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Abstract: Streamlined weirs, as a nature-inspired type of weirs, has gained tremendous 

attention among hydraulic engineers mainly due to their well-known performance with 

high discharge coefficient. Computational fluid dynamic (CDF) is considered as a robust 

tool to predict discharge coefficient. To bypass the computational cost of CFD-based 

assessment, the present study proposes data-driven modelling techniques, as an 

alternative to CFD simulation, to predict discharge coefficient based on an experimental 

dataset. To this end, after splitting the dataset by k-fold cross-validation technique, the 

performance assessment of classical and hybrid machine-deep learning (ML-DL) 

algorithms is undertaken. Amongst ML techniques, linear regression (LR), random forest 

(RF), support vector machine (SVM), k-nearest neighbours (KNN), and decision tree 

(DT) algorithms are studied . In the context of DL, long short-term memory (LSTM), 

convolutional neural network (CNN), gated recurrent unit (GRU) and their hybrid forms 

such as LSTM-GRU, CNN-LSTM and CNN-GRU techniques are compared by different 

error metrics. It is found that the proposed three-layer hierarchical DL algorithm 

consisting of a convolutional layer coupled with two subsequent GRU levels, which is 

also hybridized by LR method (i.e., LR-CGRU), leads to lower error metrics. This paper 

paves the way for data-driven modelling of streamlined weirs. 
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1. Introduction 

Weirs are the most useful and common hydraulic structures, which are applied in various 

usages such as irrigation networks, sewage networks and water supply systems 

(Abdollahi et al., 2017). According to the crest type, main weir groups are classified into 

sharp-, broad-, and short-crested weirs. Circular-crested, overflow (ogee) and streamlined 

weirs are special kinds of short-crested weirs (Bagheri & Kabiri-Samani, 2020a). 

Streamlined weirs, as a nature-inspired type of weirs, has gained tremendous attention 

among hydraulic engineers due to their well-known performance with high discharge 

coefficient, overflow stability behaviour and minimized fluctuation in water free surface. 

The general shape of streamlined weirs, which is designed according to aerofoils, is 

originally derived from birds’ wing topology. The importance of streamlined weirs, 

purported to be the most state-of-the-art form of weirs, is well-documented in hydraulic 

engineering field (Rao & Rao, 1973; Bagheri & Kabiri-Samani, 2020). However, due to 

the complexity of the geometry of streamlined weir in design, this kind of weir has been 

paid less attention among practitioners. The estimation of the discharge coefficient of 

weirs is an important subject since many experimental and/or numerical researches have 

been undertaken recently in different types of weirs (Arvanaghi et al., 2014; Arvanaghi 

& Oskuei, 2013; Borghei et al., 1999; Johnson, 2000; Mahtabi & Arvanaghi, 2018; Qu et 

al., 2009; Rady, 2011; Tullis, 2011). For the last two decades, computational fluid 

dynamics (CFD) has drawn tremendous attention from both academia and industry to 

model problems that involve fluid domains and their corresponding boundary condition 

and interactions. OpenFOAM software, as an open-source toolbox, is widely used in 



 

 

high-fidelity computational models due to its incorporation of a vast variety of solvers 

compatible with different range of fluid flows. Although CFD-based performance 

assessment of fluid-flow phenomena leads to reliable results, it suffers from 

computationally demanding procedures and a requirement of profound academic 

knowledge in the field of fluid mechanics (Bagheri & Kabiri-Samani, 2020b, 2020a).  

Data-driven modelling offers a framework to assess a model as a black-box. Hence, it is 

possible to analyse a broader range of models and systems irrespective of the nature of 

the problem. In particular, ML-DL modelling is an active field of research in other 

engineering fields such as structural and earthquake engineering (Abasi et al., 2021; M S 

Barkhordari & Es-haghi, 2021; Mohammad Sadegh Barkhordari & Tehranizadeh, 2021; 

Esteghamati & Flint, 2021; Hariri-Ardebili & Salazar, 2020; Pourkamali-Anaraki et al., 

2020; Soraghi & Huang, 2021), biomedical engineering (Alizadehsani et al., 2021; 

Ayoobi et al., 2021), etc. Other applications of ML-DL techniques can also be found 

(Aswin et al., 2018; Athira et al., 2018; Selvin et al., 2017; Vinayakumar et al., 2017). 

Recently, different ML and surrogate modeling algorithms have been applied in 

various hydraulic engineering problems such as dams, sedimentation, spillway, etc. 

(Amini et al., 2021; Bhattacharya et al., 2007; Hariri-Ardebili et al., 2021; Roushangar et 

al., 2014; Torres-Rua et al., 2012). It is recognized that an empirical relationship for 

discharge coefficient based on experimental or hydraulic models faces some limitations 

regarding hydraulic and geometric parameters (Ebtehaj et al., 2018). The main motivation 

of the present study is to bypass the computational cost of discharge coefficient prediction 

via CFD framework by investigating the potential capability of hybrid ML-DL algorithms 

as an alternative to CFD-based simulations. The comparison between CFD-based 

discharge coefficient and the proposed data-driven techniques is also graphically 

illustrated in Figure 1. which is inspired from (Bagheri & Kabiri-Samani, 2020a and 



 

 

2020b). The data-driven modelling part of Figure 1 will be discussed comprehensively in 

Sections 4 and 5.  

 

Figure 1. Data-driven discharge coefficient estimation of streamlined weirs as an 

alternative to CFD-based procedure  

The incorporation of various geometric and hydraulic parameters affecting 

hydraulic operations of weirs require the application of an accurate model to determine 

their discharge coefficients. In this context, the need for proposing an accurate technique 

for the estimation of discharge coefficient is a challenging task.  

In this work, a group of 12 classical and hybrid ML-DL algorithms are employed 

to predict the discharge coefficient of streamlined weirs based on an experimental dataset.  

In the following, Section 2 describes literature related to different usages of ML-DL 

techniques in weirs. Section 3 explains the data employed in this study. Section 4 

describes the ML-DL algorithms including the proposed one. Section 5 illustrates results 

obtained by different data-driven techniques. Finally, in Section 6, the conclusion is 

presented, and future works are outlined. 

2. Related works 

The determination of discharge coefficient of weirs is the most momentous factor 

for the design of these hydraulic structures. Several studies were performed by using 

Nature-inspired streamlined weirs

Computational Fluid Dynamic (CFD) Data-driven Modeling

Problem definition 

including boundary 

condition 

Computational 

domain including 

mesh generation 

for CFD simulation

Sc
ie

nc
e2

0.
co

m

Machine Learning

Deep Learning



 

 

various ML-DL algorithms to predict the discharge coefficient. In this section, some of 

the state-of-the-art ML-DL techniques related to the estimation of the discharge 

coefficient are presented in Table 1 considering different weir configurations. One may 

note that none of the existing studies investigated the potential capability of ML-DL 

techniques for streamlined weirs which reflects the main motivation of the present study. 

Table 1- Previous works on discharge coefficient estimation of weirs via different soft 

computing techniques 

Weir configuration Soft computing technique Reference 

Sharp-crested weir FFNN1, RBNN2 (Bilhan et al., 2010) 

Triangular 

labyrinth side weirs 

ANN3 (Emiroglu et al., 2011) 

Broad-crested weir GP4, ANN (Salmasi et al., 2013) 

Triangular 

labyrinth side weirs 

MLP5, RBNN (Zaji & Bonakdari, 2014) 

Side weirs MLP (Parsaie & Haghiabi, 2015) 

Trapezoidal and 

rectangular side 

weirs 

SVM6 and GA7 (SVM-GA), GEP8 (Roushangar et al., 2016) 

Two-cycle 

labyrinth weirs 

ANFIS9, MNLR10 (Aydin & Kayisli, 2016) 

Side weirs SVM (Azamathulla et al., 2016) 

Triangular 

labyrinth weirs 

SVR11, SVR- FA12, RSM13, PCA14 (Karami et al., 2017) 

Triangular 

labyrinth weirs 

MLP-NN, RBNN, SVM (Parsaie & Haghiabi, 2017) 

Rectangular side 

weirs 

ANFIS (Ebtehaj et al., 2018) 



 

 

Labyrinth weirs ANFIS, MLP-NN (Haghiabi et al., 2018) 

Piano key weir 

MLP, MLP-FA, MLP-PSO15, MLP-GA, 

MLP-MFO16, ANFIS, ANFIS-FA, 

ANFIS-PSO, ANFIS-GA, ANFIS-MFO 

(Zounemat-Kermani et al., 

2019) 

Trapezoidal 

labyrinth weirs 

MLP-NN, RBNN, SVM (Norouzi et al., 2019) 

Labyrinth weirs ANFIS, ANFIS-FFA17 (Shafiei et al., 2020) 

Skew side weir MLR18, GEP 

(Mohammed & Sharifi, 

2020) 

Sharp-crested weirs ANN, SVM, ELM19 (Li et al., 2021) 

Triangular 

labyrinth weirs 

ANFIS, ANFIS-PSO, ANFIS-FA, SVR, 

SVR-FA, MLP, MLP-FA, RBNN 

(Mahmoud et al., 2021) 

1 Feed forward neural network, 2 Radial basis neural networks, 3 Artificial neural network, 
4 Genetic programming, 5 Multi-layer perceptron neural network, 6 Support vector machine, 7 

Genetic algorithm, 8 Gene expression programming, 9 Adaptive neuro-fuzzy inference system, 
10 Multiple nonlinear regression, 11 Support vector regression, 12 Firefly algorithm, 13 Response 

surface methodology, 14 Principal component analysis, 15 Particle swarm optimization, 16 Moth-

flame optimization, 17 Neuro-fuzzy-firefly, 18 Multiple linear regression, 19 Extreme learning 

machine  

 

3. Data description 

The flow rate 𝑄 over a short-crest weir are computed based on continuity and 

Bernoulli’s equations as expressed in Equation (1): 

𝑄 =
2

3
𝐶𝑑𝐵√

2

3
𝑔𝐻1

3
2⁄
 (1) 

where 𝐶𝑑 is weir discharge coefficient; 𝐵 represents weir width; 𝐻1 = ℎ1 + ℎ𝑣 describes 

total head; ℎ1 is upstream head over the crest; ℎ𝑣 indicates upstream velocity head and 

equals to 𝑣2/2𝑔; 𝑣 refers to approach velocity; and g denotes the acceleration due to 

gravity.  

https://www.sciencedirect.com/topics/engineering/perceptron


 

 

In this research, an experimental dataset for 120 models of streamlined weirs, 

which are designed based on the principle of the Joukowsky transform function, is used 

(Bagheri & Kabiri-Samani, 2020a). The model is graphically illustrated in Figure 2 and 

the related hydraulic parameters are shown in Table 2.  The data consist of two groups, 

namely with and without base-block under streamlined weirs. In models without base-

block, parameter 𝛽  is considered equal to zero. Table 2 shows 9 parameters, which are 

considered as model inputs in the proposed method. Besides, the discharge coefficient is 

the model output. 

 

Figure 2. Schematic view of streamline weir (adapted and modified from Bagheri & 

Kabiri-Samani (2020a)) 

Table 2. Input parameters for estimating discharge coefficient 

Input 

parameters 

Description of input parameters 

λ relative eccentricity 

β 

angle between the downstream slope 

 of weirs fixed and horizontal axis 

L initial length of the streamlined weir 

W total weir height 

Q flow discharge 

Y1 upstream water depth 



 

 

Y2 water depth at the weir crest 

Y3 downstream flow depth 

h1 upstream flow depth on the weir crest 

 

4. Methods 

In this section, the studied ML-DL methods are introduced in Section 4.1. Details of the 

implemented methods and parameters are also stated. Besides, the proposed method is 

introduced in detail in the following. All data-driven techniques are implemented by 

Python programming language. In this research, “sklearn” and “keras” packages by 

“tensorflow” backend are used for program development. A GPU GFORCE GTX950 

with 16GB RAM DDR4 is used as the implementation hardware. 

4.1. Machine-Deep Learning Algorithms 

With the development of ML-DL methods, a good variety of ML-DL-based 

models were introduced and received extended attention (see Table 1). In the present 

study, five classical ML techniques are applied to estimate the discharge coefficient.  The 

performance assessment of support vector machine (SVM), random forest (RF), linear 

regression (LR), K-nearest neighbors (KNN) and decision tree (DT) algorithms is 

undertaken via error metrics. Among these ML techniques, the candidate with the highest 

accuracy is considered as the accepted ML technique in the present study. All model 

parameters of classical ML techniques are summarized in Table 3. Since the applied ML 

techniques are well-documented in the literature, the readers are referred to Sammut & 

Webb (2011) for a detailed discussion on the mentioned classical ML techniques. 

Table 3. Parameter values of ML algorithms 

SVM RF KNN DT 



 

 

Kernel=RBF n_estimators=100 n_neighbors=5 Criterion=MSE 

Degree=3 Criterion=MSE Weights=Uniform Splitter=Best 

Gamma=Scale min_samples_split=2 Algorithm=Auto min_samples_split=2 

Coef0=0.0 min_samples_leaf=1 Leaf Size=30 min_samples_leaf=1 

Shrinking =True min_weight_fraction_leaf=0. p=2 min_weight_fraction_leaf =0. 

Cache size=200 Max Features=Auto Metric=Minkowski  

Epsilon=0.1 Bootstrap=True   

Tol=1e-3    

C=1.0    

 

As mentioned in Section 1, the main objective of this study is to propose an 

accurate data-driven technique to estimate the discharge coefficient. Accordingly, we 

assess the capability of six classical and hybrid DL techniques in comparison to a three-

layer hierarchical DL technique for the possible adaptive implementation with a 

successful ML technique in a state-of-the-art hydraulic engineering application. Deep 

neural networks (DNNs) are created from artificial neural networks (ANN). ANN usually 

contain few layers (shallow) whereas DNNs contain more hidden (deep) layers. With 

more layers, DNNs are capable of learning big data (Wang et al., 2019). Deep learning 

(DL) is a method that predicts results through several layers, with each layer containing 

the weights of a neural network (Zhao et al., 2019). As a result, it can be said that deep 

learning is a special kind of neural network that involves more layers. Within this 

framework, increasing the number of layers in DL has led to better outcomes than simple 

ANNs. In the context of DL, long short-term memory (LSTM) (Hochreiter & 

Schmidhuber, 1997), convolutional neural network (CNN) (LeCun et al., 1995), gated 

recurrent unit (GRU) (Cho et al., 2014) and their hybrid forms such as LSTM-GRU, 

CNN-LSTM and CNN-GRU techniques are analysed by different error metrics. In the 



 

 

following, DL techniques are introduced briefly while a detailed discussion on the 

proposed algorithm is provided. As a variant of recurrent neural network (RNN), LSTM 

has a long-term memory function that is suitable for processing important events with 

long intervals and delays in time series. Therefore, the neural network structure, which is 

primarily composed of LSTM units with memory functions, can make decisions based 

on previous states to adapt to various running scenarios (Guo et al., 2021). LSTM has 

been widely used in issues related to sequential data such as natural language processing 

(NLP), voice recognition, and time series analysis (Sezer & Ozbayoglu, 2018). 

CNN's original idea was initially modeled on mammalian vision. This type of 

network is able to achieve results similar to humans in some cases and even stronger than 

human vision in some other cases. CNN is made up of a number of convolutional layers. 

From the combination of these layers of convolution, a deep neural network is formed. 

CNN has been widely used and achieved brilliant results in image processing, image 

classification and computer vision (Sammut & Webb, 2011). 

Similar to LSTM, GRU is another variant of RNN. In general, two main layers 

are implemented in GRU.  It first determines how the previous information should be 

passed along to the future. Next, it determines how much of the past information must be 

discarded in the second layer (Ayoobi et al., 2021). GRU leads to better performance for 

smaller and less frequent datasets in comparison to LSTM (Gruber & Jockisch, 2020). 

Model parameters of these classical DL techniques are summarized in Table 4. 

Table 4. Parameter values of classical DL algorithms 

LSTM CNN GRU 

Layers: 3 LSTM layers Layers: 3 convolutional layers Layers: 3 GRU layers 

Number of neurons:50 Number of filters: 64 Number of neurons:50 



 

 

Number of epochs: 200 Number of epochs: 200 Number of epochs: 200 

Activation for all layers 

(except the last): ReLU 

Activation for all layers 

 (except the last): ReLU 

Activation for all layers 

 (except the last): ReLU 

Loss function: MSE Loss function: MSE Loss function: MSE 

Optimizer: Adam Optimizer: Adam Optimizer: Adam 

beta1 of optimizer: 0.9 beta1 of optimizer: 0.9 beta1 of optimizer: 0.9 

beta2 of optimizer: 0.999 beta2 of optimizer: 0.999 beta2 of optimizer: 0.999 

Learning rate: 0.001 Learning rate: 0.001 Learning rate: 0.001 

 Size of kernels: 3*3  

 

Hybrid DL techniques are constructed by coupling classical DL algorithms. In 

this context, LSTM-GRU is developed by 2 LSTM layers and 1 GRU layer, in which the 

number of neurons of LSTM and GRU layers is assumed 50. The other remaining 

parameters are identical to LSTM and GRU parameters.  In CNN-LSTM approach, one 

convolutional layer and 2 LSTM layers are applied whilst other remaining parameters are 

obtained from the classical DL. The same implementation is assumed for CNN-GRU 

where 1 convolutional layer and 2 GRU layers are mixed. All remaining parameters of 

LR-CGRU are assumed equal to those of LR, CNN and GRU algorithms. 

4.2. Proposed Method (LR-CGRU) 

The dataset is split into the “training” and “testing” groups to generate meta-inputs 

for the proposed algorithm. A successful out-of-sampling technique for this purpose is 

the k-fold cross-validation (CV) technique. In this context, by transforming the whole 

dataset into k mutually exclusive and collectively exhaustive subsets, only one set is used 

for testing and the remaining (k-1) subgroup are incorporated in the training procedure. 

In addition, the initial weigh assignment of ML-DL algorithms is commonly performed 

by a random configuration. Hence, k-fold CV technique can lead to unbiased assessment. 



 

 

In the proposed ML-DL algorithm in the present study, k=5 is used for the CV tool.  

According to Razavi-Far et al. (2019), the predictive models are trained in “one-step-

ahead” configuration.  

A three-layer hierarchical DL algorithm consisting of a convolutional layer 

coupled with two GRU levels is introduced as the final DL algorithm, which is also 

hybridized by LR method as the ML technique due to its lower CV errors (detailed 

explanation of error metrics and their obtained values for ML-DL algorithms will be 

discussed in Section 5). Accordingly, LR-CGRU is the combination of LR, CNN and 

GRU and uses a convolutional layer as the first layer and two GRU layers subsequently 

in the DL phase. A graphical representation of the proposed algorithm is demonstrated in 

Figure 3.  

 

Figure 3. Flowchart of the proposed method: LR-CGRU consisting of an ML algorithm 

(i.e., RL) coupled with a three-layer hierarchical DL technique (i.e., CGRU) 

The proposed model is trained 5 times due to the usage of 5-fold CV technique. 

In 5-fold CV technique, the model is trained with 80 percent of all dataset and tested by 
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the remaining 20 percent. Accordingly, we have 5 predicted datasets by both ML and DL 

algorithms,  in which the computed data are averaged for both ML and DL methods.  

5-Results and discussion 

5.1. Verification of the proposed algorithm 

In this section, at the first stage, the predicted results of all ML methods including 

SVM, RF, LR, KNN and DT are compared with the experimental results, which are 

graphically demonstrated in Figure 4(a)-(e). Intuitively, it can be observed that LR and 

RF methods provide better results compared to other ML techniques in terms of YY plot. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Comparison between the experimental data and ML methods; Figure 4(a)-(e) 

compare predicted discharge coefficient with experimental dataset; Figure 4(f) depicts 

results of 6 error metrics for all ML algorithms 

An ML-DL model can be evaluated in a tricky manner. The dataset usually is split 

into training and testing sets. Then, the model performance is evaluated based on an error 

metric to specify the precision of the model. However, this technique is not reliable 

enough as the computed accuracy for one test set may be very different from another one. 

To cope with this problem, k-fold cross-validation (CV) is performed. As mentioned in 



 

 

Section 4.2, 5-fold CV technique is considered for all applied ML-DL algorithms. In 

detail, in the first iteration, the first fold is employed to test ML-DL model and the rest of 

the data is considered as the training set. In the next iteration, the second fold is used as 

the testing set and the rest of data is employed as a training set. This procedure continues 

until 5 folds.  

To assess the performance of each ML-DL method, eight error metrics, namely 

mean squared error (MSE), root mean squared error (RMSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE), mean squared logarithmic error 

(MSLE), root mean squared logarithmic error (RMSLE), mean Poisson deviance (MPD), 

and mean Gamma deviance (MGD) are employed. These error metrics are introduced in 

Equations (2)-(9), respectively: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 (3) 
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𝑖=1
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𝑛

𝑖=1

 (6) 
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1

𝑛
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𝑀𝐺𝐷 =
1

𝑛
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�̂�𝑖

𝑦𝑖
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𝑦𝑖

�̂�𝑖
 − 1)

𝑛−1

𝑖=0
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where 𝑦𝑖  describes real (i.e., experimental) dataset and �̂�𝑖  refers to predicted outputs. 

Figure 4(f) shows logarithmic values of the applied performance metrics for each ML 



 

 

method. According to Figure 4(f), linear regression, which has the darkest colour among 

other methods, is considered as the most successful ML technique in the present study. 

In the next stage, classical DL methods (namely LSTM, GRU and CNN) and their 

variants (namely CNN-LSTM, GRU, LSTM, LSTM-GRU) are applied to predict 

discharge coefficient of streamlined weirs. The predicted outputs by the mentioned DL 

algorithms versus the experimental dataset are demonstrated via YY plot in Figure 5.    

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Comparison between the experimental dataset and derived outputs by 

the applied classical and hybrid DL methods 

As it can be seen in the second row of Figure 5, all hybrid DL algorithms outperform the 

classical ones. However, to provide a robust conclusion, the mentioned eight error metrics 

in Figure 4(f) are applied again on which logarithmic values of error metrics are depicted 

in Figure 6(a). To demonstrate the potential capability of the proposed methods, the error 

metrics of LR-CGRU algorithm is also plotted in the last column of Figure 6(a).  In 

general, it can be concluded that all hybrid algorithms considering both ML and DL ones 

which are plotted in Figures. 4(f) and 6(a), respectively, provide low error metrics. LR-

CGRU not only leads to lower error considering all eight metrics, but also provides 



 

 

considerably lower metrics in MSE, MSLE, MPD and MGD.  Moreover, YY plot for the 

proposed method is introduced in Figure 6(b), which highlights the superiority of LR-

CGRU method.  The computational cost regarding the training time of all ML-DL 

algorithms is also introduced in Appendix 1. As it is expected, there is a sharp distinction 

between computational costs of ML and DL algorithms.  However, LR-CGRU provides 

an acceptable computational complexity compared to other classical and hybrid DL 

algorithms.  

  

(a)  (b) 

Figure 6. LR-CGRU: (a); Error metrics for all DL algorithms in conjunction with LR-

CGRU method (b) YY-plot for the proposed method  

5.2. Comparison with previous works 

Finally, the data-driven outputs are compared with those of previous related works. 

Bagheri and Kabiri-Samani (2020a) proposed an algebraic equation to compute the 

streamlined discharge coefficient (𝐶𝑑) using dimensional analysis and curve-fitting tool 

in MATLAB as follows: 

𝐶𝑑 = 1.4𝜆0.05 [
ℎ1

𝐿

ℎ1

𝑊
]

0.1

 (10) 

 
Carollo and Ferro (2021) proposed a relationship between discharge 𝑄  and upstream 

water level ℎ1, based on experimental results of Bagheri and Kabiri-Samani (2020a), as 

shown in Eq. (11):  



 

 

𝐴 = 𝑎 (
ℎ1

𝑊
) =

𝑄2/3

𝑔1/3𝑏2/3𝑊
 (11) 

Based on Equations (10) and (11), the coefficient 𝑎 was: 

𝑎 =
2

3
𝐶𝑑

2/3 (12) 

In Carollo & Ferro (2021), according to dimensional analysis and self-similarity theory, 

the stage-discharge relationship was obtained as: 

𝐴 = 0.8546 (
ℎ1

𝑊
)

1.1243

(
𝐿

𝑊
)

−0.1012

(
𝑊1

𝑊
)

.0412

 (13) 

by combining Equations (11) and (12): 

𝐴 =
2

3
𝐶𝑑

2/3 ℎ1

𝑊
 (14) 

By substituting Equation (13) into Equation (14):  

2

3
𝐶𝑑

2/3 ℎ1

𝑊
= 0.8546 (

ℎ1

𝑊
)

1.1243

(
𝐿

𝑊
)

−0.1012

(
𝑊1

𝑊
)

.0412

 (15) 

In the last step, the discharge coefficient was obtained as:  

𝐶𝑑 = [[
3

2

𝑊

ℎ1
] [0.8546 (

ℎ1

𝑊
)

1.1243

(
𝐿

𝑊
)

−0.1012

(
𝑊1

𝑊
)

.0412

]]

3/2

 (16) 

In Figure 7, results from equations proposed by Bagheri & Kabiri-Samani (i.e., Eq. (10)) 

and Carollo & Ferro (i.e., Eq. (16)) are compared with those by the proposed LR-CGRU 

algorithm. As it can be seen, the proposed data-driven technique provides more accurate 

outputs than the algebraic expressions introduced by Bagheri & Kabiri-Samani (2020a) 

and Carollo & Ferro (2021), which highlights the superiority of ML-DL driven techniques 

for the prediction of discharge coefficient. 



 

 

 

Figure 7.  Comparison of LR-CGRU outputs (blue triangles) with previous works via 

YY-plot  

6- Conclusion and future works 

This paper aims to predict the discharge coefficient of streamlined weirs, which are 

known as a state-of-the-art type of weirs. As an alternative to the computational fluid 

dynamic procedure to predict discharge coefficient of this nature-inspired type of weirs, 

the potential superiority of machine learning-deep learning algorithms is investigated. 

Five classical machine learning techniques, namely linear regression, random forest, 

support vector machine, k-nearest neighbours, and decision tree, are applied. In addition, 

amongst deep learning algorithms, long short-term memory (LSTM), convolutional 

neural network (CNN) and gated recurrent unit (GRU) and their hybrid forms (i.e., 

LSTM-GRU, CNN-LSTM and CNN-GRU) are compared by eight different error 

metrics. 

To enhance accuracy, a three-layer hierarchical deep learning algorithm 

consisting of a convolutional layer coupled with two subsequent GRU levels, which is 

also hybridized by the linear regression method (i.e., LR-CGRU), is proposed. In general, 

hybrid deep data-driven algorithms provide more accurate results than the classical ones. 



 

 

Furthermore, it is clearly demonstrated that LR-CGRU technique outperforms other 

eleven machine-deep learning algorithms.  

Finally, the superiority of the proposed data-driven technique is demonstrated by a 

comparative analysis between previously introduced algebraic expressions to predict 

discharge coefficient. Results indicate that LR-CGRU algorithm can act as an alternative 

tool to forecast the discharge coefficient of streamlined weirs accurately, which paves the 

way for data-driven modelling of streamlined weirs. Although the capabilities of twelve 

machine-deep learning algorithms are investigated to predict discharge coefficient, there 

is still a need for future studies to enhance both accuracy and efficiency of the estimation. 

Furthermore, investigation on the application of the proposed ML-DL algorithm in 

probabilistic risk assessment (Ali Amini et al., 2021; Kia et al., 2021) of streamlined weirs 

can be performed in future works. 

Appendix 1: 

 Table 5. Computational cost of training time for all 12 ML-DL algorithms 

LR RF SVM KNN DT  

0:00:00.003218 0:00:00.119285 0:00:00.000996 0:00:00.000630 0:00:00.000409  

LSTM CNN LSTM-GRU CNN-LSTM CNN-GRU LR-CGRU 

0:00:46.185944 0:00:04.668465 0:00:46.714708 0:00:29.236926 0:00:29.725064 0:00:29.728282 
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