugin is detecting the

phishing even before the page loads completely.

B. Criticism

The system has a lower accuracy but it is more usable and

the trade-off between accuracy and rapid detection is handled

well enough. The chrome extension API restrictions has a

small effect on the plugin. Since the features are extracted in

content script which is injected on page load, this plugin can’t

prevent a malicious javascript code from executing. Further

the accuracy reduces while porting from python to javascript

and this needs to be investigated. Javascript doesn’t support

multithreading and browser execute only javascript. Thus the

classification can’t be made faster by using parallel threads.

Currently the results are not cached on the plugin and it’s

computed repeatedly even for frequently visited sites.

C. Future Work

The classifier is currently trained on 8 features which can

be increased provided that, they don’t make the detection

slower or result in loss of privacy. The extension can made to

cache results of frequently visited sites and hence reducing

computation. But this may yield in phishing attack being

undetected. A solution needs to be devised for caching of

results without losing the ability to detect phishing. The

classification in JavaScript can be done using Worker

Threads which may result in better classification time. Thus,

a lot of improvements and enhancements are possible this

system offers a more usable solution in the

field of phishing detection.

REFERENCES

[1] Phishing page detection via learning classifiers from page layout
feature, Mao et al. EURASIP Journal on Wireless Communications and
Networking (2019) 2019:43 https://doi.org/10.1186/s13638-019-1361-
0

[2] A. Subasi, E. Molah, F. Almkallawi, and T. J. Chaudhery, “Intelligent
phishing website detection using random forest classifier,” 2017
International Conference on Electrical and Computing Technologies
and Applications (ICECTA), Nov. 2017.

[3] Anindita Khade Detection of Phishing Websites Using Data Mining
Techniques (IJERT) 2013 Dept. of CE, Lokmanya Tilak College of
Engineering Koparkhairane, Navi Mumbai 421302.

[4] “UCI Machine Learning Repository: Phishing Websites DataSet,”
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/phishing
websites..

[5] J.-H. Li and S.-D. Wang, “PhishBox: An Approach for Phishing
Validation and Detection,” 2017 IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, 15th Intl Conf on Pervasive
Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), 2017.

[6] A. A. Ahmed and N. A. Abdullah, “Real time detection of phishy
websites,” 2016 Annual Information Technology, Mobile and
Electronics Communication Conference (IEMCON), 2016.

[7] R. Aravindhan, R. Shanmugalakshmi, K. Ramya, and S. C., “Certain
investigation on web app security: Phishing detection and phishing
target discovery,” 2016 3rd International Conference on Advanced
Computing and Communication Systems (ICACCS),2016.

[8] J. Mao,W.Tian, Phishing-alarm: efficient and robust phishing
detection via page component similarity. IEEE Access. 5,17020–17030
(2017)

[9] P. Likarish, E. Jung, D. Dunbar, T. E. Hansen, J. P. Hourcade, in
Proceedings of IEEE International Conference on Communications,
ICC’08. (IEEE, Beijing, 2008), pp. 1745–1749.

[10] Wikipedia, Random forest (2018).

https://en.wikipedia.org/wiki/Random_forest/, [Online]. Accessed 26
July 2018.

[11] Y. Zhang, J. I. Hong, L. F. Cranor, in Proceedings of the 16th

International Conference on WorldWide Web. Cantina: a content-
based approach to detecting phishing web sites (ACM, Banff, Alberta,
Canada, 2007)

[12] N. Abdelhamid, F. Thabtah, H. Abdel-Jaber, in Proceedings of IEEE

International Conference on Intelligence and Security Informatics.
Phishing detection: a recent intelligent machine learning comparison
based on models content and features (IEEE, Beijing, China, 2017)

[13] Ammar ALmomani, G. B. B, Tat-Chee Wan, Altyeb Altaher, and

Selvakumar Manickam, “Phishing Dynamic Evolving Neural Fuzzy
Framework for ...,” Jan-2013. [Online]. Available:
https://arxiv.org/pdf/1302.0629.

[14] S. Gupta and A. Singhal, “Phishing URL detection by using artificial

neural network with PSO,” 2017 2nd International Conference on
Telecommunication and Networks (TEL-NET), 2017.

[15] “An Efficient Approaches For Website Phishing Detection Using

Supervised Machine Learning Technique,” International Journal of
Advance Engineering and Research Development, vol. 2, no. 05, 2015.

https://doi.org/10.1186/s13638-019-1361-0
https://doi.org/10.1186/s13638-019-1361-0
https://arxiv.org/pdf/1302.0629

