
EasyChair Preprint

№ 1369

EvoDynamic: a framework for the evolution of

generally represented dynamical systems and its

application to self-organized criticality

Sidney Pontes-Filho, Pedro Lind, Anis Yazidi, Jianhua Zhang,
Hugo Hammer, Gustavo B. M. Mello, Ioanna Sandvig,
Gunnar Tufte and Stefano Nichele

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 7, 2019



EvoDynamic: a framework for the evolution of
generally represented dynamical systems and its

application to self-organized criticality

Sidney Pontes-Filho∗,†,§, Pedro Lind∗, Anis Yazidi∗, Jianhua Zhang∗, Hugo Hammer∗,
Gustavo B. M. Mello∗, Ioanna Sandvig‡, Gunnar Tufte† and Stefano Nichele∗
∗Department of Computer Science, Oslo Metropolitan University, Oslo, Norway

†Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
‡Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway

Email: §sidneyp@oslomet.no

Abstract—Dynamical systems possess a computational capacity
which may be exploited in a reservoir computing paradigm. This
paper presents a general representation of dynamical systems as
an artificial neural network (ANN). Initially, we implement the
simplest dynamical system, a cellular automaton. The mathemati-
cal fundamentals behind an ANN are maintained, but the weights
of the connections and the activation function are adjusted to
work as an update rule in the context of cellular automata.
The advantages of such implementation are its usage on spe-
cialized and optimized deep learning libraries, the capabilities
to generalize it to other types of networks and the possibility to
evolve cellular automata and other dynamical systems in terms
of connectivity, update and learning rules. Our implementation
of cellular automata constitutes an initial step towards a more
general framework for dynamical systems. Our objective is to
evolve such systems with the goal of optimizing their usage in
reservoir computing and to model physical computing substrates.
Furthermore, we present encouraging preliminary results toward
the evolution of complex behavior and self-organized criticality
in stochastic elementary cellular automata.

Index Terms—Cellular automata, dynamical systems, imple-
mentation, reservoir computing, evolution, self-organized criti-
cality

I. INTRODUCTION

A cellular automaton (CA) is the simplest computing sys-
tem where the emergence of complex dynamics from local
interactions might take place. It consists of a grid of cells
with a finite number of states that change according to simple
rules depending on the neighborhood and own state in discrete
time-steps. Some notable examples are the elementary CA
[1], which is unidimensional with three neighbors and eight
update rules, and Conway’s Game of Life [2], which is two-
dimensional with nine neighbors and three update rules.

Table I presents some computing systems that are capable
of giving rise to the emergence of complex dynamics. Those
systems can be exploited by reservoir computing, which is a
paradigm that resorts to dynamical systems to simplify com-
plex data. Hence, simpler and faster machine learning methods
can be applied with such simplified data. Reservoir computing
is more energy efficient than deep learning methods and it can

TABLE I
EXAMPLES OF DYNAMICAL SYSTEMS.

Dynamical system State Time Connectivity
Cellular automata Discrete Discrete Regular
Coupled map lattice Continuous Discrete Regular
Random Boolean network Discrete Discrete Random
Echo state network Continuous Discrete Random
Liquid state machine Discrete Continuous Random

even yield competitive results, especially for temporal data
[3]. In other words, reservoir computing exploits a dynamical
system that possesses the echo state property and fading mem-
ory, where the internals of the reservoir are untrained and the
only training happens at the linear readout stage [4]. Reservoir
computers are most useful when the substrate’s dynamics
are at the “edge of chaos”, meaning a range of dynamical
behaviors that is between order and disorder [5]. Cellular
automata with such dynamical behavior are capable of being
exploited as reservoirs [6], [7]. Other systems can also exhibit
similar dynamics. The coupled map lattice [8] is very similar
to CA, the only exception is that the coupled map lattice has
continuous states which are updated by a recurrence equation
involving the neighborhood. Random Boolean network [9] is a
generalization of CA where random connectivity exists. Echo
state network [10] is an artificial neural network (ANN) with
random topology while liquid state machine [11] is similar to
echo state network with the difference that it is a spiking neural
network that communicates through discrete-events (spikes)
over continuous time.

One important aspect of the computation performed in a
dynamical system is the trajectory of system states traversed
during the computation [12]. Such trajectory may be guided by
system parameters [13]. Another characteristic of a dynamical
system which is significant for computation is to have its
attractor in a critical state, as indicated by Langton [5]. This
characteristic of a dynamical system is called self-organized
criticality [14].



Besides, computation in dynamical systems may be carried
out in physical substrates [15], such as networks of biological
neurons [16] or in other nanoscale materials [17]. Finding the
correct abstraction for the computation in a dynamical system,
e.g. CA, is an open problem [18].

All the systems described in Table I are sparsely connected
and can be represented by an adjacency matrix, such as a
graph. A fully connected feedforward ANN represents its
connectivity from a layer to another with an adjacency matrix
that contains the weights of each connection. Our CA imple-
mentation is similar to this, but the connectivity goes from the
“layer” of cells to itself.

The goal of representing CA with an adjacency matrix is
to implement a framework which facilitates the development
of all types of CAs, from unidimensional to multidimensional,
with all kinds of lattices and without any boundary conditions
during execution; and also allowing the inclusion of other
major dynamical systems, independent of the type of the state,
time and connectivity. Such initial implementation is the first
component of a Python framework under development, based
on TensorFlow deep neural network library [19]. Therefore, it
benefits from powerful and parallel computing systems with
multi-CPU and multi-GPU. This framework, called EvoDy-
namic1, aims at evolving the connectivity, update and learning
rules of sparsely connected networks to improve their usage for
reservoir computing guided by the echo state property, fading
memory, state trajectory and other quality measurements, and
to model the dynamics and behavior of physical reservoirs,
such as in-vitro biological neural networks interfaced with mi-
croelectrode arrays and nanomagnetic ensembles. Those two
substrates have real applicability as reservoirs. For example,
the former substrate is applied to control a robot, in fact mak-
ing it into a cyborg, a closed-loop biological-artificial neuro-
system [16], and the latter possesses computation capability
as shown by a square lattice of nanomagnets [20]. Those
substrates are the main interest of the SOCRATES project [21]
which aims to explore a dynamic, robust and energy efficient
hardware for data analysis.

There exist some implementations of CA similar to the
one of EvoDynamic framework. They typically implement
Conway’s Game of Life by applying 2D convolution with a
kernel that is used to count the “alive” neighbors, then the
resulting matrix consists of the number of “alive” neighboring
cells and is used to update the CA. One such implementation,
also based on TensorFlow, is available open-source in [22].

This paper is organized as follows. Section II describes
our method according to which we use adjacency matrix to
compute CA. Section III presents the results obtained from the
method. Section IV discusses the initial advances and future
plan of EvoDynamic framework and Section V concludes this
paper.

1EvoDynamic v0.1 available at https://github.com/SocratesNFR/
EvoDynamic.

II. METHOD

In our proposed method, the equation to calculate the next
states of the cells in a cellular automaton is

ct+1 = f(A · ct). (1)

It is similar to the equation of the forward pass of an
artificial neural network, but without the bias. The layer is
connected to itself, and the activation function f defines the
update rules of the CA. The next states of the CA ct+1 is
calculated from the result of the activation function f which
receives as argument the dot product between the adjacency
matrix A and the current states of the CA ct. c is always a
column vector of size len(c) × 1, that does not depend on
how many dimensions the CA has, and A is a matrix of size
len(c) × len(c). Hence the result of A · c is also a column
vector of size len(c)× 1 as c.

The implementation of cellular automata as an artificial neu-
ral network requires the procedural generation of the adjacency
matrix of the grid. In this way, any lattice type or multidi-
mensional CAs can be implemented using the same approach.
The adjacency matrix of a sparsely connected network contains
many zeros because of the small number of connections. Since
we implement it on TensorFlow, the data type of the adjacency
matrix is preferably a SparseTensor. A dot product with
this data type can be up to 9 times faster depending on the
configuration of the tensors [23]. The update rule of the CA
alters the weights of the connections in the adjacency matrix.
In a CA whose cells have two states meaning “dead” (zero) or
“alive” (one), the weights in the adjacency matrix are one for
connection and zero for no connection, such as an ordinary
adjacency matrix. Such matrix facilitates the description of
the update rule for counting the number of “alive” neighbors
because the result of the dot product between the adjacency
matrix and the cell state vector is the vector that contains the
number of “alive” neighbors for each cell. If the pattern of
the neighborhood matters in the update rule, each cell has
its neighbors encoded as a n-ary string where n means the
number of states that a cell can have. In this case the weights
of the connections with the neighbors are n-base identifiers
and are calculated by

neighbori = ni,∀i ∈ {0..len(neighbors)− 1}. (2)

Where neighbors is a vector of the cell’s neighbors. In the
adjacency matrix, each neighbor receives a weight according
to (2). The result of the dot product with such adjacency matrix
is a vector that consists of unique integers per neighborhood
pattern. Thus, the activation function is a lookup table from
integer (i.e., pattern) to next state.

Algorithm 1 generates the adjacency matrix for one-
dimensional CA, such as the elementary CA. Where widthCA
is the width or number of cells of a unidimensional CA
and neighborhood is a vector which describes the region
around the center cell. The connection weights depend on

https://github.com/SocratesNFR/EvoDynamic
https://github.com/SocratesNFR/EvoDynamic


the type of update rule as previously explained. For ex-
ample, in case of an elementary CA neighborhood =
[4 2 1]. indexNeighborCenter is the index of the center
cell in the neighborhood whose starting index is zero.
isWrappedGrid is a Boolean value that works as a flag
for adding wrapped grid or not. A wrapped grid for one-
dimensional CA means that the initial and final cells are
neighbors. With all these parameters, Algorithm 1 creates an
adjacency matrix by looping over the indices of the cells (from
zero to numberOfCells − 1) with an inner loop for the
indices of the neighbors. If the selected currentNeighbor is
a non-zero value and its indices do not affect the boundary
condition, then the value of currentNeighbor is assigned
to the adjacency matrix A in the indices that correspond to
the connection between the current cell in the outer loop and
the actual index of currentNeighbor. Finally, this procedure
returns the adjacency matrix A.

To procedurally generate an adjacency matrix for 2D CA
instead of 1D CA, the algorithm needs to have small adjust-
ments. Algorithm 2 shows that for two-dimensional CA, such
as Conway’s Game of Life. In this case, the height of the
CA is an argument passed as heightCA. Neighborhood
is a 2D matrix and indexNeighborCenter is a vector
of two components meaning the indices of the center of
Neighborhood. This procedure is similar to the one in
Algorithm 1, but it contains one more loop for the additional
dimension.

The activation function for CA is different from the ones
used for ANN. For CA, it contains the update rules that verify
the vector returned by the dot product between the adjacency
matrix and the vector of states. Normally, the update rules of
the CA are implemented as a lookup table from neighborhood
to next state. In our implementation, the lookup table maps
the resulting vector of the dot product to the next state of the
central cell.

III. RESULTS

This section presents the results of the proposed method and
it also stands for the preliminary results of the EvoDynamic
framework.

Fig. 1 illustrates a wrapped elementary CA described in the
procedure of Algorithm 1 and its generated adjacency matrix.
Fig. 1a shows the appearance of the desired elementary CA
with 16 cells (i.e., widthCA = 16). Fig. 1b describes its
pattern 3-neighborhood and the indices of the cells. Fig 1c
shows the result of the Algorithm 1 with the neighborhood
calculated by (2) for pattern matching in the activation func-
tion. In Fig. 1c, we can verify that the left neighbor has weight
equals to 4 (or 22 for the most significant bit), central cell
weight is 2 (or 21) and right neighbor weight is 1 (or 20

for the least significant bit) as defined by (2). Since the CA
is wrapped, we can notice in row index 0 of the adjacency
matrix in Fig. 1c that the left neighbor of cell 0 is the cell 15,
and in row index 15 that the right neighbor of cell 15 is the
cell 0.

(a)

(b)

(c)

Fig. 1. Elementary cellular automaton with 16 cells and wrapped grid. (a)
Example of the grid of cells with states. (b) Indices of the cells and standard
pattern neighborhood of elementary CA where thick border means the central
cell and thin border means the neighbors. (c) Generated adjacency matrix for
this elementary CA.

Fig. 2 describes a wrapped 2D CA for Algorithm 2 and
shows the resulting adjacency matrix. Fig. 2a illustrates the
desired two-dimensional CA with 16 cells (i.e., widthCA = 4
and heightCA = 4). Fig. 2b presents the von Neumann
neighborhood [24] which is used for counting the number of
”alive” neighbors (the connection weights are only zero and
one, and Neighborhood argument of Algorithm 2 defines
it). It also shows the index distribution of the CA whose
order is preserved after flatting it to a column vector. Fig 2c
contains the generated adjacency matrix of Algorithm 2 for
the described 2D CA. Fig. 2b shows an example of a central
cell with its neighbors, the index of this central cell is 5 and
the row index 5 in the adjacency matrix of Fig. 2c presents
the same neighbor indices, i.e., 1, 4, 6 and 9. Since this is
a symmetric matrix, the columns have the same connectivity
of the rows. Therefore, this adjacency matrix represents an
undirected graph. The wrapping effect is also observable. For
example, the neighbors of the cell index 0 are 1, 3, 4 and 12.
So the neighbors 3 and 12 are the ones that the wrapped grid
allowed to exist for cell index 0.

IV. EVODYNAMIC FUTURE

The method of implementing a CA as an artificial neural
network is beneficial for the further development of EvoDy-
namic framework. Since the implementation of all sparsely
connected networks in Table I is already planned in forth-
coming releases of the Python framework, EvoDynamic shall



Algorithm 1 Generation of adjacency matrix for 1D cellular automaton
1: procedure GENERATECA1D(widthCA,neighborhood, indexNeighborCenter, isWrappedGrid)
2: numberOfCells← widthCA
3: A← 0numberOfCells×numberOfCells . Adjacency matrix initialization
4: for i← {0..numberOfCells− 1} do
5: for j ← {−indexNeighborCenter..len(neighborhood)− indexNeighborCenter − 1} do
6: currentNeighbor ← neighborhoodj+indexNeighborCenter

7: if currentNeighbor 6= 0 ∧ (isWrappedGrid ∨ (¬isWrappedGrid ∧ (0 ≤ (i+ j) < widthCA)) then
8: Ai,((i+j) mod widthCA) ← currentNeighbor

9: return A

Algorithm 2 Generation of adjacency matrix of 2D cellular automaton
1: procedure GENERATECA2D(widthCA, heightCA,Neighborhood, indexNeighborCenter, isWrappedGrid)
2: numberOfCells← widthCA ∗ heightCA
3: A← 0numberOfCells×numberOfCells . Adjacency matrix initialization
4: widthNB, heightNB ← shape(Neighborhood)
5: for i← {0..numberOfCells− 1} do
6: for j ← {−indexNeighborCenter0..widthNB − indexNeighborCenter0 − 1} do
7: for k ← {−indexNeighborCenter1..heightNB − indexNeighborCenter1 − 1} do
8: currentNeighbor ← Neighborhoodj+indexNeighborCenter

9: if currentNeighbor 6= 0 ∧ (isWrappedGrid ∨ (¬isWrappedGrid ∧ (0 ≤ ((i mod heightCA) + j) <
widthCA) ∧ (0 ≤ (bi/widthCAc+ k) < heightCA)) then

10: Ai,(((i+k) mod widthCA)+((bi/widthCAc+j) mod heightCA)∗widthCA) ← currentNeighbor

11: return A

(a) (b)

(c)

Fig. 2. 2D cellular automaton with 16 cells (4 × 4) and wrapped grid. (a)
Example of the grid of cells with states. (b) Indices of the cells and von
Neumann counting neighborhood of 2D CA where thick border means the
current cell and thin border means the neighbors. (c) Generated adjacency
matrix for this 2D CA.

have a general representation to all of them. Therefore, CAs
are treated as ANNs. Moreover, EvoDynamic framework
will evolve the connectivity, update and learning rules of
the dynamical systems for reservoir computing improvement
and physical substrate modeling. This common representation
facilitates the evolution of such systems and models which
will be guided by several methods that measure the quality of
a reservoir or the similarity to a dataset.

A. State trajectory
An example of methods to guide the evolution of dynamical

system is the state trajectory. This method can be used to
cluster similar states for model abstraction and to measure the
quality of the reservoir. Therefore, a graph can be formed and
analysis can be made by searching for attractors and cycles.
For visualization of the state trajectory, we use principal
component analysis (PCA) to reduce the dimensionality of the
states and present them as a state transition diagram as shown
in Fig. 3. The depicted dynamical system is Conway’s Game
of Life with 7x7 cells and wrapped boundaries. A glider is
its initial state and this system cycles over 28 unique states as
illustrated in the state transition diagram of Fig. 3l.

B. Towards the evolution for self-organized criticality
Evolution of dynamical systems is a feature currently under

development of EvoDynamic framework. The first on-going
evolution task of our framework is to find systems with self-
organized criticality [14] using genetic algorithms, in order to
allow for better computational capacity [5]. The first dynam-
ical system for this task is a modified version of stochastic



(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 11 (f) Step 12 (g) Step 13 (h) Step 14

(i) Step 26 (j) Step 27 (k) Step 28 (l) Step 29

Fig. 3. States of Conway’s Game of Life in a 7x7 wrapped lattice alongside their PCA-transformed state transition diagrams of the two first principal
components. (a) Initial state is a glider. (a)-(d) Four first steps in this CA. (e)-(h) Four intermediate steps in this CA while reaching the wrapped border. (i)-(l)
Four last steps in this CA before repeating the initial state and closing a cycle.

elementary cellular automata (SECA) introduced by Baetens et
al. [25]. Our stochastic elementary cellular automaton works as
an elementary CA, but the next state in time t+1 of the central
cell ci is defined by a probability p to be 1 and a probability
1 − p to be 0 for each of the eight different neighborhood
patterns that elementary CA has. Formally, probability p is
represented by:

p = P (ci,t+1 = 1|N(ci,t)), (3)

where the neighborhood pattern N(ci,t) is denoted as:

N(ci,t) = (ci−1,t, ci,t, ci+1,t). (4)

The genetic algorithm for self-organized criticality is guided
by a fitness function which mainly verifies if the probability
distributions of avalanche size (i.e., cluster size in space) and
duration (i.e., cluster size in time) follow a power-law distri-
bution. Such verification can be done by checking how linear
is the probability distribution in a log-log plot, by performing
goodness-of-fit tests based on the Kolmogorov-Smirnov (KS)
statistic and by comparing the power-law model with other
alternative models, such as exponential and log-normal, using

log-likelihood ratio [26]. For our fitness function, we estimate
the candidate distributions with the linear fitting of the first 10
points of the log-log plot using least squares regression, which
was verified to be not biased and gives a fast and acceptable
estimation of the slope of the power-law distribution [27].
After the linear 10-points fitting, the model is tested using KS
statistic. One benefit of using such estimation method is that
when the model is not a power-law, the KS statistic reports a
large error, i.e., an error greater than one. Another objective
in the fitness function is the coefficient of determination [28],
but for a complete linear fit of the log-log plot. The fitness
function also considers the number of unique states of the
stochastic elementary CA, the number of bins in the raw
histogram and the value of the estimated power-law exponent.
All these fitness function objectives are calculated using a
randomly initialized CA of 1000 cells after 1000 time-steps
with wrapped boundaries. The avalanche size s and duration
d are computed for the cell values 0 and 1, thus it produces
four different distributions s0, d0, s1, d1 and vectors of their
normalized number of bins bin, KS statistic D, coefficient of
determination of complete linear fitting R2 and the 10-points



linear estimation of the power-law exponent α̂. The fitness
score s for each objective is then calculated by the following
equations:

Ds = exp(−(0.9 ∗min(D) + 0.1 ∗mean(D))), (5)

R2
s = mean(R2), (6)

α̂s = mean(α̂), (7)

uniques =
#uniqueStates

#timesteps
, (8)

bins = tanh(5 ∗ (0.9 ∗max(bin) + 0.1 ∗mean(bin))). (9)

The (5)-(9) are all objective values for calculating the fitness
score s. Those values are real numbers between zero and one,
except the score for the estimated power-law exponent α̂s,
and they have weights attributed to them regarding their level
of importance and for compensating small and large values.
The following equation denotes how the fitness score s is
calculated:

s = 10∗Ds+10∗R2
s+0.1∗α̂s+10∗uniques+10∗bins (10)

For maximizing the fitness score s, the genetic algorithm
has 40 individuals that evolve through 100 generations. The
genome of the individuals has eight real number genes with a
value range between zero and one. Each gene represents the
probability of the next state becoming one (i.e., p in (3)) for its
respective neighborhood pattern. The selection of two parents
is done by deterministic tournament selection [29]. After that,
the crossover between the genomes of the parents can happen
with probability 0.8, then each gene can be exchanged with
probability 0.5. Afterward, a mutation occurs to a gene with
probability 0.1. This mutation adds a random value from a
normal distribution with standard deviation equals to 0.2. The
mating process of the two parents produces an offspring of two
new individuals who replace the parents in the next generation.

An example of an evolved genome for the best resulting
individual is presented in Table II. The fitness score s and all
objective scores with their respective weights for calculating
s are in Table III.

With the genome or probabilities of the eight different
neighborhood patterns of the best evolved individual, we can
produce the log-log plots of the probability distribution of
avalanche size and duration for the states zero and one. Such
plots are depicted in Fig. 4. The p-value of goodness-of-fit
test is calculated using 1,000 randomly generated data with
10,000 samples applying the power-law exponent α̂ estimated
by maximum likelihood estimation method with minimum x
of the distribution fixed to 1. The Fig. 4a and Fig. 4b show
the avalanche size and duration for the state 0 or black. They
present distributions that are not a power-law because they

TABLE II
BEST INDIVIDUAL

Neighborhood N(ci,t) Probability p
(0,0,0) 0.10300948029035227
(0,0,1) 0.5367869451270947
(0,1,0) 0.2167946269388179
(0,1,1) 0.3934686667827154
(1,0,0) 0.6798368229670028
(1,0,1) 0.17545801387723042
(1,1,0) 0.724778917324477
(1,1,1) 1.0

TABLE III
FITNESS SCORE OF THE BEST INDIVIDUAL

Objective Score
10 ∗Ds 9.655719560019996
10 ∗R2

s 8.832520186440096
0.1 ∗ α̂s 0.18022617747972156
10 ∗ uniques 10.0
10 ∗ bins 9.780749590096136

s 38.44921551403595

do not fit the power-law estimation (the black dashed line).
Moreover, the p-value is equal to 0.0 which proves that those
two distributions are not a power-law. The Fig. 4c and Fig. 4d
present the avalanche size and duration for the state 1 or white.
Those distributions follow a power-law because, visually, the
estimated power-law distribution fits the empirical probability
distribution and, quantitatively, the p-value is equal to 1.0
which means that 100% of the KS statistic of the generated
data is greater than the KS statistic of the empirical distribution
of avalanche size and duration of state 1. The number of
samples in those distributions (62731 for avalanche size and
52902 for avalanche duration) confirms that the p-value is
trustworthy. Such power-law analysis is performed by utilizing
the powerlaw Python library [30].

A sample of the resulting stochastic elementary cellular
automaton of the best individual is illustrated in Fig. 5. This
CA, as seen, has no static nor periodic states, and also no
random evolution of its states. So, this dynamical system is
between a strongly and weakly coupled substrate. Therefore,
the CA presents patterns or structures that mean the cells are
interdependent in this system.

V. CONCLUSION

In this paper, we present an alternative method to implement
a cellular automaton. This allows any CA to be computed as an
artificial neural network. Therefore, this will help to extend the
CA implementation to more complex dynamical systems, such
as echo state networks and liquid state machines. Furthermore,
the EvoDynamic framework is built on a deep learning library,
TensorFlow, which permits the acceleration of the execution
when applied on parallel computational platforms with fast
CPUs and GPUs. The planned future implementations of Evo-
Dynamic are presented and discussed. The state trajectory is an
important feature for the targeted future tasks. The evolution



(a) Avalanche size of state 0 (b) Avalanche duration of state 0

(c) Avalanche size of state 1 (d) Avalanche duration of state 1

Fig. 4. Avalanche size and duration of the two states 0 and 1 of the evolved stochastic elementary CA.

towards self-organized criticality of stochastic CA is showing
promising results. The future work for the CA implementation
is to develop algorithms to procedurally generate adjacency
matrices for 3D and multidimensional cellular automata with
different types of cells, such as the cells with hexagonal shape.

ACKNOWLEDGMENTS

We thank Kristine Heiney for thoughtful discussions about
self-organized criticality. This work was supported by Nor-
wegian Research Council SOCRATES project (grant number
270961).

REFERENCES

[1] S. Wolfram, A new kind of science. Wolfram media Champaign, IL,
2002, vol. 5.

[2] P. Rendell, Turing Universality of the Game of Life. London:
Springer London, 2002, pp. 513–539. [Online]. Available: https:
//doi.org/10.1007/978-1-4471-0129-1 18

[3] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
Proceedings of the 15th European Symposium on Artificial Neural
Networks. p. 471-482 2007, 2007, pp. 471–482.

[4] Z. Konkoli, S. Nichele, M. Dale, and S. Stepney, Reservoir
Computing with Computational Matter. Cham: Springer International
Publishing, 2018, pp. 269–293. [Online]. Available: https://doi.org/10.
1007/978-3-319-65826-1 14

[5] C. G. Langton, “Computation at the edge of chaos: Phase transitions
and emergent computation,” Physica D: Nonlinear Phenomena,
vol. 42, no. 1, pp. 12 – 37, 1990. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/016727899090064V

[6] S. Nichele and M. S. Gundersen, “Reservoir computing using
nonuniform binary cellular automata,” Complex Systems, vol. 26, no. 3,
pp. 225–245, Sep. 2017. [Online]. Available: https://doi.org/10.25088/
complexsystems.26.3.225

[7] S. Nichele and A. Molund, “Deep learning with cellular automaton-
based reservoir computing,” Complex Systems, vol. 26, no. 4, pp.
319–339, Dec. 2017. [Online]. Available: https://doi.org/10.25088/
complexsystems.26.4.319

[8] K. Kaneko, “Overview of coupled map lattices,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 2, no. 3, pp. 279–282, 1992.

https://doi.org/10.1007/978-1-4471-0129-1_18
https://doi.org/10.1007/978-1-4471-0129-1_18
https://doi.org/10.1007/978-3-319-65826-1_14
https://doi.org/10.1007/978-3-319-65826-1_14
http://www.sciencedirect.com/science/article/pii/016727899090064V
http://www.sciencedirect.com/science/article/pii/016727899090064V
https://doi.org/10.25088/complexsystems.26.3.225
https://doi.org/10.25088/complexsystems.26.3.225
https://doi.org/10.25088/complexsystems.26.4.319
https://doi.org/10.25088/complexsystems.26.4.319


Fig. 5. Sample of the best evolved stochastic elementary CA of 200 cells
(horizontal axis) randomly initialized with wrapped boundaries through 400
time-steps (vertical axis).

[9] C. Gershenson, “Introduction to random boolean networks,” arXiv
preprint nlin/0408006, 2004.

[10] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science,
vol. 304, no. 5667, pp. 78–80, 2004. [Online]. Available: https:
//science.sciencemag.org/content/304/5667/78

[11] W. Maass and H. Markram, “On the computational power of
circuits of spiking neurons,” Journal of Computer and System
Sciences, vol. 69, no. 4, pp. 593 – 616, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000004000406

[12] S. Nichele and G. Tufte, “Trajectories and attractors as specification for
the evolution of behaviour in cellular automata,” in IEEE Congress on

Evolutionary Computation, July 2010, pp. 1–8.
[13] S. Nichele and G. Tufte, “Genome parameters as information to forecast

emergent developmental behaviors,” in Unconventional Computation
and Natural Computation, J. Durand-Lose and N. Jonoska, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 186–197.

[14] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: An
explanation of the 1/f noise,” Phys. Rev. Lett., vol. 59, pp. 381–384, Jul
1987. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
59.381

[15] G. Tanaka, T. Yamane, J. B. Hroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent
advances in physical reservoir computing: A review,” Neural
Networks, vol. 115, pp. 100 – 123, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608019300784

[16] P. Aaser, M. Knudsen, O. H. Ramstad, R. van de Wijdeven, S. Nichele,
I. Sandvig, G. Tufte, U. Stefan Bauer, . Halaas, S. Hendseth,
A. Sandvig, and V. Valderhaug, “Towards making a cyborg: A
closed-loop reservoir-neuro system,” The 2018 Conference on Artificial
Life: A Hybrid of the European Conference on Artificial Life (ECAL)
and the International Conference on the Synthesis and Simulation
of Living Systems (ALIFE), no. 29, pp. 430–437, 2017. [Online].
Available: https://www.mitpressjournals.org/doi/abs/10.1162/isal a 072

[17] H. Broersma, J. F. Miller, and S. Nichele, Computational Matter:
Evolving Computational Functions in Nanoscale Materials. Cham:
Springer International Publishing, 2017, pp. 397–428. [Online].
Available: https://doi.org/10.1007/978-3-319-33921-4 16

[18] S. Nichele, S. S. Farstad, and G. Tufte, “Universality of evolved
cellular automata in-materio.” International Journal of Unconventional
Computing, vol. 13, no. 1, 2017.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016, pp. 265–283. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[20] J. H. Jensen, E. Folven, and G. Tufte, “Computation in artificial
spin ice,” The 2018 Conference on Artificial Life: A Hybrid
of the European Conference on Artificial Life (ECAL) and the
International Conference on the Synthesis and Simulation of Living
Systems (ALIFE), no. 30, pp. 15–22, 2018. [Online]. Available:
https://www.mitpressjournals.org/doi/abs/10.1162/isal a 00011

[21] SOCRATES Self-Organizing Computational substRATES. [Online].
Available: https://www.ntnu.edu/socrates

[22] “Conway’s game of life implemented using tensorflow 2d convolution
function,” 2016. [Online]. Available: https://github.com/conceptacid/
conv2d life

[23] TensorFlow, “tf.sparse.sparse dense matmul — tensorflow core r1.14
— tensorflow.” [Online]. Available: https://www.tensorflow.org/api
docs/python/tf/sparse/sparse dense matmul

[24] T. Toffoli and N. Margolus, Cellular automata machines: a new envi-
ronment for modeling. MIT press, 1987.

[25] J. M. Baetens, W. Van der Meeren, and B. De Baets, “On the dynamics of
stochastic elementary cellular automata.” Journal of Cellular Automata,
vol. 12, 2016.

[26] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.

[27] M. L. Goldstein, S. A. Morris, and G. G. Yen, “Problems with fitting
to the power-law distribution,” The European Physical Journal B-
Condensed Matter and Complex Systems, vol. 41, no. 2, pp. 255–258,
2004.

[28] S. Wright, “Correlation and causation,” Journal of Agricultural Re-
search, vol. 20, pp. 557–580, 1921.

[29] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of genetic algo-
rithms. Elsevier, 1991, vol. 1, pp. 69–93.

[30] J. Alstott, E. Bullmore, and D. Plenz, “powerlaw: A python
package for analysis of heavy-tailed distributions,” PLOS ONE,
vol. 9, no. 1, pp. 1–11, 01 2014. [Online]. Available: https:
//doi.org/10.1371/journal.pone.0085777

https://science.sciencemag.org/content/304/5667/78
https://science.sciencemag.org/content/304/5667/78
http://www.sciencedirect.com/science/article/pii/S0022000004000406
https://link.aps.org/doi/10.1103/PhysRevLett.59.381
https://link.aps.org/doi/10.1103/PhysRevLett.59.381
http://www.sciencedirect.com/science/article/pii/S0893608019300784
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_072
https://doi.org/10.1007/978-3-319-33921-4_16
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00011
https://www.ntnu.edu/socrates
https://github.com/conceptacid/conv2d_life
https://github.com/conceptacid/conv2d_life
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1371/journal.pone.0085777

