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Abstract—This paper introduces non-intrusive Edge Observ-
ability Stack(NEOS) that simplifies the process of collecting,
analyzing, and visualizing telemetry data. It reduces the amount
of code instrumentation needed to collect telemetry data up to
80% and offers extensive system and application observability.
This is done by offering a set of user-friendly abstractions and
easy-to-use APIs, which minimizes the effort needed for manual
instrumentation of application code. NEOS leverages popular
open-source tools such as Grafana, Prometheus, Jaeger, and
Loki, for the visualization of telemetry data. Furthermore, NEOS
security is based on the zero-trust model, which means that
we assume that no user or system can be trusted by default.
The security of every connection is done by employing mutual
Transport Layer Security (mTLS) to prevent unauthorized access
and safeguard sensitive data. Experiments were conducted to
assess the efficiency of the stack by comparing the time and
effort needed to instrument code with and without the stack. The
outcomes showed a considerable reduction in instrumentation
code and enhanced telemetry data. NEOS can be used by
product managers, engineering and operation team for system
and application health monitoring, real-time business insights,
and debugging system.

Keywords—Observability, Edge Observability Stack, moni-
toring, zero-trust security model, one-stop solution.

I. INTRODUCTION

Distributed edge systems need comprehensive observabil-
ity to fulfill the requirement for high system availability
and performance. However, the growing complexity of these
systems has made observability an increasingly challenging
discipline. In the absence of a comprehensive observability
stack, observing distributed systems can be a time-consuming
and error-prone process. Developers and system administrators
will have to manually instrument code to collect telemetry data,
which can be challenging and time-consuming. Furthermore,
without adequate visualization tools, interpreting the collected
data and finding issues can be an arduous task.

The modern-day challenges of observability include deal-
ing with the complex and distributed nature of modern appli-
cations, which are often built using microservices, containers,
and cloud platforms. This makes it difficult to trace requests
through multiple services and find the root cause of issues.

Additionally, managing the large volume of data generated by
these systems can be a challenge, and without proper tools,
interpreting the data can be overwhelming.

To address these challenges, we present the Edge Observ-
ability Stack, a complete observability stack that significantly
reduces the amount of code instrumentation needed to collect
telemetry data while also offering comprehensive system and
application and system observability with a zero trust security
model. Our Stack provides a set of easy-to-use APIs and
user-friendly abstractions that eliminate the need for manual
instrumentation of application code, making it an effective tool
for simplifying the collection of telemetry data.

NEOS is designed to be platform-agnostic, working seam-
lessly on both Linux and Windows operating systems. To
reduce onboarding efforts, we have developed containerized
as well as native host implementations. This ensures that our
stack can be integrated seamlessly into a wide variety of
software environments, and it includes popular open-source
tools such as Grafana [1], Prometheus [2], Jaeger [3], and Loki
[4], all of which are integrated within the solution, eliminating
the need for manual installation and configuration making it
all-in-one solution for comprehensive system and application
observability.

Our Stack is based on Zero Trust Security model as it
ensures to authorize and authenticate every communicating
micro-services using SSL certificates and keys. Mutual Trans-
port Layer Security (mTLS) [5] is implemented for secure
communication between different components of Edge Observ-
ability Stack. This provides end-to-end encryption and ensures
that observability data is protected from unauthorized access.

NEOS provides real-time insights and data aggregation.
For example, Grafana provides real-time data visualization,
allowing developers and system administrators to monitor the
performance of their systems in real-time making it powerful
tool for optimizing system performance and identifying poten-
tial issues before they can impact users.

In the following sections, we will describe the design and
implementation of the Edge Observability Stack, evaluate its
effectiveness in reducing the amount of code instrumentation



needed, and show its capabilities for conducting comprehen-
sive observability of distributed systems.

II. PROPOSED METHODOLOGY

In recent years, application observability has become a
critical aspect of modern software development. It involves col-
lecting and analyzing data about the performance and behavior
of software applications to ensure that they are functioning
as intended. This data is then used to diagnose and resolve
issues, improve performance, and optimize resource utilization.
To achieve this, it is necessary to instrument the application
code with telemetry to provide visibility into the application’s
behavior and performance.

NEOS provides an application instrumentation library that
implements an easy-to-use wrapper around the Opentelemetry
metrics, traces, and logs APIs. This library is designed to
be lightweight and does not add significant overhead to the
application’s runtime. It can integrate seamlessly with the
application code and should not require significant changes to
the codebase. Using our APIs, users can easily create Open-
telemetry [6] instances required to send application telemetry
data. This wrapper significantly reduces the amount of code
instrumentation required to collect telemetry data, making it
simple and efficient to integrate into existing applications.
More details about it will be further discussed in the imple-
mentation section.

Instrumented applications emits observability signals(i.e
trace, metrics, log), which are transmitted to a centralized
location where it can be analyzed and visualized. This is
typically achieved using an Opentelemetry Collector [7], which
collects the telemetry data from various sources and sends
it to a destination such as a logging service or a metrics
aggregator. NEOS comes with pre-configured backends such
as Prometheus [2], Jaeger [3], and Loki [4] that are used
to visualize and store the collected data. Prometheus [2] is
primarily used for monitoring systems and application metrics,
while Jaeger is used to trace the performance of the system and
troubleshoot latency issues. Loki [4] is used to store and query
logs, providing a centralized location for application logs.

NEOS utilizes Grafana [1] as visualization tools for ob-

servability data. Our solution includes pre-configured Grafana
charts and dashboards that we have created for visualizing a
wide range of metrics and logs, such as system telemetry like
CPU usage, GPU frequency, memory used, disk used to name
a few. These dashboards are already included in our solution,
allowing developers and system administrators to quickly gain
insights into the health of their systems without having to
create their own dashboards.

Our observability stack is designed to simplify the de-
ployment process across different platforms. For Linux de-
ployment, we offer two versions: one for secure connections
and another for non-secure connections. Our stack leverages
Docker [8] containerization to package all the necessary com-
ponents, including the Opentelemetry collector [7], Telegraf
[9] for system telemetry, Intel xpumanager [10] for GPU
telemetry, Prometheus [2], Jaeger [3], and Grafana [1], into
a single docker-compose.yaml file. The configuration files for
all the tools are stored in a folder, which is volume-mounted

in Docker-compose [11]. To ensure secure connections, we
provide a bash script that generates SSL [12] certificates.

For Windows deployment, our stack provides batch
scripts that run natively in the environment. The scripts in-
clude download-observability.cmd to download all the nec-
essary tools and to configure all the tool configuration
files, start-observability.cmd to start all the tools, and stop-
observability.cmd to stop all the tools. Here too, to ensure
secure connections, we have provided script that generates SSL
certificates. Like the Linux version, we also offer two versions
for Windows: one with secure connections and another for non-
secure connections.

In addition to the ease of deployment of our stack in Linux
and windows, we have ensured that all configurations of the
tools are optimized to work well with one another. This is
crucial for providing a seamless and efficient user experience,
especially in complex distribution systems. For instance, if a
sample contains all three components - metrics, traces, and
logs - our stack enables users to jump from one trace to its
corresponding log, simplifying the process of troubleshooting
issues.

Figure 1: Edge Observability Stack Components



Moreover, the stack is highly customizable, allowing de-
velopers and system administrators to create their dashboards
and alerts to monitor specific metrics and logs.

Figure 1 shows the components and flow chart of our
observability solution depicting each connection between dif-
ferent components.All these components in detail are discussed
in further sections.

NEOS is a powerful tool for developers and system ad-
ministrators seeking to improve observability and troubleshoot
issues in complex systems while maintaining a secure and non-
intrusive environment.

III. IMPLEMENTATION AND DETAILS OF
COMPONENTS

Here is a description of the system based on the sequence
diagram in Figure 2. The system is comprised of a client
application that is being instrumented using the Application
Instrumentation Library for performance monitoring and data
collection. The Application Instrumentation library is designed
with a pure abstract class and base class of MetricsImpl,
TracesImpl, LogsImpl classes which have MetricsImpl, Traces-
Impl, and LogsImpl APIs responsible for sending application
data like metrics, traces and logs to the OpenTelemetry col-
lector [7]. Telegraf [9] is utilized to collect system telemetry
data such as CPU, memory, and disk usage, as well as GPU
data, which is fed in from Xpumanager [10]. Once the data is
collected, the collector is responsible for separating out met-
rics, traces and logs based on the configuration outlined in its
configuration file. The data is then sent to Prometheus, Jaeger,
and Loki tools via respective exporters from opentelemetry.
Prometheus [2], Jaeger [3], and Loki [4] systems are used to
store and manipulate collected. Finally, Grafana [1] is used
to visualize this metrics via Prometheus [13], Jaeger [14] and
Loki [15] datasources or by creating charts and dashboards
of these collected metrics. In summary, the system’s primary
goal is to collect, analyze, and visualize application as well as
system telemetry data, storing it in various systems for ease
of use and analysis.

Each component of the system is explained in greater detail
in the following sections, providing more in-depth information
about how they work together to accomplish the goal of
collecting, analyzing, and visualizing application and system
telemetry data.

A. Application Instrumentation Library

The Application Instrumentation Client Library is designed
to provide an easy-to-use interface for developers to instrument
their code with metrics, traces, and logs. Design of this library
address the need of an application to configure instrumentation
of component at a subcomponent level which is a common
requirement in instrumentation use cases. To address this,
the Edge Instrumentation library adopts a two-part design,
consisting of a static and dynamic library. The application
subcomponent links with the static library, which includes their
custom instrumentation configuration. The dynamic library,
which is loaded by the static library, handles the common
communication channel with the instrumentation collector [7].
This approach allows for per-component configuration, while

minimizing the number of communication channels on a per-
process basis.

To ensure the compatibility of the instrumentation library
with other components, the dynamic library is loaded with
custom-loaded properties that encapsulate the instrumentation
library symbols from the rest of the application component.
This is particularly important since the instrumentation library
uses a protobuf [16] component for serializing and deserializ-
ing data, which is commonly used by inferencing frameworks
like tensorflow [17]. Exposing the symbols of the instrumen-
tation library can cause problems if there is a mismatch in
the version of protobuf [16] used by these components. The
dynamic library approach with custom loader flags effectively
solves this problem by isolating the instrumentation-specific
symbol from the global symbol space.

This library comprises Metrics, Traces and Logs classes
which have APIs such MericsImpl, TraceImpl and LogsImpl
API providing specific functionality for their respective in-
strumentation type. For example, the Metrics class provides
methods for recording metrics, while the Traces class provides
methods for recording traces. Another important class in the
Application Instrumentation Library is the Client implementa-
tion class. This class is responsible for initializing the library
and creating instances of the concrete classes that are inherited
from base class. Application Instrumentation Library also
provides several macros for logging messages of different
severity levels, such as _INFO, _DEBUG, _WARN, _TRACE,
_ERROR, and _FATAL. These macros are designed to be easy
to use and provide a consistent format for logging messages.

Overall, the Application Instrumentation Library is a pow-
erful and flexible library for instrumenting code with metrics,
traces, and logs. It provides a clean and easy-to-use interface,
while also allowing for customization and extensibility through
its use of abstract classes and inheritance.

B. Opentelemetry Collector

Opentelemetry Collector is a vendor-agnostic, scalable,
and customizable telemetry data collector that can receive,
process, and export telemetry data from multiple sources to
multiple destinations. The Opentelemetry Collector [7] archi-
tecture consists of four main components: receivers, proces-
sors, exporters, and extensions. The receiver component is
responsible for ingesting telemetry data from various sources,
including agents, libraries, and third-party services. Receivers
can support various data protocols and formats, such as Open-
telemetry Protocol (OTLP), Prometheus etc. Here, we have
used OTLP receiver which have support for http and grpc
protocol. The processor component is responsible for filtering,
transforming, and enriching telemetry data before forwarding
it to exporters. Processors can be used to extract additional
metadata, redact sensitive data, and perform sampling and
aggregation on the incoming data stream. Here, we have used
a batch processor. The exporter component is responsible
for sending the processed telemetry data to external systems,
such as observability platforms, logging systems, and tracing
analysis tools. Exporters support various data formats, such
as JSON, Protocol Buffers, and Prometheus [2] exposition
formats. Here we are using Prometheus exporter for metrics,
Jaeger exporter for traces and Loki exporter for logs including



logging exporter enabled in all three to see logs on console as
well.

The Opentelemetry Collector configuration is defined in a

YAML-based configuration file. This file specifies the different
components that make up the Opentelemetry Collector [7],
their properties, and their relationships.

Figure 2: Sequence Diagram of Edge Observability Stack

For Application telemetry data, in our Application Instru-
mentation Library, we provide three instrumentation classes for
Metrics, Traces, and Logs. These classes allow applications
to send telemetry data to an Opentelemetry collector. For
example, in our Logs instrumentation class, we initialize Open-
telemetry instances depending on the type of exporter specified
by the user with the endpoint specified in the instrumentation
library configuration class. This exporter type is passed to the
library as an environment variable. In this Logs instrumentation
class, we initialize opentelemetry all instances such as exporter,
processor, and provider necessary to send application telemetry
logs to opentelemetry collector. Similar processes we are
following in metrics and traces instrumentation classes for
application telemetry data.

For System telemetry data we have used telegraf. Telegraf
[9] is an open-source agent that collects, processes, and sends
system data to various outputs. Telegraf uses a plugin-driven
architecture, which allows it to gather data from a wide range
of sources and formats. To collect system data, Telegraf comes
with a set of built-in plugins, which can be configured in the
telegraf.conf configuration file. These plugins include system
metrics such as CPU, memory, disk usage, network traffic, and
more. Telegraf can also be extended with third-party plugins,
which can provide additional functionality, such as monitoring
specific applications or devices.

Once Telegraf [9] has collected the system data, it can send
it to various outputs using its output plugins. Here, we have set
output plugin as opentelemetry [6] so that all collected system
telemetry data can be sent to opentelemetry collector [7].

Furthermore, for GPU telemetry, to enable the collection
and transmission of GPU telemetry data such as GPU fre-
quency, engine utilization, and other related metrics to the
collector, we have created a custom input plugin within Tele-
graf. This input plugin interacts with Intel XPUManager [10]
to collect data and utilizes an in-built accumulator to process
the collected data into a specified format before transmitting it
to the Opentelemetry collector [7]. This approach ensures that
the collected GPU telemetry data is processed and transmitted
in a consistent and standardized format, thereby improving the
overall efficiency and effectiveness of the data collection and
transmission process.

C. Prometheus

Prometheus [2] is a highly scalable and efficient tool for
collecting and storing time-series data, making it a powerful
resource for system administrators. It boasts a flexible pull-
based model for gathering metrics data, allowing it to scrape
targets such as applications, servers, and services. This ap-
proach makes it possible for users to monitor a vast range of
systems and applications with ease. One of the key advantages
of Prometheus is its query language, which enables users to
filter and aggregate metrics data in real-time. This capability
is invaluable for identifying trends, troubleshooting issues, and
optimizing performance. To configure Prometheus, we have
defined targets and endpoints in a YAML configuration file
called prometheus.yml. Targets refer to the endpoints from
which Prometheus collects metrics data, and each target has
a unique name (here otel_prom) and set of labels that can
be used to filter and aggregate collected data. In our case,



the target is opentelemetry, and the endpoint is the same as
defined in the opentelemetry collector Prometheus exporter.
This configuration enables opentelemetry to export metrics
data into Prometheus. Prometheus UI, we have secured and
enabled user authentication using web.yml configuration file
which comprises of SSL certificate [12] (root, server certificate
and key) path data, username and password stored in hashed
for authentication. The data collected from each target is
stored in a time-series database, which is essential for efficient
analysis and observation.

D. Jaeger

Traces are sequences of events that occur during the
execution of an application, such as a request being
processed, or a database query being executed. Jaeger [3]
is an open-source distributed tracing system that is widely

used to monitor and troubleshoot applications. With Jaeger,
developers and system administrators can gain insights
into the performance of their applications by collecting,
storing, and analyzing traces. Jaeger provides several useful
features for working with traces. One of the key features
is its ability to trace requests across multiple services and
systems. This is particularly useful for distributed applications
that are composed of multiple microservices. Another
useful feature of Jaeger is its ability to integrate with other
monitoring and observability tools, such as Prometheus [2]
and Grafana [1]. Here, from opentelemetry collector [7]
we send traces at jaeger pre-confined protocol port (http or
grpc) and via secure channel. Jaeger provides flags such as
“–collector.grpc.tls.enabled” to enable grpc protocol to receive
data “–collector.grpc.tls.cert” and “–collector.grpc.tls.key” to
enable security over its UI and data transmission channels.

Figure 3: System Metrics Gauge View in Grafana

E. Loki

Loki [4] is a horizontally scalable, universally available,
multi-tenant log aggregation system inspired by Prometheus
[2]. It is designed to handle high-volume, high-throughput
logging data, and provides a powerful query language for
filtering and aggregating log data in real-time. One of the key
benefits of Loki is that it uses a streaming architecture, which
means that log data is processed and indexed in real-time,
without the need for batch processing or indexing. Loki is
built on top of the same infrastructure as Prometheus, which
means that it shares many of the same benefits, such as a pow-
erful query language and a scalable, distributed architecture.
Loki also integrates seamlessly with other components of the
Prometheus ecosystem, such as Grafana [1], which makes it
easy to build powerful, real-time log dashboards. Here, we are
mounting Loki endpoint for collecting logs in opentelemetry
[7] config.yaml. Loki does not have mTLS [5] supported so we
are using Nginx [18] to redirect http request to https to enable
secure connection as our solution follows zero-trust security
model.

F. Grafana

We have chosen Grafana [1] as our visualization tool and
it has inbuilt support to add Prometheus [13], Jaeger [14],
and Loki [15] as data sources. In these data sources we have
mentioned all details of tools such as server details, end-
points, ssl certificate [12], service names etc. required to build
connection with these tools. We have designed customized
dashboards with dedicated charts for CPU and GPU utilization,
memory, and disk usage, which can be further modified based
on the user’s requirements. These datasources and dashboards
are mounted to Grafana via docker [8] volumes in Linux
environment and copy-paste these files at location in windows
via script. To retrieve metrics data, we are using PromQL [19]
queries, for instance, the CPU utilization is calculated using
simple query ’100 - max(otel_prom_cpu_idle_percentage)’.
Here, otel_prom is the job name that we have assigned in
Prometheus to distinguish the data and ’cpu_idle_percentage’
is the system telemetry data obtained by Telegraf [9].

This system telemetry we have visualized in Grafana as
Gauge meter as shown in Figure 3. For logs, we have used
LogQL [20] queries to separate the severity, text, timestamp,
and other details, which are stored in separate columns. This



approach makes it easier to troubleshoot issues. For traces, we
are visualizing distributed traces according to the services and
microservices invoked. Figure 4 shows the distributed trace
view of sample_traces application depicting how much time
each request took (server, client-server, server-request). Figure
5 shows the detailed view of request showing information like
its start time, time taken by this request etc. as visualized in
Grafana.

Additionally, we have implemented an inter-jumping fea-
ture that allows users to move seamlessly from logs to traces at

a particular instance. Grafana does not have mTLS [5] support
thus, enabling it via nginx. Nginx [18] is used as a redirecting
tool in our edge observability stack to redirect http request to
https via its configuration file. Grafana [1] tool we can open
on any browser.

By integrating all these features into our system, we
have provided an intuitive, secure, and efficient platform
for monitoring and managing large-scale applications.

Figure 4: Trace View in Grafana

Figure 5: In Distributed system particular service Trace View in Grafana

G. SSL Certificates for Secure Connection

To ensure secure communication between the different
components of our system, we have implemented SSL [12]
certificates using Python code and scripts. Our approach in-

volves using the cryptography library to generate both the root
certificate and tool certificates. To generate the root certificate,
we have written a generate-ca.py script that uses the cryptog-
raphy.x509 [21] module to create a self-signed root certificate.



We specify the subject name of the root certificate using
the NameOID class and set the basicConstraints extension to
indicate that the certificate is a CA. To generate certificates for
each tool, we use the generate-certs.py script, which generates
a certificate signing request (CSR) for each tool and signs it is
using the root certificate. We set the subject name of the cer-
tificate using the NameOID class and set the subjectAltName
extension to include the hostname or IP address of the tool. To
streamline the process for users, we have created a generate-
certificates.sh script that automates the process of generating
SSL certificates. All the required tools and dependencies are
stored in a dedicated folder for easy access. By implementing
SSL certificates, we can ensure that communication between
the different components of our system is encrypted and secure
thus providing zero-trust security model in our observability
stack.

H. Docker Containerization

In our Linux-based system, we are utilizing Docker [8]
containerization to deploy various tools for monitoring and
analysis. To facilitate this, we are utilizing images for each
tool, apart from Telegraf. The images we are using for Open-
telemetry [6], Grafana [1], Prometheus [2], Jaeger [3], Loki
[4], and Xpumanager [10] are obtained from Docker Hub.
For Telegraf, we created a custom image using a Docker
file to incorporate a custom-built GPU input plugin. Docker
provides us with an effortless way to build and distribute
images across different systems, ensuring consistency and
portability. To ensure that the configuration files and necessary
files for each tool are available within the container, we used
Docker volumes to mount these files with read-only access.
By mounting the files using volumes, we can ensure that the
data persists even when the container is destroyed, and we
can keep the configuration files separate from the container
image. Additionally, we mounted all the certificates required
for secure connections with read-only access, ensuring that the
security of the system is maintained. One of the key benefits
of using Docker for containerization is that it allows us to
package an entire application or service into a single container.
This makes it easy to move the application between different
environments or hosts, without worrying about compatibility
issues. In our implementation, we used Docker Compose [11]
(docker-compose.yaml) to define and run the containers for all
the tools required. Docker Compose provides a straightforward
way to define multi-container applications, with the ability to
scale up or down as required. By using Docker Compose [11],
we can start and stop all the containers with a single command,
simplifying the management and deployment of the system.
We are also providing two versions of our solution, one with
security and one without security.

IV. EXPERIMENTAL SETUP AND ANALYZING
DATA

A. Experimental Setup

To comprehensively evaluate the effectiveness of our solu-
tion, we designed and implemented a range of sample applica-
tions, covering metrics, traces, and logs. We also instrumented
a media application that is specifically focused on video
inferencing. This application is used to create optimized end-
to-end pipelines across multiple media frameworks, including

GStreamer, FFMPEG, and Windows Media Foundation. With
the help of our library, we were able to trace the fps and latency
of this video inferencing application.

We have successfully integrated our library with the FPS
data recorder and Latency data recorder code, enabling them
to send data to our observability stack, as illustrated in Figure
6 in Linux environment. By instrumenting these components
with our library, we have enhanced the monitoring capabilities
of our solution and enabled the tracking of critical performance
metrics such as FPS and latency in real-time.

Figure 6 : Media Application Instrumentation Diagram

In addition to these sample applications, we conducted bench-
mark tests with multiple pipelines, measuring performance
metrics such as CPU time, allocation size, module running,
and microstructure usage. These tests allowed us to identify
areas for improvement and ensure that our solution can handle
enormous amounts of data and scale effectively in production
environments.

Our benchmark tests also included testing the efficiency of
our media application. We ran tests to determine how much
load the application can handle before the fps and latency
begins to drop. These tests have provided us with valuable
insights into the capabilities of our solution and how it can be
utilized for monitoring and troubleshooting applications.

Overall, our sample applications and benchmark tests have
demonstrated the effectiveness and efficiency of our solution
for collecting, analyzing, and visualizing metrics, traces, and
logs data in a containerized [8] environment. These results
have important implications for organizations that are looking
to implement similar solutions, particularly those that require
video inferencing capabilities.

B. Analyzing Data

After integrating our library with the media application’s
FPS Data Recorder and Latency Data Recorder code, we were
able to receive real-time data for both metrics. Specifically,
we received data for the current FPS and Latency, as well as
average FPS and Latency data. To gain further insights and
make the data more interpretable, we utilized Grafana [1] to
visualize the data as shown in Figure 7 and Figure 8.

We created an observability dashboard that consists
of multiple charts for each metric. For FPS, we created
four different charts that display the current FPS data as
a time-series, the current FPS data in a histogram format,
the average FPS Data as time-series and the average FPS
Data is bar-chart format. These chart in Figure 7 provide
a comprehensive overview of the FPS data and enable



Figure 7: FPS Data as Visualized in Grafana

Figure 8: Latency Data as Visualized in Grafana

The chart of current FPS as time-series depicts the variation of
FPS over time, showing how the FPS changes during various
parts of the media application execution. This chart is useful
in identifying any trends or patterns in the FPS data, such
as spikes or drops in FPS during operations or phases of the
application. On the other hand, the histogram of current FPS
data provides a distribution of FPS values, which could help in
identifying any outliers or abnormalities in the data. It provides
insight into the most common FPS values and their frequency
of occurrence, which are useful in optimizing the application’s
performance. The chart of Average FPS as a time-series depicts
the average FPS of the media application over a period. It
provides insight into the overall performance of the application

and how it fluctuates over time. The bar chart of Average FPS
is used to compare the average FPS of the application across
different runs or configurations. It is useful for identifying
performance bottlenecks or improvements in the application.
The decreasing trend in average FPS values indicates that the
application is experiencing some performance issues, such as
high CPU usage or memory constraints, as it processes more
videos which developers need to check.

The charts of current Latency as time-series and histogram
depict the distribution and variation of the latency values
observed during the media application’s execution as shown in
Figure 8. The time-series chart shows how the latency values
change over time, which can help identify trends and patterns



in the data. The histogram, on the other hand, shows the
frequency of different latency values, providing insight into
the distribution of the latency values and any outliers that may
exist. Overall, these charts can help developers understand
the performance of the media application and identify areas
for improvement, such as reducing latency or addressing any
outliers.

The charts of Average Latency as time-series and bar-chart
depict the performance of the media application in terms of
how much time it takes to process each frame. The time-series
chart shows the trend of the average latency over time, which
helps in identifying any spikes or drops in performance. The
bar-chart shows the distribution of the latency values, which
gives an idea about the overall latency of the application. A
lower value in the latency charts would indicate that the media
application is performing well, while a higher value would
indicate that there is room for improvement.

V. RESULTS

In this section, we will present the results of our perfor-
mance monitoring of two applications: our sample examples
and the media application. We instrumented both applications
using our application instrumentation library, which allowed us
to collect data on CPU time and memory usage during their
execution. By measuring the extra CPU time or memory usage
taken by each application due to the instrumentation, we were
able to assess the impact of our monitoring on the performance
of the applications.

We collected data, during which time we captured and
analyzed various performance metrics, such as response times,
resource usage, CPU time and memory usage. To ensure the
accuracy and reliability of our measurements, we used the
vtune profiler [22], a performance profiling tool that allowed
us to capture detailed data on the applications’ resource usage.

VTune Profiler [22] is a performance profiling tool devel-
oped by Intel Corporation. It allows developers to analyze the
performance of their applications at various levels, including
CPU, memory, I/O, and threading. The tool can identify perfor-
mance bottlenecks and provide recommendations for optimiza-
tion. VTune Profiler [22] supports a wide range of platforms,
including Windows, Linux, and macOS. It can be used to
profile applications written in various programming languages,
such as C, C++, Fortran, and Python. The tool provides
several profiling modes, including hotspots analysis, which
identifies the most time-consuming parts of the application,
and concurrency analysis, which identifies threading issues and
synchronization problems. It also provides a memory analysis
mode that can help identify memory leaks and inefficient
memory usage.

Before proceeding with the actual testing, it is important to
provide information about the Linux CPU on which these tests
were performed. The Linux system used in our experiments
had an x86_64 architecture and supported both 32-bit and 64-
bit CPU op-modes. The system had a Little-Endian byte order
and supported 39 bits of physical address space and 48 bits
of virtual address space. The CPU used in our system was
an Intel(R) Xeon(R) CPU E3-1275 v5 @ 3.60GHz, with 8
physical cores and 16 logical threads (2 threads per core).
Each physical core had access to a 128 KiB L1 data cache and

a 128 KiB L1 instruction cache, while the entire CPU had a
shared 1 MiB L2 cache and an 8 MiB L3 cache. The CPU also
supported virtualization through VT-x technology. To ensure
consistent and reliable testing results, we ran our experiments
on all 8 physical cores of the CPU, which were available for
testing. We also used the vtune profiler [22] to monitor the
CPU usage and performance metrics during the experiments.
To ensure consistent and reliable testing results, we ran our
experiments on all 8 physical cores of the CPU, which were
available for testing. We also used the vtune profiler to monitor
the CPU usage and other performance metrics during the
experiments. By providing this information, we can ensure that
the reader has a clear understanding of the CPU environment
in which the tests were performed and can better interpret the
results obtained.

Now let’s move to the results section. To evaluate the
effectiveness of our instrumentation approach, we conducted
experiments on three sample applications. The first sample ap-
plication consisted of basic instrumentation of logs, the second
sample application consisted of instrumentation of metrics, and
the third sample application consisted of instrumentation of
traces which also includes multithreaded traces.

We conducted CPU and memory usage analyses on our
logs sample application using instrumentation and without
instrumentation. With instrumentation, we found that the CPU
time was 24 microseconds out of a total elapsed time of 162
microseconds, indicating a microarchitecture usage of 37.5%
with a CPI (Cycle per instruction) of 1.143.

Table 1 : Memory Consumption for logs_sample

Additionally, the memory consumption analysis showed an
allocation size of 1.1 MB and a deallocation size of 426.2 KB.
Memory consumption w.r.t. to our application instrumentation
library APIs which are given in below table (Table 1). These
APIs are instrumentation initialization APIs responsible for
initializing our instrumentation process.

On the other hand, without instrumentation, we observed
a CPU time of only 2 microseconds out of a total elapsed
time of 5 microseconds, indicating a microarchitecture usage
of 0.00% with a CPI of 2. The memory consumption analysis
showed an allocation size of 73.2 KB. These results suggest
that instrumentation can have a significant impact on both CPU
time and memory consumption.

Similarly, In our metrics sample, we conducted the same
analysis as we did for the logs sample. We found that with



instrumentation, the CPU time was 23 microseconds out of a
total elapsed time of 155 microseconds. The microarchitecture
usage was 0.00% with a CPI of 1.143. Additionally, the
memory consumption analysis showed an allocation size of
1.1 MB and a deallocation size of 426.2 KB.

Table 2 : Memory Consumption for metrics_sample

Memory consumption w.r.t. to our application instrumentation
library APIs which are given in below table (Table 2). These
APIs are instrumentation initialization APIs responsible for
initializing our instrumentation process.

However, without instrumentation, we observed that the
CPU time was only 1 microsecond out of a total elapsed time
of 2 microseconds. This indicates that the microarchitecture
usage was also 0.00%, but the CPI was 1. The memory
consumption analysis showed an allocation size of 73.2 KB.

Table 3 : Memory Consumption for trace_sample

Similarly, In our traces sample, we conducted the same
analysis as we did for the logs sample. We found that with
instrumentation, the CPU time was 23 microseconds out of a
total elapsed time of 172 microseconds. The microarchitecture
usage was 13.9% with a CPI of 1.2. Additionally, the memory
consumption analysis showed an allocation size of 1.1 MB and
a deallocation size of 426.2 KB. Memory consumption w.r.t. to
our application instrumentation library APIs which are given
in table (Table 3). These APIs are instrumentation initialization
APIs responsible for initializing our instrumentation process.

However, without instrumentation, we observed that the
CPU time was only 1 microsecond out of a total elapsed

time of 2 microseconds. The microarchitecture usage was also
0.00%, but the CPI was 2. The memory consumption analysis
showed an allocation size of 73.2 KB.

Moreover, for multithreaded traces sample with instrumen-
tation, the CPU time was 32 microseconds which is quite
greater than as compared to simple traces. This could be due to
the overhead of managing multiple threads and the additional
synchronization required to ensure correct execution. Microar-
chitecture usage was also higher at 36.5%, indicating that the
processor was working harder to execute the code with a CPI
of 1.6. The CPI of 1.6 suggests that more instructions were
being executed per cycle, possibly due to more efficient use of
the processor’s resources. The memory consumption analysis
showed an allocation size of 418.6KB and a deallocation size
of 104.7KB, indicating that more memory was being freed up
during the execution of the program.

Overall, these results suggest that the use of multithreading
in combination with instrumentation can have a significant im-
pact on both CPU time and memory consumption and careful
consideration must be taken when designing and implementing
multithreaded applications to ensure optimal performance.

To further analyze the impact of instrumentation on the me-
dia application, we can look at the specific numbers obtained
from the profiling results. With instrumentation, the CPU time
taken by the application is 8.1 seconds out of a total elapsed
time of 49.842 seconds. Additionally, the microarchitecture
usage is reported to be 9.8% and CPI value of 3.876.

Table 4 : CPU analysis of media Application

To get a more detailed view of the impact of instrumen-
tation on the media application, Table 4 is included. This
snapshot shows the microarchitecture usage and CPU time
taken by the application instrumentation library. By analyzing
this data, we can identify specific areas of the code that may
be causing performance bottlenecks and potentially optimize
them to improve overall application performance.

Comparing the results of all three scenarios, we can see
that instrumentation can have a significant impact on both
CPU time and memory consumption. This is because when we
instrument an application, it adds additional code that needs to
be executed, which takes up CPU time and memory. However,
the benefits of instrumentation are also clear - it allows us to
gather valuable performance metrics that can help us optimize
and improve our applications. Therefore, it is important to
carefully consider the trade-offs between the benefits and costs
of instrumentation when performing performance analysis.



VI. CONCLUSION

To conclude, our paper has highlighted the challenges faced
by developers and system administrators when it comes to
observability of complex systems. The complexity of modern
distributed systems makes it difficult to collect, analyze, and
visualize telemetry data. We have proposed a solution NEOS to
these challenges by providing an easy-to-use instrumentation
library that simplifies the process of collecting telemetry data,
as well as a pre-configured observability stack that allows
for real-time insights and data aggregation. Furthermore, our
solution offers a streamlined deployment process for both
Linux and Windows, and all configurations of the tools are
optimized to work well with one another. This makes the user
experience seamless and efficient, especially in the complex
distributed systems. In our testing, we have found that our
instrumentation library is efficient in terms of execution time,
CPU time, and allocation time. Overall, our observability
solution simplifies the process of collecting, analyzing, and
visualizing telemetry data, and enables developers and system
administrators to focus on analyzing data and troubleshooting
issues. Our solution is a powerful tool for improving observ-
ability and troubleshooting issues in complex systems while
maintaining a secure and non-intrusive environment.

Disclaimer: By submitting this paper, the authors confirm
that the work presented is original and has not been previously
published, nor is it under consideration for publication else-
where. The authors acknowledge that Intel and its affiliates
are not responsible for the content of this paper, including
any errors or omissions, and make no warranties, express or
implied, as to the accuracy, reliability, or completeness of the
information presented.
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