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Abstract – This work proposes a comprehensive ISA extension to improve GPU reliability to transient effects. Three additional 

instructions are proposed, implemented, and combined with software-based datapath duplication. Modified program codes are 

compared to state-of-the-art software-based fault tolerance techniques in terms of execution time, the circuit area is evaluated 

against the original GPU architecture, and a fault injection campaign is performed to assess reliability. Results show that the 

proposed ISA extension improves the performance of software-based approaches while maintaining fault detection capabilities at 

negligible costs in the circuit area. This work can help engineers in designing more efficient and resilient GPU architectures. 
 

1. Introduction 

  

Over the past years, Graphics Processing Units (GPUs) 

have been used in safety-critical applications such as self-

driving cars. Newest GPUs are designed with cutting-edge 

technology that combines high transistor density with high 

operating frequency and low voltage supply, making them 

prone to experience radiation-induced transient effects [1, 2]. 

Recently, GPUs have even been shown to experience radiation 

effects on applications running at ground level, where neutrons 

are the primary source of soft errors [3, 4]. The use of fault 

tolerance techniques is mandatory because safety-critical 

applications must work properly, even in the presence of faults. 

Fault tolerance techniques can be applied by means of 

software or hardware modifications. Software-based techniques 

require program code transformation, while hardware-based 

techniques require hardware modifications. Software-based 

approaches provide high detection rates at the cost of 

performance degradation [5] but can be applied to any GPU 

architecture. Hardware-based approaches, on the other hand, 

can be applied with no performance degradation, but require 

access to GPU architecture description. Open-source GPUs 

have allowed developers to study the effects of radiation, as 

well as to design and evaluate fault tolerance techniques. 

The authors in [6] proposed ISA extensions to GPUs. They 

proposed to compare registers with a new XOR instruction that 

notifies the host via hardware in case of divergence. They also 

propose a strategy, where a signature register is updated as 

each instruction executes, adding or subtracting its destination 

register values based on whether the instruction is original or a 

duplicate. The technique includes an extra meta-data bit in the 

instructions to inform the hardware when the signature register 

must be updated. Experiments indicate that these ISA 

extensions could lower the average runtime overhead to 30%, 

but without achieving 100% fault detection. 

This work proposes a comprehensive ISA extension to 

improve software-based fault tolerance techniques. Resilient 

atomic load, store, and set predicate instructions are developed 

and evaluated in a low-level software-based hardening 

approach. The proposed resilient instructions are deployed in 

tandem with datapath duplication to optimize resources and 

reduce costs in performance degradation. 

The main contribution of this work is to decrease the 

overhead in execution time caused by datapath duplication by 

optimizing consistency checking and memory access. 

2. Proposed ISA Extension 
 

We propose three additional instructions to the SASS 1.0 

ISA, used by NVIDIA, as a comprehensive ISA extension. The 

new proposed instructions are atomic ones, being able to check 

the consistency of read registers and replicate the data to 

written registers in single instruction execution. By doing so, 

this extended ISA is able to absorb multiple consistency 

checking instructions and memory access duplication into a 

single instruction execution.  

Faults affecting the register file of GPU architectures can 

cause data or control flow effects on the system. The first 

group includes faults in the data structures of the system, such 

as input and output data registers. These faults can induce the 

system to an incorrect operation result, but do not change the 

GPU’s program flow. Faults affecting the control path, on the 

other hand, such as registers storing conditional branch data, 

can cause incorrect branch decisions, modifying the correct 

GPU execution flow. 

To harden the register file against data flow effects, we can 

assume that, as long as the memory between the host and the 

GPU is correct, there is no data flow error. Therefore, 

software-based techniques usually focus on checking the 

consistency of registers used by memory access instructions. 

For the control flow errors, they must guarantee that predicate 

registers have been correctly written. An example of a 

software-based hardened code can be seen in Fig. 1. As one 

can see on the second column (SW-based), instructions 3, 10, 

and 11 are used to check memory accesses for the load and 

store instructions, while instructions 7 and 8 are used to check 

a predicate set instruction. 

Our ISA extension includes load, store, and predicate set 

instructions (raLOAD, raSTORE, and raISET, respectively), 

which are able to absorb the checking instructions and also the 

load replication. Predicate registers have not been replicated, 

but one could extend the raISET to also write to a second 

predicate register. The third column of Fig. 1 (ISA Extension) 

shows the software transformation when using our approach. 

While the pure software-based approach requires eight extra 

instruction, our ISA extension is able to reduce it to one. 

The implementation of our proposed comprehensive ISA 

extensions requires software and hardware support. The 

software must be able to generate program code considering 

the new instructions, while the hardware must be able to 

execute the new instructions without affecting its performance. 



 

Hardware improvements have been made to the following 

pipeline stages of the target GPU: Decode, Read, and Write. 

We have also implemented a hardware exception to notify the 

host about possible fault detections. We adapted these modules 

to consider a second source and destination registers and 

included a consistency check to compare original and 

replicated address registers and notify the hardware exception 

in case of divergence. Software modifications have been 

applied mainly to the compilation flow, where the CUDA 

binaries are generated. We modified the compilation flow to 

duplicate used registers into spare ones and datapath 

instructions. We also added support for the compilation flow to 

replace load, store, and iset instructions with our extended ISA. 
 

3. Implementation and Evaluation 
 

The ISA extension implementation has been done in the 

FlexGripPlus architecture [7], running four case-study 

applications. Table I shows the synthesis evaluation @15nm, 

considering the number of cells, circuit area (mm²), delay (ns), 

and the ISA extension overhead (%). The Decode pipeline 

stage showed the highest overhead, but as it is responsible for 

only 0.2% of the GPU circuit area, the final overhead was a 

negligible 0.15% in circuit area and 0.01% in the number of 

cells. Also, the delay had no overhead, showing that our 

hardware modifications did not affect the GPU’s critical path, 

thus maintaining the maximum clock frequency. 

When considering the execution time of the transformed 

code, presented in Table II, one can notice that pure software-

based techniques showed an average overhead of 114.1%, 

while our ISA extension reduced overhead to an average 47.2% 

(a 58.6% reduction). Combined with hardware results, these 

data show that our approach is able to maintain the GPU 

performance and drastically reduce software-based techniques 

overheads in execution time. 

To evaluate fault detection capabilities, we performed a 

fault injection campaign by simulation at RTL level in 

ModelSim. Faults were injected during the execution of the 

original and the two hardened versions (software-based and 

ISA extension). For all case-study applications running in each 

program version, we injected 10,000 faults, one per program 

execution, adding up to 120,000 simulations. Faults have been 

distributed among application-used registers, achieving a 1% 

statistical error considering a 95% confidence level. Table III 

shows, for all types of errors, that both software-based 

techniques (SW-based) and our proposed ISA extension were 

able to detect all faults affecting the GPU register file. 
 

4. Conclusions 
 

This digest presented our proposed comprehensive ISA 

extension to improve the reliability of GPU register files. 

Results showed 58.6% improvements in performance at a 

negligible cost in circuit area and no degradation in reliability 

when compared to state-of-the-art software-based techniques. 

The final version will present additional data on the target GPU 

and discussions on implementation and fault injection result. 
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Fig. 1.  Program code transformation. 
 

Table I – Synthesis evaluation @15nm and ISA extension overhead 

 

Pipeline 

Stage 
FlexGripPlus ISA extension (%) 

Cells Area Delay  Cells Area Delay 

Decode 1,793 793 0.11 10.48 8.17 0.0 

Read 152,444 62,782 0.34 0.17 0.21 0.0 

Write 65,315 29,192 0.65 0.81 1.14 0.0 

GPU 612,368 280,480 35.56 0.01 0.15 0.0 

 
Table II – Execution time and hardening techniques overhead 

 
 
Application 

 
Original (ns) 

 
SW-based (%) 

 
ISA extension (%) 

 

 
Matrix Mult. 

 
320.3 

 
109.5 

 
45.3 

 

FFT 963.7 104.0 63.7  

Vector Sum 140.6 105.2 45.3  

Bitonic Sort 823.9 137.6 34.3  

 
Table III – SDCs and hardening techniques detection 

 
 
Application 

 
Original 

 
SW-based (%) 

 
ISA extension (%) 

 

 
Matrix Mult. 

 
5,307 

 
100.0 

 
100.0 

 

FFT 3,724 100.0 100.0  

Vector Sum 3,096 100.0 100.0  

Bitonic Sort 3,158 100.0 100.0  

 


