
EasyChair Preprint
№ 4636

Improving GPU Register File Reliability With a
Comprehensive ISA Extension

Marcio Gonçalves, Josie Esteban Rodriguez Condia,
Matteo Sonza Reorda, Luca Sterpone and
Jose Rodrigo Azambuja

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 23, 2020

Improving GPU register file reliability with a comprehensive ISA extension

M.M. Gonçalves, J.E.R. Condia, M. Sonza Reorda, L. Sterpone, J.R. Azambuja

Abstract – This work proposes a comprehensive ISA extension to improve GPU reliability to transient effects. Three additional

instructions are proposed, implemented, and combined with software-based datapath duplication. Modified program codes are

compared to state-of-the-art software-based fault tolerance techniques in terms of execution time, the circuit area is evaluated

against the original GPU architecture, and a fault injection campaign is performed to assess reliability. Results show that the

proposed ISA extension improves the performance of software-based approaches while maintaining fault detection capabilities at

negligible costs in the circuit area. This work can help engineers in designing more efficient and resilient GPU architectures.

1. Introduction

Over the past years, Graphics Processing Units (GPUs)

have been used in safety-critical applications such as self-

driving cars. Newest GPUs are designed with cutting-edge

technology that combines high transistor density with high

operating frequency and low voltage supply, making them

prone to experience radiation-induced transient effects [1, 2].

Recently, GPUs have even been shown to experience radiation

effects on applications running at ground level, where neutrons

are the primary source of soft errors [3, 4]. The use of fault

tolerance techniques is mandatory because safety-critical

applications must work properly, even in the presence of faults.

Fault tolerance techniques can be applied by means of

software or hardware modifications. Software-based techniques

require program code transformation, while hardware-based

techniques require hardware modifications. Software-based

approaches provide high detection rates at the cost of

performance degradation [5] but can be applied to any GPU

architecture. Hardware-based approaches, on the other hand,

can be applied with no performance degradation, but require

access to GPU architecture description. Open-source GPUs

have allowed developers to study the effects of radiation, as

well as to design and evaluate fault tolerance techniques.

The authors in [6] proposed ISA extensions to GPUs. They

proposed to compare registers with a new XOR instruction that

notifies the host via hardware in case of divergence. They also

propose a strategy, where a signature register is updated as

each instruction executes, adding or subtracting its destination

register values based on whether the instruction is original or a

duplicate. The technique includes an extra meta-data bit in the

instructions to inform the hardware when the signature register

must be updated. Experiments indicate that these ISA

extensions could lower the average runtime overhead to 30%,

but without achieving 100% fault detection.

This work proposes a comprehensive ISA extension to

improve software-based fault tolerance techniques. Resilient

atomic load, store, and set predicate instructions are developed

and evaluated in a low-level software-based hardening

approach. The proposed resilient instructions are deployed in

tandem with datapath duplication to optimize resources and

reduce costs in performance degradation.

The main contribution of this work is to decrease the

overhead in execution time caused by datapath duplication by

optimizing consistency checking and memory access.

2. Proposed ISA Extension

We propose three additional instructions to the SASS 1.0

ISA, used by NVIDIA, as a comprehensive ISA extension. The

new proposed instructions are atomic ones, being able to check

the consistency of read registers and replicate the data to

written registers in single instruction execution. By doing so,

this extended ISA is able to absorb multiple consistency

checking instructions and memory access duplication into a

single instruction execution.

Faults affecting the register file of GPU architectures can

cause data or control flow effects on the system. The first

group includes faults in the data structures of the system, such

as input and output data registers. These faults can induce the

system to an incorrect operation result, but do not change the

GPU’s program flow. Faults affecting the control path, on the

other hand, such as registers storing conditional branch data,

can cause incorrect branch decisions, modifying the correct

GPU execution flow.

To harden the register file against data flow effects, we can

assume that, as long as the memory between the host and the

GPU is correct, there is no data flow error. Therefore,

software-based techniques usually focus on checking the

consistency of registers used by memory access instructions.

For the control flow errors, they must guarantee that predicate

registers have been correctly written. An example of a

software-based hardened code can be seen in Fig. 1. As one

can see on the second column (SW-based), instructions 3, 10,

and 11 are used to check memory accesses for the load and

store instructions, while instructions 7 and 8 are used to check

a predicate set instruction.

Our ISA extension includes load, store, and predicate set

instructions (raLOAD, raSTORE, and raISET, respectively),

which are able to absorb the checking instructions and also the

load replication. Predicate registers have not been replicated,

but one could extend the raISET to also write to a second

predicate register. The third column of Fig. 1 (ISA Extension)

shows the software transformation when using our approach.

While the pure software-based approach requires eight extra

instruction, our ISA extension is able to reduce it to one.

The implementation of our proposed comprehensive ISA

extensions requires software and hardware support. The

software must be able to generate program code considering

the new instructions, while the hardware must be able to

execute the new instructions without affecting its performance.

Hardware improvements have been made to the following

pipeline stages of the target GPU: Decode, Read, and Write.

We have also implemented a hardware exception to notify the

host about possible fault detections. We adapted these modules

to consider a second source and destination registers and

included a consistency check to compare original and

replicated address registers and notify the hardware exception

in case of divergence. Software modifications have been

applied mainly to the compilation flow, where the CUDA

binaries are generated. We modified the compilation flow to

duplicate used registers into spare ones and datapath

instructions. We also added support for the compilation flow to

replace load, store, and iset instructions with our extended ISA.

3. Implementation and Evaluation

The ISA extension implementation has been done in the

FlexGripPlus architecture [7], running four case-study

applications. Table I shows the synthesis evaluation @15nm,

considering the number of cells, circuit area (mm²), delay (ns),

and the ISA extension overhead (%). The Decode pipeline

stage showed the highest overhead, but as it is responsible for

only 0.2% of the GPU circuit area, the final overhead was a

negligible 0.15% in circuit area and 0.01% in the number of

cells. Also, the delay had no overhead, showing that our

hardware modifications did not affect the GPU’s critical path,

thus maintaining the maximum clock frequency.

When considering the execution time of the transformed

code, presented in Table II, one can notice that pure software-

based techniques showed an average overhead of 114.1%,

while our ISA extension reduced overhead to an average 47.2%

(a 58.6% reduction). Combined with hardware results, these

data show that our approach is able to maintain the GPU

performance and drastically reduce software-based techniques

overheads in execution time.

To evaluate fault detection capabilities, we performed a

fault injection campaign by simulation at RTL level in

ModelSim. Faults were injected during the execution of the

original and the two hardened versions (software-based and

ISA extension). For all case-study applications running in each

program version, we injected 10,000 faults, one per program

execution, adding up to 120,000 simulations. Faults have been

distributed among application-used registers, achieving a 1%

statistical error considering a 95% confidence level. Table III

shows, for all types of errors, that both software-based

techniques (SW-based) and our proposed ISA extension were

able to detect all faults affecting the GPU register file.

4. Conclusions

This digest presented our proposed comprehensive ISA

extension to improve the reliability of GPU register files.

Results showed 58.6% improvements in performance at a

negligible cost in circuit area and no degradation in reliability

when compared to state-of-the-art software-based techniques.

The final version will present additional data on the target GPU

and discussions on implementation and fault injection result.

References

[1] Slayman et al., IIRW 2010, pp. 13-28.

[2] Dixit et al., IRPS, 2011, pp 1-7.

[3] Rech et al., Trans. on Nuclear Science, 2013, pp. 2797-2804.

[4] Azambuja et al., Trans. on Nuclear Science, 2013, pp. 4243-4250.

[5] Goncalves et al., Microelectronics Reliability, 2017, pp. 665-669.

[6] Mahmoud et al., SC18, 2018, pp 842-853.

[7] Du et al., DTIS, 2019, pp 842-853.

Fig. 1. Program code transformation.

Table I – Synthesis evaluation @15nm and ISA extension overhead

Pipeline

Stage
FlexGripPlus ISA extension (%)

Cells Area Delay Cells Area Delay

Decode 1,793 793 0.11 10.48 8.17 0.0

Read 152,444 62,782 0.34 0.17 0.21 0.0

Write 65,315 29,192 0.65 0.81 1.14 0.0

GPU 612,368 280,480 35.56 0.01 0.15 0.0

Table II – Execution time and hardening techniques overhead

Application

Original (ns)

SW-based (%)

ISA extension (%)

Matrix Mult.

320.3

109.5

45.3

FFT 963.7 104.0 63.7

Vector Sum 140.6 105.2 45.3

Bitonic Sort 823.9 137.6 34.3

Table III – SDCs and hardening techniques detection

Application

Original

SW-based (%)

ISA extension (%)

Matrix Mult.

5,307

100.0

100.0

FFT 3,724 100.0 100.0

Vector Sum 3,096 100.0 100.0

Bitonic Sort 3,158 100.0 100.0

