
EasyChair Preprint
№ 4639

Extensions of Three-Valued Paraconsistent
Logics

Alexej Pynko

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 25, 2020



Extensions of three-valued paraconsistent logics
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We first prove any [conjunctive/disjunctive] 3-valued paracon-
sistent logic with subclassical negation (3VPLSN)’s being de-
fined by a unique{modulo isomorphism} [conjunctive/disjunc-
tive] 3-valued matrix and provide effective algebraic criteria of
their beingsubclassical|beingmaximallyparaconsistent|having
no consistent non-subclassical extension implying any [conjun-
ctive/disjunctive] 3VPLSN’s being subclassical if[f] its defin-
ing 3-valued matrix’s having a 2-valued submatrix|any conjunc-
tive/both disjunctive and subclassical/refutingDouble Negation
Law 3VPLSN’s being maximally paraconsistent|any conjuncti-
ve/disjunctive subclassical 3VPLSN’s having no consistent non-
subclassical extension. Next, any disjunctive 3VPLSN has no
proper non-classical disjunctive extension, any classical exten-
sion being disjunctive and relatively axiomatized byResolution
rule. Further, we provide an effective algebraic criterion of a
[subclassical] 3VPLSN with lattice conjunction and disjuncti-
on’s having no proper [consistent non-classical] extension but
that which is relatively axiomatized byEx Contradictione Quod-
libet rule. Finally, any disjunctive 3VPLSN with classically-va-
lued connectives has an infinite increasing chain of finitary ex-
tensions.
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1 INTRODUCTION

Appearance of any non-classical (in particular, many-valueed) logic inevitab-
ly raises the problems of studying both the logic itself and those related to
it (in particular, its extensions) with regard to such points as their (relative)
axiomatizations as well as sound and, especially, complete semantics. In this
connection, the [axiomatic] maximality of various kinds of the logic under
consideration — in the sense of absence of proper [axiomatic] extensions
satisfying a certain property held for the given logic — becomes especially
acute.

In particular, when dealing with aparaconsistent(viz., refuting theEx
Contradictione Quodlibetrule) logic, the issue of itsmaximal paraconsis-
tencyin the sense of absence of any proper paraconsistent extension becomes
especially acute. Such strong version of maximal paraconsistency — as op-
posed to the weakaxiomaticone (regarding merelyaxiomaticextensions)
discovered in [13] forP 1 — was first observed in [7] for thelogic of paradox
LP [6] and then forHZ [3] in [9] and has been proved for arbitrary con-
junctive subclassical(viz., having a classical extension) three-valued para-
consistent logics in the reference [Pyn 95b] of [7] as well as comprehensively
studied for arbitrary four-valued expansions of a four-valued logic in [12]
with providing its effective — in case of finitely many connectives — alge-
braic criterion properly inherited by theirfour-valuedexpansions. In this
paper, we provide an equally effective algebraic criterion of the maximal
paraconsistency of three-valued paraconsistent logics with subclassical nega-
tion [fragment] properly inherited by theirthree-valuedexpansions, while any
such logic isaxiomaticallymaximally paraconsistent. As a consequence, we
prove that any conjunctive/both subclassical and disjunctive/refuting theDou-
ble Negation Lawthree-valued paraconsistent logic with subclassical nega-
tion is maximally paraconsistent. In particular, anythree-valuedexpansion
of LP/HZ/P 1 is maximally paraconsistent.

Likewise, when dealing with non-classical (in particular, many-valued)
logics, their connections with the classical (two-valued) one deserves a par-
ticular emphasis. In particular, this concerns the property of a non-classical
logic’s being subclassical equally comprehensively studied within the frame-
work of four-valued expansions of a four-valued logic in [12] with its equally
effective algebraic criterion very similar to that found here within the context
of conjunctive/disjunctive three-valued paraconsistent logics with subclassi-
cal negation. (Here, we adapt [12]’s abstract conception ofclassicallogic).

To mark the framework of this study, we prove that any [conjunctive/dis-
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junctive] 3-valued paraconsistent logic with subclassical negation is defined
by a unique{up to isomorphism} [conjunctive/disjunctive] 3-valued matrix.

Nevertheless, the most culminating part of the paper concerns a much
more advanced issue of exploration of overall lattices of extensions of three-
valued paraconsistent logics with subclassical negation going back to the
works [8] and [9] as well as [11] that have advanced much the maximal
paraconsistency results forLP , HZ as well as bothLA [1] and its bounded
expansion towards proving the fact the lattices of their extensions form four-
element chains, the greatest/least consistent proper extension being relatively
axiomatized by either theModus Ponensrule for thematerial implication or
the Resolutionrule/theEx Contradictione Quodlibetrule and being classi-
cal/defined by the direct product of any defining three-valued matrix and its
two-valued submatrix. On the other hand, such does not hold for arbitrary
(even both subclassical, conjunctive and disjunctive) three-valued paracon-
sistent logics with subclassical negation, a most representative example being
P 1 [13] having infinitely many (even finitary) extensions, proved here for ar-
bitrary disjunctive three-valued paraconsistent logics with subclassical nega-
tion and classically-valued conectives,P 1 being a term-wise definitionally
minimal instance of such a kind. This inevitably raises the question: what
does unify the above miscellaneous instances? In this connection, it is re-
markable that, though the work [11] has unifiedHZ, LA and its bounded
expansion, the very first instance of such a kind — the logic of paradoxLP

— has proved beyond the mentioned general study. Therefore, thus far, the
problem raised remained still open. Here, we study it within the framework
of three-valued paraconsistent logics with subclassical negation as well as
chain-lattice-based conjunction and disjunction with providing an effective
— in case of finitely many connectives — criterion of having the mentioned
structure of extensions positively covering those subclassical logics of the
kind involved which satisfy theContradiction Negationaxiom (in particular,
theDouble Negation Law, including arbitrary expansions ofLP — such as
bothLA and its bounded expansion — as well as ofHZ).

The rest of the paper is as follows. The exposition of the material of the pa-
per is entirely self-contained (of course, modulo very basic issues concerning
Set Theory, Lattice Theory, Universal Algebra, Model Theory and Mathemat-
ical Logic not specified here explicitly, to be found, e.g., in standard mathe-
matical handbooks like [5]). Section 2 is a concise summary of basic issues
underlying the paper, most of which have actually become a part of logical
and algebraic folklore. Then, in Section 3 we elaborate quite useful generic
tools concerning weakly conjunctive matrices with a single non-distinguished
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value as well as both an enhancement of the conception of equality determi-
nant going back to [10] and axiomatic [resp., disjunctive] extensions of logics
defined by [finitely many finite disjunctive] matrices. In Sections 4, 6, 7, 8, 9
and 10 we formulate and prove maingeneralresults of the paper, exemplify-
ing these by brief discussing certain representative instances of 3VPLSN.

2 BASIC ISSUES

2.1 Set-theoretical background
We follow the standard set-theoretical convention, according to which natural
numbers (including 0) are treated as finite ordinals (viz., sets of lesser natural
numbers), the ordinal of all them being denoted byω. The proper class of
all ordinals is denoted by∞. Also, functions are viewed as binary relations,
while singletons are identified with their unique elements.

Given a setS, the set of all subsets ofS [of cardinality∈ K ⊆ ∞] is
denoted by℘[K](S). Further, given any equivalence relationθ onS, as usual,
by νθ we denote the function with domainS defined byνθ(a) , θ[{a}],
for all a ∈ S, whereas we set(T/θ) , νθ[T ], for everyT ⊆ S. Next,
S-tuples (viz., functions with domainS) are often written in the sequence
t̄ form, its s-th component (viz., the value under arguments), wheres ∈
S, being written asts. Given two more setsA andB, any relationR ⊆
(A × B) (in particular, a mappingR : A → B) determines the equally-
denoted relationR ⊆ (AS×BS) (resp., mappingR : AS → BS) point-wise.
Likewise, given a setA, anS-tupleB of sets and anȳf ∈ (

∏
s∈S B

A
s ), put

(
∏
f̄) : A → (

∏
B), a 7→ 〈fs(a)〉s∈S . (In caseI = 2, f0 × f1 stands for

(
∏
f̄).) Further, set∆S , {〈a, a〉|a ∈ S}, functions of such a kind being

referred to asdiagonal, andS+ ,
⋃
i∈(ω\1) S

i, elements ofS∗ , (S0 ∪S+)
being identified with ordinary finite tuples. Then, any binary operation�
on S determines the equally-denoted mapping� : S+ → S as follows: by
induction on the lengthl = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,

(�(ā�(l − 1))) � al−1 otherwise.

In particular, given anyf : S → S and anyn ∈ ω, setfn , (◦〈n ×
{f},∆D〉) : S → S. Finally, given anyT ⊆ S, we have thecharacteristic
functionχTS , ((T × {1}) ∪ ((S \ T )× {0})) of T in S.

In general, we adopt the following standard notations for elements of22:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉.
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Moreover, byv we denote the partial ordering on22 defined by(ā v b̄) def⇐⇒
((a0 6 b0)&(b1 6 a1)), for all ā, b̄ ∈ 22. Then, given anyB ⊆ 22, any
f : Bn → B, wheren ∈ ω, is said to beregular, provided, for all̄a, b̄ ∈ Bn
such that, for everyi ∈ n, ai v bi, it holds thatf(ā) v f(b̄).

2.2 Algebraic background

Unless otherwise specified, abstract algebras are denoted by Fraktur letters
[possibly, with indices], their carriers (viz., underlying sets) being denoted by
corresponding Italic letters [with same indices, if any].

A (propositional/sentential) language/signatureis any algebraic (viz., fu-
nctional) signatureΣ (to be dealt with throughout the paper by default) con-
stituted by function (viz., operation) symbols of finite arity to be treated as
(propositional/sentential) connectives. Given anyα ∈ ℘∞\1(ω), put Vα ,
{xβ |β ∈ α}, elements of which being viewed as(propositional/sentential)
variables of rankα. Then, we have the absolutely-freeΣ-algebraFmα

Σ freely-
generated by the setVα, referred to as theformulaΣ-algebra of rankα, its
endomorphisms/elements of its carrierFmα

Σ (viz., Σ-terms of rankα) be-
ing called(propositional/sentential)Σ-substitutions/-formulas of rankα. (In
general, any mention ofα is normally omitted, wheneverα = ω.)

A Σ-algebraA with A ⊆ 22 is said to beregular, whenever its primary
operations are so, in which case secondary ones are so as well.

2.3 Propositional logics and matrices

A [finitary] Σ-rule is any couple〈Γ, ϕ〉, where(Γ∪{ϕ}) ∈ ℘[ω](Fmω
Σ), nor-

mally written in the standard sequent formΓ ` ϕ, ϕ/any element ofΓ being
referred to as the/aconclusion/premise ofit. A (substitutional)Σ-instanceof
it is then anyΣ-rule of the formσ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)), whereσ is a
Σ-substitution. As usual,Σ-rules without premises are calledΣ-axiomsand
are identified with their conclusions. A[n][axiomatic] (finitary) Σ-calculus
is then any setC of (finitary) Σ-rules [without premises], the set of allΣ-
instances of its elements being denoted bySIΣ(C).

A (propositional/sentential)Σ-logic (cf., e.g., [4]) is any closure operator
C over Fmω

Σ that isstructural in the sense thatσ[C(X)] ⊆ C(σ[X]), for
all X ⊆ Fmω

Σ and allσ ∈ hom(Fmω
Σ,Fmω

Σ), in which case we set≡αC ,
{〈φ, ψ〉 ∈)(Fmα

Σ)2 | C(φ) = C(ψ)}, whereα ∈ ℘∞\1(ω). This is said to
be (in)consistent, if C(∅) 6= (=) FmΣ. Then, aΣ-rule Γ → Φ is said to be
satisfied in/byC, providedΦ ∈ C(Γ), Σ-axioms satisfied inC being referred
to astheorems ofC. Next, aΣ-logic C ′ is said to be a[proper] extension of
C, wheneverC ⊆ [(]C ′, in which caseC is said to be a[proper] sublogic of
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C ′. Then, a[n axiomatic]Σ-calculusC is said toaxiomatizeC ′ (relatively to
C), if C ′ is the leastΣ-logic (being an extension ofC and) satisfying every
rule inC [(in which case it is called anaxiomatic extension ofC, while

C ′(X) = C(X ∪ SIΣ(A)). (2.1)

for all X ⊆ Fmω
Σ)]. Furthermore, we have the finitary sublogicC` of C,

defined byC`(X) , (
⋃
C[℘ω(X)]), for allX ⊆ Fmω

Σ, called thefinitariza-
tion ofC. Then, the extension of any finitary (in particular, diagonal)Σ-logic
relatively axiomatized by a finitaryΣ-calculus is a sublogic of its own finita-
rization, in which case it is equal to this, and so is finitary. (in particular, the
Σ-logic axiomatized by a finitaryΣ-calculus is finitary). Further,C is said to
be[weakly] Z-conjunctive, whereZ is a (possibly, secondary) binary connec-
tive ofΣ, providedC(φZψ)[⊇] = C({φ, ψ}), whereφ, ψ ∈ Fmω

Σ. Likewise,
C is said to beY-disjunctive, whereY is a (possibly, secondary) binary con-
nective ofΣ, providedC(X ∪ {φ Y ψ}) = (C(X ∪ {φ}) ∩ C(X ∪ {ψ})),
where(X ∪ {φ, ψ}) ⊆ Fmω

Σ, in which case the following rules:

x0 ` (x0 Y x1), (2.2)

x1 ` (x0 Y x1), (2.3)

(x0 Y x0) ` x0 (2.4)

are satisfied inC, and so in its extensions, while any axiomatic extension of
C is Y-disjunctive, in view of (2.1). Finally,C is said to be[(axiomatically)
maximally]∼-paraconsistent, where∼ is a unary connective ofΣ, provided
it does not satisfy theEx Contradictione Quodlibetrule:

{x0,∼x0} ` x1 (2.5)

[and has no proper∼-paraconsistent (axiomatic) extension].
A (logical) Σ-matrix (cf. [4]) is any couple of the formA = 〈A, DA〉,

whereA is a Σ-algebra, called theunderlying algebra ofA, while DA ⊆
A is called thetruth predicate ofA. (In general, matrices are denoted by
Calligraphic letters [possibly, with indices], their underlying algebras being
denoted by corresponding Fraktur letters [with same indices, if any].) This
is said to ben-valued/[in]consistent/truth(-non)-empty/truth-|false-singular,
wheren ∈ ω, provided|A| = n/DA 6= [=]A/DA = (6=)∅/|(DA|(A \
DA))| ∈ 2, respectively. Next, given anyΣ′ ⊆ Σ, A is said to be a(Σ-
)expansion ofits Σ′-reduct (A�Σ′) , 〈A�Σ′, DA〉. (Any notation, being
specified for single matrices, is supposed to be extended to classes of matrices

6



member-wise.) Finally,A is said to befinite[ly generated]/generated bya
B ⊆ A, wheneverA is so.

Given anyα ∈ ℘∞\1(ω) and any classM of Σ-matrices, we have the clo-
sure operatorCnαM overFmα

Σ defined byCnαM(X) , (Fmα
Σ ∩

⋂
{h−1[DA] ⊇

X|A ∈ M, h ∈ hom(Fmα
Σ,A)}, for allX ⊆ Fmα

Σ, in which case:

CnαM(X) = (Fmα
Σ ∩CnωM(X)), (2.6)

becausehom(Fmα
Σ,A) = {h�Fmα

Σ |h ∈ hom(Fmω
Σ,A)}, for anyΣ-algebra

A, asA 6= ∅. Then,CnωM is aΣ-logic, called thelogic of M, a Σ-logic C
being said to be[finitely-]defined byM, providedC(X) = CnM(X), for all
X ∈ ℘[ω](FmΣ). A Σ-logic is said to ben-valued, wheren ∈ ω, whenever
it is defined by ann-valuedΣ-matrix, in which case it is finitary (cf. [4]).

As usual,Σ-matrices are treated as first-order model structures (viz., alge-
braic systems; cf. [5]) of the first-order signatureΣ ∪ {D} with unary predi-
cateD, anyΣ-rule Γ ` φ being viewed as (the universal closure of, depend-
ing upon the context) the infinitary equality-free basic strict Horn formula
(
∧

Γ) → φ under the standard identification of any propositionalΣ-formula
ψ with the first-order atomic formulaD(ψ).

A Σ-matrix A is said to be amodel of a Σ-logic C, providedC is a
sublogic of the logic ofA, the class of all them being denoted byMod(C).
Next,A is said to be∼-paraconsistent, where∼ is a unary connective ofΣ,
whenever the logic ofA is so. Further,A is said to be[weakly] �-conjunctive,
where� is a (possibly, secondary) binary connective ofΣ, provided({a, b} ⊆
DA)[⇐] ⇔ ((a �A b) ∈ DA), for all a, b ∈ A, that is, the logic ofA is
[weakly] �-conjunctive. Likewise,A is said to be�-disjunctive/implicative,
whenever((a 6∈ / ∈ DA) ⇒ (b ∈ DA)) ⇔ ((a �A b) ∈ DA), for all
a, b ∈ A, in which case the logic ofA is �-disjunctive, and so is the logic
of any class of�-disjunctiveΣ-matrices/resp.,A is Y�-disjunctive, where
(x0 Y� x1) , ((x0 � x1) � x1).

Let A andB be twoΣ-matrices. A(strict) [surjective] {matrix} homo-
morphism fromA [on]to B is anyh ∈ hom(A,B) such that [h[A] = B

and]DA ⊆ (=)h−1[DB] ([in which caseB/A is said to be astrict sur-
jective{matrix} homomorphic image/counter-image ofA/B]), the set of all
them being denoted byhom[S]

(S)(A,B). Recall that(∀h ∈ hom(A,B) :
[((img h) = B) ⇒](hom(Fmα

Σ,B) ⊇ [=]{h◦g|g ∈ hom(Fmα
Σ,A)}), where

α ∈ ℘∞\1(ω), and so we have:

(∃h ∈ hom[S]
S (A,B)) ⇒(CnαB(X) ⊆ [=] CnαA(X)), (2.7)

(∃h ∈ homS(A,B)) ⇒(CnαA(∅) ⊆ CnαB(∅)), (2.8)
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for all X ⊆ Fmα
Σ. Then,A[6= B] is said to be a[proper] submatrix ofB,

whenever∆A ∈ homS(A,B), in which case we set(B�A) , A. Injec-
tive/bijective strict homomorphisms fromA to B are referred to asembed-
dings/isomorphisms of/fromA into/ontoB, in case of existence of whichA
is said to beembeddable/isomorphic into/toB.

LetA be aΣ-matrix. Then,χA , χD
A

A is referred to as thecharacteristic
function ofA. Next, given anyθ ∈ Con(A) [such thatθ ⊆ θA , (kerχA)],
we have thequotient(A/θ) , 〈A/θ,DA/θ〉 ofA byθ, in which case we get
νθ ∈ homS

[S](A,A/θ).
Given a setI and anI-tupleA of Σ-matrices, [any submatrixB of] the

Σ-matrix (
∏
i∈I Ai) , 〈

∏
i∈I Ai,

∏
i∈I D

Ai〉 is called the [a][sub]direct
product ofA [whenever, for eachi ∈ I, πi[B] = Ai]. As usual, whenI = 2,
A0×A1 stands for the direct product involved. Likewise, if(imgA) ⊆ {A}
(andI = 2), whereA is aΣ-matrix,AI , (

∏
i∈I Ai) [resp.,B] is called the

[a] [sub]direct I-power (square) ofA.
Given a classM of Σ-matrices, the class of all [consistent] submatrices of

members ofM is denoted byS[∗](M), respectively. Likewise, the class of all
[sub]direct products of (finite) tuples constituted by members ofM is denoted
by P[SD]

(ω) (M). As it is well-known, any logic model class is closed under both
P andS (cf. (2.7)).

Lemma 2.1 (Finite Subdirect Product Lemma; cf. Lemma 2.7 of [12]). Let
M be a finite class of finiteΣ-matrices andA a finitely-generated model of
the logic ofM. Then,A is a strict surjective homomorphic counter-image of
a strict surjective homomorphic image of a member ofPSD

ω (S∗(M)).

Theorem 2.2 (cf. Theorem 2.8 of [12]). Let K and M be classes ofΣ-
matrices,C the logic ofM andC ′ an extension ofC. Suppose [bothM and all
members of it are finite and]PSD

[ω](S∗(M)) ⊆ K (in particular,S(P[ω](M)) ⊆
K {in particular, K ⊇ M is closed under bothS and P[ω]〈 in particular,
K = Mod(C)〉}). Then,C ′ is [finitely-]defined byMod(C ′) ∩ K, and so by
Mod(C ′).

Given anyΣ-logic C and anyΣ′ ⊆ Σ, in which caseFmα
Σ′ ⊆ Fmα

Σ

and hom(Fmα
Σ′ ,Fmα

Σ′) = {h�Fmα
Σ′ |h ∈ hom(Fmα

Σ,Fmα
Σ), h[Fmα

Σ′ ] ⊆
Fmα

Σ′}, for all α ∈ ℘∞\1(ω), we have theΣ′-logicC ′, defined byC ′(X) ,
(Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ , called theΣ′-fragment ofC, in which

caseC is said to be a(Σ-)expansion ofC ′. In that case, given also any class
M of Σ-matrices definingC, C ′ is, in its turn, defined byM�Σ′.
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Classical negations, matrices and logics

Let∼ be a (possibly, secondary) unary connective ofΣ.
A Σ-matrixA is said to be[weakly] (classically)∼-negative, provided,

for all a ∈ A, (a ∈ DA)[⇐] ⇔ (∼Aa 6∈ DA).

Remark2.3. Let � be any (possibly, secondary) binary connective ofΣ and
(x0�̃x1) , ∼(∼x0 �∼x1). Then, any∼-negativeΣ-matrix is�-disjunctive/-
conjunctive iff it is �̃-conjunctive/-disjunctive, respectively.

From now on, it is supposed that∼ ∈ Σ.
A two-valued consistentΣ-matrixA is said to be∼-classical, whenever it

is∼-negative, in which case it is truth-non-empty, for it is consistent, and so
is both false- and truth-singular but is not∼-paraconsistent.

A Σ-logic is said to be∼-[sub]classical, whenever it is [a sublogic of] the
logic of a∼-classicalΣ-matrix. Then,∼ is called asubclassical negation for
aΣ-logicC, whenever the∼-fragment ofC is∼-subclassical, in which case:

∼mx0 6∈ C(∼nx0), (2.9)

for all m,n ∈ ω such that the integerm− n is odd.

3 PRELIMINARY ADVANCED KEY GENERIC ISSUES

3.1 False-singular consistent weakly conjunctive matrices

Lemma 3.1. Let Z be a (possibly, secondary) binary connective ofΣ, A a
false-singular weaklyZ-conjunctiveΣ-matrix, f ∈ (A \DA), I a finite set,
C an I-tuple constituted by consistent submatrices ofA andB a subdirect
product ofC. Then,(I × {f}) ∈ B.

Proof. By induction on the cardinality of anyJ ⊆ I, let us prove that there
is somea ∈ B including (J × {f}). First, whenJ = ∅, take anya ∈
C 6= ∅, in which case(J × {f}) = ∅ ⊆ a. Now, assumeJ 6= ∅. Take
any j ∈ J ⊆ I, in which caseK , (J \ {j}) ⊆ I, while |K| < |J |,
and so, asCj is a consistent submatrix of the false-singular matrixA, we
havef ∈ Cj = πj [B]. Hence, there is someb ∈ B such thatπj(b) = f ,
while, by induction hypothesis, there is somea ∈ B including (K × {f}).
Therefore, sinceJ = (K ∪ {j}), whileA is both weaklyZ-conjunctive and
false-singular, we haveB 3 c , (a ZB b) ⊇ (J × {f}). Thus, whenJ = I,
we eventually getB 3 (I × {f}), as required.
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3.2 Equality determinants

A binary equality determinant fora classM of Σ-matrices is anyΣ-cal-
culus ε ⊆ (℘(Fm2

Σ) × Fm2
Σ) such that the infinitary universal sentence

∀x0∀x1((
∧
ε) ↔ (x0 ≈ x1)) is true in M. Then, according to [10], a

(unitary) equality determinant forM is any Υ ⊆ Fm1
Σ such thatεΥ ,

{(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ Υ} is a binary equality determinant
for M.

Example 3.2 (cf. Example 1 of [10]). {x0} is a unitary equality determinant
for any both false- and truth-singular (in particular,∼-classical) matrix.

Lemma 3.3. LetA andB beΣ-matrices,ε a binary equality determinant for
A andh ∈ homS(A,B). Then,h is injective.

Proof. Then, for anya, b ∈ A such thath(a) = h(b), we have(a = a) ⇒
(A |= (

∧
ε)[x0/a, x1/a]) ⇒ (B |= (

∧
ε)[x0/h(a), x1/h(a)]) ⇒ (B |=

(
∧
ε)[x0/h(a), x1/h(b)]) ⇒ (A |= (

∧
ε)[x0/a, x1/b]) ⇒ (a = b).

Lemma 3.4. LetA andB beΣ-matrices,ε a binary equality determinant for
B ande ∈ homS(A,B). Supposee is injective. Then,ε is a binary equality
determinant forA.

Proof. By the well-known fact that any infinitary universal sentence, being
true inB, is so inA, being isomorphic (undere) to (B�(img e)) ∈ S(B).

Lemma 3.5. LetA be aΣ-matrix with unitary equality determinantΥ, B a
submatrix ofA andh ∈ homS(B,A). Then,h is diagonal.

Proof. For anya ∈ B and anyυ ∈ Υ, (υA(a) ∈ DA) ⇔ (υB(a) ∈ DB) ⇔
(υA(h(a)) = h(υB(a)) ∈ DA), and soh(a) = a, as required.

Lemma 3.6. Any axiomatic binary equality determinantε for a classM of
Σ-matrices is so forP(M).

Proof. In that case, members ofM are models of the infinitary universal strict
Horn theoryε[x1/x0]∪{(

∧
ε) → (x0 ≈ x1)} with equality, and so are well-

known to be those ofP(M), as required.

3.3 Disjunctive extensions of disjunctive finitely-valued logics

Fix any (possibly, secondary) binary connectiveY of Σ. Given anyX,Y ⊆
Fmω

Σ, put(X Y Y ) , Y[X × Y ].
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Lemma 3.7. LetC be aY-disjunctiveΣ-logic. Then,

(ϕ Y C(X ∪ Y )) ⊆ C(X ∪ (ϕ Y Y )), (3.1)

for all X ⊆ Fmω
Σ, all ϕ ∈ Fmω

Σ and allY ∈ ℘ω(Fmω
Σ).

Proof. By induction on|Y | ∈ ω. The case, whenY = ∅, is by (2.3). Now,
assumeY 6= ∅. Take anyψ ∈ Y , in which caseX ′ , (X ∪ {ψ}) ⊆ Fmω

Σ

andY ′ , (Y \ {ψ}) ∈ ℘ω(Fmω
Σ), while |Y ′| < |Y |, whereas(Y ′ ∪X ′) =

(X ∪ Y ), and so, by induction hypothesis, we have(ϕ Y C(X ∪ Y )) ⊆
C(X ′∪(ϕYY ′)). On the other hand, by (2.2), we also have(ϕYC(X∪Y )) ⊆
C((X ∪ {ϕ}) ∪ (ϕ Y Y ′)). Thus, asY = (Y ′ ∪ {ψ}), theY-disjunctivity of
C yields (3.1).

Given aΣ-ruleΓ ` φ and aΣ-formulaψ, put((Γ ` φ) Yψ) , ((Γ Yψ) `
(φ Y ψ)). (This notation is naturally extended toΣ-calculi member-wise.)

By σ+1 we denote theΣ-substitution extending[xi/xi+1]i∈ω.

Theorem 3.8. Let M be a [finite] class of [finiteY-disjunctive]Σ-matrices,
C the logic of M, while A an axiomaticΣ-calculus [whereasC a finitary
Σ-calculus]. Then, the extensionC ′ of C relatively axiomatized byC′ ,
(A[∪(σ+1[C] Y x0)]) is defined byS , (Mod(A[∪C]) ∩ S∗(M)) [and so is
Y-disjunctive].

Proof. First, by (2.7) [and Lemma 3.7 withX = ∅ as well as theY-disjun-
ctivity of everyA ∈ S∗(M), and so both that and the structurality ofCnωA],
we haveS = (Mod(A)[∩Mod(C)] ∩ S∗(M)) ⊆ (Mod(C′) ∩ S∗(M)) ⊆
(Mod(C′) ∩Mod(C)) = Mod(C ′).

Conversely, consider any [finitary]Σ-rule Γ ` ϕ not satisfied inC ′, in
which caseϕ 6∈ T , C ′(Γ) ∈ (imgC ′) ⊆ (img CnωM), and so [by the
finiteness of(Γ ∪ {ϕ}) ⊆ Fmω

Σ], there is some [finite]α ∈ ℘ω\1(ω) such
that (Γ ∪ {ϕ}) ⊆ Fmα

Σ, in which caseΓ ⊆ U , (T ∩ Fmα
Σ) 63 ϕ, and so,

by (2.6),U = CnαM(U) = (Fmα
Σ ∩

⋂
U), whereU , {h−1[DA] ⊇ U | A ∈

M, h ∈ hom(Fmα
Σ,A)} [is finite, for α as well as bothM and all members

of it are so]. Therefore, there is some [minimal]S ∈ U not containingϕ, in
which case,Γ ⊆ U ⊆ S, and soΓ ` ϕ is not true inB , 〈Fmα

Σ, S〉 under
[xi/xi]i∈α. Next, we are going to show thatB ∈ Mod(A[∪C]). For consider
any(∆ ` φ) ∈ (A[∪C]) and anyσ ∈ hom(Fmω

Σ,Fmα
Σ) such thatσ[∆] ⊆ S

as well as the following exhaustive case[s]:

• (∆ ` φ) ∈ A,
in which case∆ = ∅, and so, asφ ∈ A ⊆ C′, by the structurality of
C ′, we haveσ(φ) ∈ (Fmα

Σ ∩C ′(∅)) ⊆ (Fmα
Σ ∩T ) = U ⊆ S.
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[• (∆ ` φ) ∈ C,
in which case((σ+1[∆] ` σ+1(φ))Yx0) ∈ C′, and so is satisfied inC ′.
Then,(U\{S}) ⊆ U is finite, forU is so, in which casen , |U\{S}| ∈
ω. Take any bijectionW : n→ (U\{S}). Then, for eachi ∈ n,Wn 6=
S, in which case, by the minimality ofS ∈ U 3Wn, we haveWn * S,
and so there is someξi ∈ (Wn \ S) 6= ∅. Putψ , (Y〈ξ̄, ϕ〉) ∈ Fmα

Σ.
Let ς be theΣ-substitution extending[xi+1/σ(xi);x0/ψ]i∈ω. Then,
((σ[∆] Y ψ) ` (σ(φ) Y ψ)) = ς((σ+1[∆] ` σ+1(φ)) Y x0) is satisfied
in C ′, for this is structural. Moreover, in view of theY-disjunctivity of
members ofM, (σ[∆] Y ψ) ⊆ (Fmα

Σ ∩
⋂

U) = U ⊆ T , in which case
(σ(φ) Y ψ) ∈ (Fmα

Σ ∩T ) = U ⊆ S, and soσ(φ) ∈ S, for ψ 6∈ S.]

Thus,B ∈ Mod(A[∪C]). On the other hand, asS ∈ U, there are some
A ∈ M and someh ∈ hom(Fmα

Σ,A) such thatS = h−1[DA], in which
caseD , (img h) forms a subalgebra ofA, and soh is a surjective strict
homomorphism fromB ontoD , (A�D). In this way, by (2.7),Γ ` ϕ is not
true inD ∈ S, as required [forC ′ is finitary, as bothC andC′ are so].

Lemma 3.9. Let C be aΣ-logic andM a finite class of finiteΣ-matrices.
SupposeC is finitely-defined byM. Then,C is defined byM, that is,C is
finitary.

Proof. In that case,C ′ , CnωM ⊆ C, forC ′ is finitary. To prove the converse
is to prove thatM ⊆ Mod(C). For consider anyA ∈ M, anyΓ ⊆ Fmω

Σ,
anyϕ ∈ C(Γ) and anyh ∈ hom(Fmω

Σ,A) such thath[Γ] ⊆ DA. Then,
α , |A| ∈ (℘∞\1(ω) ∩ ω). Take any bijectione : Vα → A to be extended to
a g ∈ hom(Fmα

Σ,A). Then,e−1 ◦ (h�Vω) is extended to aΣ-substitutionσ,
in which caseσ(ϕ) ∈ C(σ[Γ]), forC is structural, whileσ[Γ∪{ϕ}] ⊆ Fmα

Σ.
Further, as bothα, M and all members of it are finite, we have the finite set
I , {〈f,B〉 | B ∈ M, f ∈ hom(Fmα

Σ,B)}, in which case, for eachi ∈ I,
we sethi , π0(i), Bi , π1(i) and θi , θBi . Then, by (2.6), we have
θ , ≡αC = ≡αC′ = ((Fmα

Σ×Fmα
Σ)∩

⋂
i∈I h

−1
i [θi]), in which case, for every

i ∈ I, θ ⊆ h−1
i [θi] = ker(νθi

◦hi), and sogi , (νθi
◦hi◦ν−1

θ ) : (Fmα
Σ /θ) →

Bi. In this way,e , (
∏
i∈I gi) : (Fmα

Σ /θ) → (
∏
i∈I Bi) is injective, for

(ker e) = ((Fmα
Σ /θ)

2 ∩
⋂
i∈I(ker gi)) is diagonal. Hence,Fmα

Σ /θ is finite,
for

∏
i∈I Bi is so, and so is(σ[Γ]/θ) ⊆ (Fmα

Σ /θ). For eachc ∈ (σ[Γ]/θ),
choose anyφc ∈ (σ[Γ] ∩ ν−1

θ [{c}]) 6= ∅. Put∆ , {φc | c ∈ (σ[Γ]/θ)} ∈
℘ω(σ[Γ]). Consider anyψ ∈ σ[Γ]. Then,∆ 3 φνθ(ψ) ≡ωC ψ, in which case
ψ ∈ C(∆), and soσ[Γ] ⊆ C(∆). In this way,σ(ϕ) ∈ C(∆) = C ′(∆), for
∆ ∈ ℘ω(Fmω

Σ), so, by (2.6),σ(ϕ) ∈ CnαM(∆). Moreover,g[∆] ⊆ g[σ[Γ]] =
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h[Γ] ⊆ DA, and soh(ϕ) = g(σ(ϕ)) ∈ DA, as required.

Corollary 3.10. Let M be a finite class of finiteY-disjunctiveΣ-matrices,C
the logic ofM andC ′ a Y-disjunctive extension ofC. Then,C ′ is defined by
S , (S∗(M) ∩Mod(C)).

Proof. Let C be the finitaryΣ-calculus of all finitaryΣ-rules satisfied inC ′,
C ′′ the finitaryΣ-logic axiomatized byC andS′ , (S∗(M) ∩Mod(C ′′)) =
(S∗(M) ∩Mod(C)). Clearly,C ′′ ⊆ CnωS′ . Conversely, by Theorem 3.8 with
A = ∅, CnωS′ is the extension ofC relatively axiomatized byσ+1[C] Y x0.
On the other hand, by the structurality andY-disjunctivity of C ′ as well as
Lemma 3.7 withX = ∅, (σ+1[C] Y x0) ⊆ C. Moreover,C, being a finitary
sublogic ofC ′, is a sublogic ofC ′′, in which caseC ′′ ⊇ CnωS′ , and soC ′′ is
defined byS′, in which caseC ′ is finitely-defined byS′, and so is defined by
S′, by Lemma 3.9, in which caseC ′ = C ′′, and soS = S′, as required.

4 SUPER-CLASSICAL MATRICES VERSUS THREE-VALUED PA-
RACONSISTENT LOGICS WITH SUBCLASSICAL NEGATION

From now on, fix any unary∼ ∈ Σ.
A Σ-matrix A is said to be∼-super-classical, providedA = {f, b, t},

DA = {b, t}, ∼A〈i, i〉 = 〈1− i, 1− i〉, for eachi ∈ 2, and∼Ab ∈ DA,
in which case it is three-valued as well as both weakly∼-negative and∼-
paraconsistent, while{f, t} forms a subalgebra ofA�{∼}, whereas(A�{∼})�
{f, t} is∼-classical, and so∼ is a subclassical negation for the logic ofA, in
view of (2.7). Thus, we have argued the routine part (viz., (ii)⇒(iii)⇒(i)) of
the following preliminary marking the framework of the present paper:

Theorem 4.1. LetC be aΣ-logic. Then, the following are equivalent:

(i) C is three-valued and∼-paraconsistent, while∼ is a subclassical nega-
tion forC;

(ii) C is three-valued, while any three-valuedΣ-matrix definingC is iso-
morphic to a∼-super-classical one;

(iii) C is defined by a∼-super-classicalΣ-matrix.

Proof. Assume (i) holds. LetB be any three-valuedΣ-matrix definingC.
Define ane : {f, b, t} → B as follows. In that case,B is ∼-paraconsistent,
so there are somee(b) ∈ DB such that∼Be(b) ∈ DB and somee(f) ∈
(B \DB), in which casee(f) 6= e(b). Next, by (2.9) withm = 1 andn = 0,
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there is somee(t) ∈ DB such that∼Be(t) 6∈ DB, in which casee(f) 6=
e(t) 6= e(b). In this way,e : {f, b, t} → B is injective, and so bijective,
for |B| = 3. Hence, it is an isomorphism fromA , 〈e−1[B], {b, t}〉 onto
B. Therefore, by (2.7),C is defined byA. Furthermore,∼Ab ∈ DA, while
∼At 6∈ DA, in which case∼At = f, and so, for proving thatA is ∼-super-
classical, in which case (ii) holds, it only remains to show that∼Af = t. We
do it by contradiction. For suppose∼Af 6= t, in which case, asA = {f, b, t},
we have the following two exhaustive cases:

1. ∼Af = f.
This contradicts to (2.9) withm = 0 andn = 1.

2. ∼Af = b.
Then, as∼Ab ∈ DA = {b, t}, we have the following two exhaustive
subcases:

(a) ∼Ab = b.
Then,∼A∼A∼Aa = b ∈ DA, for eacha ∈ DA = {b, t}. This
contradicts to (2.9) withm = 3 andn = 0.

(b) ∼Ab = t.
Then,∼A∼A∼Af = f. This contradicts to (2.9) withm = 0 and
n = 3.

Thus, anyway, we come to a contradiction, as required.

Remark4.2(cf. Example 2 of [10]). {x0,∼x0} is a unitary equality determi-
nant for any∼-superclassicalΣ-matrix.

Throghout the rest of the paper, fix any∼-super-classicalΣ-matrixA. Let
C be the logic ofA andCNP the least non-∼-paraconsistent extension ofC
(viz., that which is relatively axiomatized by (2.5)).

Lemma 4.3. LetB be a∼-super-classicalΣ-matrix ande ∈ homS(A,B).
Then,e is diagonal. In particular,A = B.

Proof. Then, C , (A�{∼}) = (B�{∼}) is ∼-superclassical, whilee ∈
homS(C, C), and so Lemma 3.5 and Remark 4.2 complete the proof.

Theorem 4.4. LetB be a∼-super-classicalΣ-matrix. SupposeB is a model
ofC (in particular,C is defined byB). Then,B = A.

Proof. In that case,B is a finite (and so finitely-generated)∼-paraconsistent
model ofC. Then, by Lemmas 2.1, 3.3 and Remark 4.2, there are some set
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I, someI-tupleC constituted by submatrices ofA, some subdirect productD
of C and someg ∈ homS

S(D,B), in which caseD is both weakly∼-negative
and, by (2.7), is∼-paraconsistent, forB is so, and so there are somea ∈ DD

such that∼Da ∈ DD and someb ∈ (D \ DD), in which casec , ∼Db ∈
DD ⊆ {b, t}I , for D is weakly∼-negative. Then,D 3 a = (I × {b}).
Consider the following complementary cases:

1. {b} forms a subalgebra ofA,
in which case∼Ab = b, and so∼Dc = b 6∈ DB. Hence,J , {i ∈ I |
πi(c) = t} 6= ∅. Given anȳa ∈ A2, set(a0|a1) , ((J ×{a0})∪ ((I \
J) × {a1})) ∈ AI . In this way,D 3 a = (b|b), D 3 c = (t|b) and
D 3 b = (f|b). Then, as{b} forms a subalgebra ofA, while J 6= ∅,
f , {〈d, (d|b)〉 | d ∈ A} is an embedding ofA intoD.

2. {b} does not form a subalgebra ofA.
Then, there is someϕ ∈ Fm1

Σ such thatϕA(b) 6= b, in which case
{b, ϕA(b),∼AϕA(b)} = A, and soD ⊇ {a, ϕD(a),∼DϕD(a)} =
{I × {d} | d ∈ A}. Therefore, asI 6= ∅, for b 6∈ DD, f ,
{〈d, I × {d}〉 | d ∈ A} is an embedding ofA intoD.

Then,(g◦f) ∈ homS(A,B), and so Lemma 4.3 completes the argument.

Corollary 4.5. Let Σ′ ⊇ Σ be a signature andC ′ a three-valuedΣ′-expan-
sion ofC. Then,C ′ is defined by a uniqueΣ′-expansion ofA.

Proof. In that case,C ′ is ∼-paraconsistent, while∼ is a subclassical nega-
tion for C ′. Hence, by Theorem 4.1,C ′ is defined by a∼-super-classical
Σ′-matrixA′, in which caseC is defined by the∼-super-classicalΣ-matrix
A′�Σ, and so(A′�Σ) = A, by Theorem 4.4 completing the argument.

5 CLASSICAL EXTENSIONS

A (2[+1])-ary [b-relative] (weak classical) conjunction forA is anyϕ ∈
Fm2[+1]

Σ such that bothϕA(f, t[, b]) = f andϕA(t, f[, b]) ∈ {f[, b]}. (Clearly,
any binary conjunction forA is a ternaryb-relative one.)

Lemma 5.1. LetI be a set andB a consistent non-∼-paraconsistent subma-
trix ofAI . Suppose eitherB is∼-negative or bothA has a binary conjunction
and either{f, t} forms a subalgebra ofA or L4 , (A2 \ ({f, t}2 ∪ {b}2))
forms a subalgebra ofA2. Then, the following hold:

(i) if {f, t} forms a subalgebra ofA, thenA�{f, t} is embeddable intoB;

15



(ii) if {f, t} does not form a subalgebra ofA, thenL4 forms a subalgebra
of A2, while(A2�L4) is embeddable intoB.

Proof. We start from proving:

Claim 5.2. LetI be a set andB a consistent non-∼-paraconsistent submatrix
ofAI . Supposea , (I × {f}) ∈ B (that is,b , (I × {t}) ∈ B). Then, the
following hold:

(i) {f, t} forms a subalgebra ofA;

(ii) A�{f, t} is embeddable intoB.

Proof. (i) By contradiction. For suppose{f, t} does not form a subalgebra
of A. Then, there is someϕ ∈ Fm2

Σ such thatϕA(f, t) = b, in which
caseB 3 c , ϕB(a, b) = (I × {b}), and so{c,∼Bc} ⊆ DB, that
contradicts to the non-∼-paraconsistency ofB, for this is consistent.

(ii) As I 6= ∅, for B is consistent, by (i),{〈d, I × {d}〉 | d ∈ {f, t}} is an
embedding ofA�{f, t} intoB, as required.

As B is consistent,I 6= ∅ and there is somea ∈ (B \ DB) 6= ∅. Next,
we prove that there is some non-emptyJ ⊆ I such that(t|b) ∈ B, where, for
everyā ∈ A2, we set(a0|a1) , ((J × {a0}) ∪ ((I \ J)× {a1})) ∈ AI . For
consider the following complementary cases:

• B is∼-negative.
Then,b , ∼Ba ∈ DB ⊆ {b, t}I , in which caseB 3 c , ∼Bb 6∈ DB,
and soJ , {i ∈ I | πi(b) = t} 6= ∅. In this way,B 3 b = (t|b).

• B is not∼-negative.
Then,ϕA(f, t) = f = ϕA(t, f) ∈ {f, t}, for someϕ ∈ Fm2

Σ. Let
K , {i ∈ I | πi(a) = t}, L , {i ∈ I | πi(a) = f} 6= ∅, for a 6∈ DB.
Given anyā ∈ A3, we set(a0|a1|a2) , ((K × {a0}) ∪ (L× {a1}) ∪
((I \ (K ∪L))×{a2})) ∈ AI . In this way,B 3 a = (t|f|b). Consider
the following exhaustive subcases:

– ∼Ab = b.
Then,B 3 b , ∼Aa = (f|t|b). Letx , ϕA(b, b) ∈ A. Consider
the following exhaustive subsubcases:

∗ x = b.
Then,B 3 c , ϕB(a, b) = (f|f|b). PutJ , (K ∪ L) 6= ∅,
for K 6= ∅. In this way,(t|b) = ∼Bc ∈ B.
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∗ x = f.
Then,B 3 c , ϕB(a, b) = (f|f|f). PutJ , I 6= ∅. In this
way,(t|b) = ∼Bc ∈ B.

∗ x = t.
Then,B 3 c , ϕB(a, b) = (f|f|t), and soB 3 ∼Bc =
(t|t|f). PutJ , I 6= ∅. Then,(t|b) = ∼BϕB(c,∼Bc) ∈
B.

– ∼Ab = t.
Then,B 3 b , ∼Aa = (f|t|t), and soB 3 ∼Bb = (t|f|f). Put
J , I 6= ∅. Then,(t|b) = ∼BϕB(b,∼Bb) ∈ B.

Further, we prove:

Claim 5.3. Suppose∼Bb = t and(t|b) ∈ B. Then,(I × {t}) ∈ B.

Proof. Consider the following complementary cases:

1. B is∼-negative.
Then,(t|b) ∈ DB, in which case(t|f) = ∼B∼B(t|b) ∈ DB, and so
J = I. In this way,(I × {t}) = (t|b) ∈ B.

2. B is not∼-negative.
Then,ϕA(f, t) = f = ϕA(t, f), for someϕ ∈ Fm2

Σ. Moreover,b ,
(f|t) = ∼B(t|b) ∈ B, and soB 3 ∼Bb = (t|f). In this way,(I ×
{t}) = ∼BϕB(b,∼Bb) ∈ B.

Finally, consider the respective complementary cases:

(i) {f, t} forms a subalgebra ofA.
Consider the following exhaustive subcases:

1. ∼Ab = t.
Then, by Claims 5.2(ii) and 5.3,A�{f, t} is embeddable intoB.

2. ∼Ab = b,
in which caseb , (t|b) ∈ B 3 c , ∼Bb = (f|b). Consider the
following complementary subsubcases:

(a) {b} forms a subalgebra ofA.
Then, asJ 6= ∅, {〈e, (e|b)〉 | e ∈ {f, t}} is an embedding of
A�{f, t} intoB.
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(b) {b} does not form a subalgebra ofA.
Then, there is someψ ∈ Fm1

Σ such thatψA(b) ∈ {f, t}, in
which caseψA(f) ∈ {f, t} 3 ψA(t), for {f, t} forms a subal-
gebra ofA, and so, as|{f, t}| = 2, we have just the following
exhaustive subsubsubcases:

• ψA(b) = ψA(f),
in which case, for somex ∈ {f, t}, (I × {x}) = (x|x) =
ψB(c) ∈ B, and soA�{f, t} is embeddable intoB, in
view of Claim 5.2(ii).

• ψA(b) = ψA(t),
in which case, for somex ∈ {f, t}, (I × {x}) = (x|x) =
ψB(b) ∈ B, and soA�{f, t} is embeddable intoB, in
view of Claim 5.2(ii).

• ψA(t) = ψA(f),
in which case, for somex ∈ {f, t}, (I × {x}) = (x|x) =
ψB(ψB(c)) ∈ B, and soA�{f, t} is embeddable intoB,
in view of Claim 5.2(ii).

(ii) {f, t} does not form a subalgebra ofA.
Then,∼Ab = b, in view of Claims 5.2(i) and 5.3. Therefore, asJ 6= ∅,
b , (t|b) ∈ DB 63 c , ∼Bb = (f|b). And what is more, there is some
ϕ ∈ Fm2

Σ such thatϕA(f, t) = b, in which caseφ , ϕ(x0,∼x0) ∈
Fm1

Σ andφA(f) = b, and soφA(b) 6= b, for, otherwise, we would have
B 3 φB(c) = (b|b), and so we would get∼B(b|b) = (b|b) ∈ DB,
contrary to the non-∼-paraconsistency and consistency ofB. In this
way,f , (b|f) ∈ {φB(c),∼BφB(c)} ⊆ B, in which caseg , ∼Bf =
(b|t) ∈ DB, and so, by the non-∼-paraconsistency and consistency ofB,
we getf = ∼Bg 6∈ DB. Hence,J 6= I. Let us prove, by contradiction,
that L4 forms a subalgebra ofA2. For supposeL4 does not form a
subalgebra ofA2. Then,B is∼-negative. Moreover, there is someξ ∈
Fm4

Σ such thatξA2
(〈b, f〉, 〈b, t〉, 〈f, b〉, 〈t, b〉) ∈ (A2 \ L4), in which

caseB 3 b′ , ξB(f, g, c, b) = (x|y), where〈x, y〉 ∈ (A2 \ L4) =
({f, t}2 ∪ {b}2), and so either∼Bb′ = b′ ∈ DB, if x = b = y, or,
otherwise, in which casex, y ∈ {f, t}, and sox 6= y, by Claim 5.2(i),
neitherb′ nor ∼Bb′ = (y|x) is in DB, for J 6= ∅ 6= (I \ J). This
contradicts to the∼-negativity ofB. Thus,L4 forms a subalgebra ofA2.
Hence, asJ 6= ∅ 6= (I \ J), e′ , {〈〈w, z〉, (w|z)〉 | 〈w, z〉 ∈ L4} is an
embedding ofA2�L4 intoB.
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Corollary 5.4. LetI be a set,B a submatrix ofAI ,D a∼-classicalΣ-matrix
andh ∈ homS

S(B,D). Then, the following hold:

(i) if {f, t} forms a subalgebra ofA, thenA�{f, t} is isomorphic toD;

(ii) if {f, t} does not form a subalgebra ofA, thenL4 , (A2 \ ({f, t}2 ∪
{b}2)) forms a subalgebra ofA2, whileθA

2�L4 ∈ Con(A2�L4), where-
as(A2�L4)/θA

2�L4 is isomorphic toD.

Proof. In that case,B is both∼-negative and consistent, forB is so, and so is
non-∼-paraconsistent. Consider the respective complementary cases:

(i) {f, t} forms a subalgebra ofA.
Then, by Lemma 5.1(i), there is someg ∈ homS(A�{f, t},B), in which
case(h ◦ g) ∈ homS

S(A�{f, t},D), for any∼-classicalΣ-matrix has
no proper submatrix, and so Example 3.2 and Lemma 3.3 complete the
argument.

(ii) {f, t} does not form a subalgebra ofA.
Then, by Lemma 5.1(ii),L4 forms a subalgebra ofA2, while there is
an embeddinge of E , (A2�L4) into B, in which caseg , (h ◦ e) ∈
homS

S(E ,D), for any∼-classicalΣ-matrix has no proper submatrix, and
so (ker g) ∈ Con(E). On the other hand,(ker g) = θ , θE , for D
is both false- and truth-singular, so, by the Homomorphism Theorem,
g ◦ ν−1

θ is an isomorphism fromE/θ ontoD, as required.

Theorem 5.5. C is∼-subclassical iff either of the following hold:

(i) {f, t} forms a subalgebra ofA, in which caseA�{f, t} is isomorphic to
any∼-classical model ofC, and so defines a unique∼-classical exten-
sion ofC;

(ii) L4 forms a subalgebra ofA2, while θA
2�L4 ∈ Con(A2�L4), in which

case(A2�L4)/θA
2�L4 is isomorphic to any∼-classical model ofC, and

so defines a unique∼-classical extension ofC.

Proof. The “if” part is by (2.7) and the fact that the submatrices ofA[2] ap-
pearing in (i[i]), respectively, are∼-classical.

Conversely, consider any∼-classical modelD of C, in which case it is
finite, and so finitely-generated. Hence, by Lemmas 2.1, 3.3 and Example
3.2, there are some setI, someC ∈ S(A)I , some subdirect productB of it,
in which case this is a submatrix ofAI , and someh ∈ homS

S(B,D). Then,
(2.7) and Corollary 5.4 complete the argument.
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On the other hand, the item (i) of Theorem 5.5 does not exhaust all∼-
subclassical three-valued∼-paraconsistentΣ-logics, as it ensues from:

Example 5.6. Let i ∈ 2, w , 〈i, i〉, Σ , {],∼} with binary], B the∼-
classicalΣ-matrix withB , 2,DB , {1} and(j ]B k) , i, for all j, k ∈ 2,
∼Ab , b and

(a ]A b) ,

{
w if a = b,

b otherwise,

for all a, b ∈ A. Then, we have:

(〈b, a〉 ]A2
〈b, b〉) = 〈w, b〉,

(〈b, b〉 ]A2
〈b, a〉) = 〈b, w〉,

(〈b, a〉 ]A2
〈b, b〉) = 〈w, b〉,

(〈a, b〉 ]A2
〈b, b〉) = 〈b, w〉,

for all a, b ∈ {f, t}. Therefore,L4 forms a subalgebra ofA2 and h ,
χA

2�L4 ∈ homS
S(A2�L4,B), in which caseθA

2�L4 = (kerh) ∈ Con(A2�
L4), and soC is∼-subclassical, by Theorem 5.5. However,(f ]A t) = b, so
{f, t} does not form a subalgebra ofA.

Taking Theorem 5.5 into account, in caseC is∼-subclassical, the unique
∼-classical extension ofC is denoted byCPC.

6 MAXIMAL PARACONSISTENCY

First, asA has no proper∼-paraconsistent submatrix, by Theorems 3.8 and
4.1, we immediately have:

Corollary 6.1. Any∼-paraconsistent three-valuedΣ-logic with subclassical
negation∼ is axiomatically maximally so.

Lemma 6.2. Let B be a finitely-generated∼-paraconsistent model ofC.
Suppose eitherA has a ternaryb-relative conjunction or{b} does not form a
subalgebra ofA. Then,A is embeddable into a strict surjective homomorphic
image ofB.

Proof. Then, by Lemma 2.1 withM = {A}, there are some setI, someI-
tupleC constituted by submatrices ofA, some subdirect productD of C, some
strict surjective homomorphic imageE of B and someg ∈ homS

S(D, E), in
which case, by (2.7),D is∼-paraconsistent, and so there are somea ∈ DD

such that∼Da ∈ DD and someb ∈ (D \DD). Then,D 3 a = (I × {b}).
Consider the following complementary cases:
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1. {b} forms a subalgebra ofA.
Then, A has a ternaryb-relative conjunctionϕ ∈ Fm3

Σ. Put c ,
ϕD(b,∼Db, a) ∈ D, d , ∼Dc ∈ D, J , {i ∈ I | πi(b) = t}
andK , {i ∈ I | πi(b) = f} 6= ∅, for b 6∈ DD. Given anȳa ∈ A3, set
(a0|a1|a2) , ((J×{a0})∪(K×{a1})∪((I\(J∪K))×{a2})) ∈ AI .
Then,a = (b|b|b) andb = (t|f|b). Consider the following exhaustive
subcases:

(a) ϕA(t, f, b) = f,
in which case we havec = (f|f|b) andd = (t|t|b), and so, since
K 6= ∅, while {b} forms a subalgebra ofA, f , {〈e, (e|e|b)〉 |
e ∈ A} is an embedding ofA intoD.

(b) ϕA(t, f, b) = b,
in which case we havec = (b|f|b) andd = (b|t|b), and so, since
K 6= ∅, while {b} forms a subalgebra ofA, f , {〈e, (b|e|b)〉 |
e ∈ A} is an embedding ofA intoD.

2. {b} does not form a subalgebra ofA.
Then, there is someϕ ∈ Fm1

Σ such thatϕA(b) 6= b, in which case
{b, ϕA(b),∼AϕA(b)} = A, and soD ⊇ {a, ϕD(a),∼DϕD(a)} =
{I × {e} | e ∈ A}. Therefore, asI 6= ∅, for b 6∈ DD, f ,
{〈e, I × {e}〉 | e ∈ A} is an embedding ofA intoD.

Then,(g ◦f) ∈ homS(A, E) is injective, by Lemma 3.3 and Remark 4.2.

Theorem 6.3. The following are equivalent [providedC is∼-subclassical]:

(i) C has no proper∼-paraconsistent [∼-subclassical] extension;

(ii) either A has a ternaryb-relative conjunction or{b} does not form a
subalgebra ofA (in particular,∼Ab 6= b, that is,∼∼x0 6∈ C(x0));

(iii) L3 , {〈b, b〉, 〈f, t〉, 〈t, f〉} does not form a subalgebra ofA2;

(iv) A has no truth-singular∼-paraconsistent subdirect square;

(v) A2 has no truth-singular∼-paraconsistent submatrix;

(vi) C has no truth-singular∼-paraconsistent model.

Proof. First, assume (ii) holds. Consider any∼-paraconsistent extensionC ′

of C, in which casex1 6∈ T , C ′({x0,∼x0}) ⊇ {x0,∼x0}, while, by the
structurality ofC ′, 〈Fmω

Σ, T 〉 is a model ofC ′ (in particular, ofC), and so
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is its finitely-generated∼-paraconsistent submatrixB , 〈Fm2
Σ, T ∩ Fm2

Σ〉,
in view of (2.7). Then, by Lemma 6.2 and (2.7),A is a model ofC ′, and so
C ′ = C. Thus, (i) holds.

Next, (iv)⇒(iii) is by the fact∼Ab ∈ {b, t}, (L3 ∩ {b, t}2) = {〈b, b〉} 6=
L3 andπ0[+1][L3] = A, while (iv) is a particular case of (v), whereas (vi)⇒
(v) is by (2.7).

Now, let B ∈ Mod(C) be both∼-paraconsistent and truth-singular, in
which case the rulex0 ` ∼x0 is true inB, and so is its logical consequence
{x0, x1,∼x1} ` ∼x0, not being true inA under[x0/t, x1/b] [but true in any
∼-classical modelC′ of C, for C′ is∼-negative]. Thus, the logic of{B[, C′]}
is a proper∼-paraconsistent [∼-subclassical] extension ofC, so (i)⇒(vi).

Finally, assumeA has no ternaryb-relative conjunction and{b} forms
a subalgebra ofA. In that case,∼Ab = b. Let B be the subalgebra of
A2 generated byL3. If 〈f, f〉 was inB, then there would be someϕ ∈
Fm3

Σ such thatϕA(f, t, b) = f = ϕA(t, f, b), in which case it would be
a ternaryb-relative conjunction forA. Likewise, if either〈b, f〉 or 〈f, b〉
was inB, then there would be someϕ ∈ Fm3

Σ such thatϕA(f, t, b) = f

andϕA(t, f, b) = b, in which case it would be a ternaryb-relative con-
junction for A. Therefore, as∼At = f and∼Ab = b, we conclude that
({〈f, b〉, 〈t, b〉, 〈b, t〉, 〈b, f〉, 〈f, f〉, 〈t, t〉} ∩ B) = ∅. Thus,B = L3 forms a
subalgebra ofA2. In this way, (iii)⇒(ii) holds, as required.

Theorem 6.3(i)⇔(ii[i]) is especially useful for [effective dis]proving the
maximal∼-paraconsistency ofC [cf. Example 8.10].

6.1 Maximal paraconsistency versus subclassical consistent extensions

Theorem 6.4. SupposeC is∼-subclassical [in particular,{f, t} forms a sub-
algebra ofA, in which caseCPC is defined byA�{f, t}; cf. Theorem 5.5(i)].
Then, (iii)⇔(iv)⇒(v)⇔(vi)⇒(i)⇒(ii)⇐ [⇒](iii), where:

(i) C has a consistent non-∼-subclassical (viz, not being a sublogic of
CPC; cf. Theorem 5.5) extension;

(ii) A has no binary conjunction, in which caseC has a proper∼-paracon-
sistent∼-subclassical extension (cf. Theorem 6.3);

(iii) L2 , {〈f, t〉, 〈t, f〉} forms a subalgebra of(A[�{f, t}])2;

(iv) (A[�{f, t}])2 has a truth-empty submatrix;

(v) C [PC] has a truth-empty model;
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(vi) C [PC] has no theorem.

Proof. First of all, note that, the non-“[]”-optional versions of the items ([iii]-
iv) hold if[f] the “[]”optional ones do so.

Next, assumeA has a binary conjunction. Consider any consistent exten-
sionC ′ of C. In caseC ′ is ∼-paraconsistent, by Theorem 6.3,C ′ = C ⊆
CPC. Now, assumeC ′ is non-∼-paraconsistent. Then, asC ′ is consistent, we
havex0 6∈ C ′(∅), while, by the structurality ofC ′, 〈Fmω

Σ, C
′(∅)〉 is a model

ofC ′ (in particular, ofC), and so is its consistent finitely-generated submatrix
B , 〈Fm1

Σ,Fm1
Σ ∩C ′(∅)〉, in view of (2.7). Hence, by Lemma 2.1, there are

some setI, someC ∈ S∗(A)I and some subdirect productD of it such that
B is a strict surjective homomorphic counter-image of a strict surjective ho-
momorphic image ofD, in which caseD is a consistent model ofC ′, in view
of (2.7), and so, a non-∼-paraconsistent submatrix ofAI . Then, by (2.7),
Lemma 5.1 and Theorem 5.5, aΣ-matrix definingCPC is embeddable into
D, in which caseC ′ ⊆ CPC, and so (i)⇒(ii) holds.

Further, [as∼At = f] (iii)⇒ [⇐](ii) as well as (iii)⇔(iv)⇒(v)⇔(vi) are
immediate, by (2.7) and the fact that, by the structurality of anyΣ-logic C ′,
〈Fmω

Σ, C
′(∅)〉 is a model ofC ′.

Finally, assume (v) holds. LetB be a truth-empty model ofC, in which
case the logic ofB is an extension ofC without theorems, and so a consistent
one. Moreover, the rulex0 ` x1 is true inB but is not so in any both consistent
and truth-non-empty (in particular,∼-classical)Σ-matrix, so (i) holds.

As it is demonstrated by the following immediate counterexample, the
item (i) of Theorem 6.4 does not holdunconditionally:

Example 6.5. Let Σ = {∼}, in which case{f, t} forms a subalgebra ofA,
while B = {〈f, t〉, 〈t, f〉} forms a subalgebra ofA2, and so, by Theorems
6.4 and 5.5,C, being∼-subclassical, has a consistent non-∼-subclassical
extension.

7 WEAKLY CONJUNCTIVE THREE-VALUED PARACONSIS-
TENT LOGICS WITH SUBCLASICAL NEGATION

Fix (in addition to∼) any (possibly, secondary) binary connectiveZ of Σ.

Example 7.1. Suppose eitherA is weaklyZ-conjunctive or both{f, t} forms
a subalgebra ofA andA�{f, t} is weaklyZ-conjunctive. Then,(x0 Z x1) is a
binary conjunction forA.
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By Theorems 4.1, 6.3 and Example 7.1, we immediately get the following
corollary, subsuming the reference [Pyn 95b] of [7]:

Corollary 7.2. Any three-valued∼-paraconsistent weaklyZ-conjunctiveΣ-
logic with subclassical negation∼ is maximally∼-paraconsistent.

7.1 Subclassical weakly conjunctive three-valued paraconsistent logics
Remark7.3. If A is weaklyZ-conjunctive, then we have(fZAb) = f = (bZA

f), in which case we get(〈f, b〉 ZA2 〈b, f〉) = 〈f, f〉 6∈ L4 ⊇ {〈f, b〉, 〈b, f〉},
and soL4 does not form a subalgebra ofA2.

By Theorem 5.5 and Remark 7.3, we immediately have:

Corollary 7.4. [Providing C is weaklyZ-conjunctive (viz.,A is so)] C is
∼-subclassical if[f]{f, t} forms a subalgebra ofA, in which caseA�{f, t}
is isomorphic to any∼-classical model ofC, and so defines a unique∼-
classical extension ofC, that is,CPC.

Likewise, by Theorem 6.4 and Remark 7.1, we immediately have:

Corollary 7.5. LetC ′ be a consistent extension ofC. Suppose{f, t} forms a
subalgebra ofA andA�{f, t} is weaklyZ-conjunctive (in particular,A [viz.,
C] is so). Then,A�{f, t} is a model ofC ′ (i.e.,CPC is an extension ofC ′; cf.
Theorem 5.5).

Example 6.5 shows that the condition of the weakZ-conjunctivity cannot
be omitted in the formulation of Corollary 7.5.

8 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION

Fix (in addition to∼ andZ) any (possibly, secondary) binary connectiveY of
Σ.

Lemma 8.1. Let B be a false-singular (in particular,∼-[super-]classical)
Σ-matrix andC ′ the logic ofB. Then, the following are equivalent:

(i) C ′ is Y-disjunctive;

(ii) B is Y-disjunctive;

(iii) (2.2), (2.3)and (2.4)are satisfied inC ′ (viz., are true inB).

Proof. First, (ii)⇒(i)⇒(iii) are immediate. Finally, assume (iii) holds. Con-
sider anya, b ∈ B. In case(a/b) ∈ DB, by (2.2)/(2.3), we have(a YB b) ∈
DB. Now, assume({a, b} ∩DB) = ∅. Then,DB 63 a = b. Hence, by (2.4),
we getDB 63 (a YB a) = (a YB b), so (ii) holds, as required.
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8.1 Disjunctive extensions

By CMP we denote the extension ofC relatively axiomatized by theModus
Ponensrule for thematerial implication∼x0 Y x1:

{x0,∼x0 Y x1} ` x1. (8.1)

Likewise, byCR we denote the extension ofC relatively axiomatized by the
Resolutionrule:

{x0 Y x1,∼x0 Y x1} ` x1. (8.2)

Clearly,CNP ⊆ CMP ⊆ CR, by (2.2), wheneverC is Y-disjunctive. Gener-
ally speaking, the converse inclusions need not hold, as we show below.

Remark8.2. Given anyY-disjunctiveΣ-logic, by (2.4)|(2.3), applying[x1/

x0, x2/x1, x0/x1]|[x1/x0, x0/x1] to (σ+1(2.5)Y x0)|(8.2), any extension of
C ′ satisfies (8.2)|(σ+1(2.5)Y x0), whenever it satisfies(σ+1(2.5)Y x0)|(8.2).
Hence,CR is the extension ofC relatively axiomatized byσ+1(2.5)Yx0.

Theorem 8.3. LetC ′ be an extension ofC. SupposeC is Y-disjunctive (viz.,
A is so; cf. Lemma 8.1). Then, the following are equivalent:

(i) C ′ is∼-classical;

(ii) C ′ is proper, consistent andY-disjunctive;

(iii) {f, t} forms a subalgebra ofA andC ′ is defined byA�{f, t};

(iv) C is∼-subclassical andC ′ = CPC;

(v) C ′ = CR is consistent;

(vi) C ′ is consistent, non-∼-paraconsistent andY-disjunctive.

In particular, CR is consistent iffC is ∼-subclassical, in which caseCR =
CPC. Moreover,C has no consistent non-∼-classical (in particular,∼-para-
consistent) properY-disjunctive [in particular, axiomatic] extension.

Proof. First, (i/ii) is a particular case of (iv/vi) respectively. Next, (i)⇒(ii) is
by Lemma 8.1. Further, (iii)⇒(iv) is by Theorem 5.5.

Now, assume (ii) holds. Then, by Corollary 3.10,C ′ is defined by some
S ⊆ S∗(A), in which caseA 6∈ S 6= ∅. Consider anyB ∈ S. Then,f ∈ B,
forB is consistent, in which caset = ∼Af ∈ B, and so, asB 6= A,B = {f, t}
forms a subalgebra ofA, while S = {A�{f, t}}. Thus, (iii) holds.
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Furthermore, in case (iii) holds, asA is∼-paraconsistent,A�{f, t} is the
only non-∼-paraconsistent member ofS∗(A), and so (v) is by Theorem 3.8
and Remark 8.2.

Finally, (v)⇒(vi) is by Theorem 3.8 and Remark 8.2.

Corollary 8.4. SupposeC is Y-disjunctive (viz.,A is so; cf. Lemma 8.1).
Then, the following are equivalent:

(i) CNP is an axiomatic extension ofC;

(ii) CNP is Y-disjunctive;

(iii) CNP is inconsistent;

(iv) CNP = CR.

Proof. First, (iii)⇒(iv) is by the inclusionCNP ⊆ CR. Next, (iii)⇒(i)⇒(ii)
are immediate. Further, (iv)⇒(ii) is by Theorem 3.8 and Remark 8.2. Finally,
(i)⇒(ii) is proved by contradiction. For supposeCNP is bothY-disjunctive
and consistent. Then, by Theorem 8.3(vi)⇒(iii,v), {f, t} forms a subalgebra
of A, in which caseB , (A × (A�{f, t})) ∈ Mod(C) (cf. (2.7)) is not
∼-paraconsistent, forA�{f, t} is∼-negative, and soB ∈ Mod(CNP), while
CNP = CR, whereas (8.2) is not true inB under[x0/〈b, t〉, x1/〈f, t〉].

8.2 Subclassical disjunctive three-valued paraconsistent logics
First of all, by Theorems 5.5 and 8.3, we immediately have the following
“disjunctive” analogue of Corollary 7.4:

Corollary 8.5. [Providing C is Y-disjunctive (viz.,A is so; cf. Lemma
8.1)] C is∼-subclassical if[f]{f, t} forms a subalgebra ofA, in which case
A�{f, t} is isomorphic to any∼-classical model ofC, and so defines a unique
∼-classical extension ofC, that is,CPC.

Corollary 8.6. SupposeA is A-implicative (and so isYA-disjunctive), where
A is a (possibly, secondary) binary connective ofΣ, andC is∼-subclassical.
Then,CPC is a unique proper consistent axiomatic extension ofC and is
relatively axiomatized by theEx Contradictione Quodlibetaxiom:

∼x0 A (x0 A x1). (8.3)

Proof. In that case, by Corollary 8.5,{f, t} forms a subalgebra ofA, while
B , (A�{f, t}) definesCPC. On the other hand,B is the only consis-
tent proper submatrix ofA. Moreover, it, being both∼-negative andA-
implicative, is a model of (8.3) not being true inA under[x0/b, x1/f], for it
is A-implicative. Then, Theorems 3.8 and 8.3 complete the argument.
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Next, combining Remark 2.3 with Corollaries 8.5 and 7.5, we get the fol-
lowing “disjunctive” analogue of the latter:

Corollary 8.7. SupposeC is Y-disjunctive (viz.,A is so; cf. Lemma 8.1) and
∼-subclassical. Then, any consistent extension ofC is a sublogic ofCPC.

Example 6.5 shows that the condition of theY-conjunctivity cannot be
omitted in the formulation of Corollary 8.7.

On the other hand, Corollary 8.5 equally ensues from Lemma 8.1 and the
following interesting result:

Theorem 8.8. C has a [Ydisjunctive]∼-classical extension (viz., model [cf.
Lemma 8.1]) if[f] {f, t} forms a subalgebra ofA, in which caseA�{f, t}
is isomorphic to any∼-classical model ofC, and so defines a unique∼-
classical extension ofC.

Proof. The “if”+“in which case” part is by Theorem 5.5. [Conversely, let
D be aY-disjunctive∼-classical model ofC. We prove that{f, t} forms
a subalgebra ofA by contradiction. For suppose{f, t} does not form a
subalgebra ofA. Then, by Theorem 5.5,L4 forms a subalgebra ofA2,
B , (A2�L4) beingY-disjunctive, forD is so. Therefore, as〈b, t〉 ∈ DB,
we have{〈b, t〉 YB 〈f, b〉, 〈f, b〉 YB 〈b, t〉} ⊆ DB, in which case we get
{b YA f, f YA b} ⊆ DA, and so we eventually get(〈f, b〉 YB 〈b, f〉) ∈ DB.
This contradicts to the fact that({〈f, b〉, 〈b, f〉}∩DB) = ∅, as required.]

It is remarkable that theY-disjunctivity ofC is not required in the formula-
tion of Theorem 8.8, making it the right algebraic criterion ofC ’s being “gen-
uinely subclassical” in the sense of having agenuinely(viz., functionally-
complete) classical extension.

By Theorems 4.1, 6.3, Lemma 8.1, Corollary 8.5, Example 7.1 and Re-
mark 2.3, we eventually obtain the following one moreuniversalmaximality
result, being essentially beyond the scopes of the reference [Pyn 95b] of [7]:

Corollary 8.9. Any three-valuedY-disjunctive∼-subclassical∼-paracon-
sistentΣ-logic is maximally∼-paraconsistent.

The following counterexample shows that the condition of being∼-sub-
classical in the formulation of Corollary 8.9 is essential:

Example 8.10. Let Σ = {∼[,]]} [where] is binary], while∼Ab = b

[whereas:

(a ]A b) =

{
a if a = b,

b otherwise,
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for all a, b ∈ A, in which case (2.2), (2.3) and (2.4) are true inA, and so, by
Lemma 8.1,C is]-disjunctive, in which case this has no proper]-disjunctive
∼-paraconsistent extension; cf. Theorem 8.3]. But,L3 forms a subalgebra of
A2, so, by Theorem 6.3,C is not maximally∼-paraconsistent [and so is not
∼-subclassical, by Corollary 8.9].

9 THREE-VALUED PARACONSISTENT LOGICS WITH SUBCLA-
SSICAL NEGATION AND LATTICE CONJUNCTION AND DISJ-
UNCTION

A Σ-algebraB is said to be a[distributive] (Z,Y)-lattice, provided it satisfies
[distributive] lattice identities forZ andY, that is,〈B,ZB,YB〉 is a [distribu-
tive] lattice (in the standard algebraic sense; cf. [5]), whose partial ordering
is denoted by≤B.

Throughout this subsection, it is supposed that:

• A is a(Z,Y)-lattice, in which case〈A,≤A〉 is a chain poset for|A| = 3,
and soA is a distributive(Z,Y)-lattice;

• f is the least element of the poset involved or, equivalently,A is Z-
conjunctive/Y-disjunctive, that is,C is so/, in view of Lemma 8.1, and
soC is maximally∼-paraconsistent (cf. Corollary 7.2), while it is∼-
subclassical iff{f, t} forms a subalgebra ofA, in which caseCPC is
defined byA�{f, t} (cf. Corollary 7.4).

Remark9.1. SinceA is Y-disjunctive, whilef is the least element of the poset
〈A,≤A〉, we have(∼(x0Yx1)Yx1) ∈ C(∼x0Yx1). Therefore, any extension
of C satisfies (8.2), whenever it satisfies (8.1). In particular,CMP = CR.

Lemma 9.2. Let I be a finite set,C ∈ S∗(A)I andB a consistent non-∼-
paraconsistent subdirect product ofC. Then,{f, t} forms a subalgebra ofA
andhom(B,A�{f, t}) 6= ∅.

Proof. Then, as〈A,≤A〉 is a chain, we haveb(≤ / ≥)At. Moreover,∼Ab ∈
DA = {b, t}. Therefore,b(≤ / ≥)A∼Ab. Let us prove, by contradiction,
that there is somei ∈ I such thatb 6∈ Ci. For suppose, for eachi ∈ I,
b ∈ Ci. By induction on the cardinality on anyJ ⊆ I, let us prove that there
is somea ∈ (B ∩ {f/t, b}I) includingJ × {b}. First, in caseJ = ∅, by
Lemma 3.1, we haved , (I × {f}) ∈ B, and so(J × {b}) = ∅ ⊆ a ,
(d/∼Bd) = (I × {f/t}) ∈ (B ∩ {f/t, b}I). Now, assumeJ 6= ∅, in which
case there is somej ∈ J ⊆ I, and soK , (J \ {j}) ⊆ I, while |K| < |J |.
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Hence, by induction hypothesis, there is somea ∈ (B ∩ {f/t, b}I) including
K × {b}. Moreover, asj ∈ I, we haveb ∈ Cj = πj [B], in which case
there is someb ∈ B such thatπj(b) = b, and soc , (b(Z/Y)B∼Bb) ∈ B,
while, for everyi ∈ I, πi(c) = b, if πi(b) = b, andπi(c) = (f/t), otherwise,
in which casec ∈ {f/t, b}I , while πj(c) = b, and so, asJ = (K ∪ {j}),
we eventually get(J × {b}) ⊆ (a YB c) ∈ (B ∩ {f/t, b}I), as required.
In particular, whenJ = I, we havea , (I × {b}) ∈ B, in which case we
get{a,∼Ba} ⊆ DB, and soB, being consistent, is∼-paraconsistent. This
contradiction shows that there is somei ∈ I such thatb 6∈ Ci, in which
caseh , (πi�B) ∈ hom(B, Ci), whileCi forms a subalgebra ofA, whereas
Ci = (A�Ci). Finally, asCi is consistent, in which casef ∈ Ci, and so
t = ∼Af ∈ Ci, we eventually conclude thatCi = {f, t}, for b 6∈ Ci.

Theorem 9.3.CNP is consistent iffC is∼-subclassical, in which case{f, t}
forms a subalgebra ofA andCNP is defined byA× (A�{f, t}).

Proof. First, assumeC is∼-subclassical.
Then, any∼-classical extension ofC is a both consistent and non-∼-pa-

raconsistent extension ofC, and so a consistent extension ofCNP, in which
case this is consistent too.

Moreover, by Corollary 7.4,{f, t} forms a subalgebra ofA, in which case
we have theΣ-matrixB , (A × (A�{f, t})). Consider any finite setI, any
C ∈ S∗(A)I and any subdirect productD ∈ Mod(CNP) of C, in which
caseD is not∼-paraconsistent. PutJ , hom(D,B). Consider anya ∈
(D\DD), in which caseD is consistent, and so, by Lemma 9.2, there is some
g ∈ hom(D,A�{f, t}) 6= ∅. Moreover, there is somei ∈ I, in which case
f , (πi�D) ∈ hom(D,A), such thatf(a) 6∈ DA. Then,h , (f × g) ∈ J

andh(a) 6∈ DB. In this way, (
∏

∆J) ∈ homS(D,BJ). Thus, by (2.7)
and Theorem 2.2,CNP is finitely-defined by the six-valuedB, and so, being
finitary, for both the three-valuedC and (2.5) are so, is defined byB.

Conversely, assumeCNP is consistent, in which casex0 6∈ T , CNP(∅),
while, by the structurality ofCNP, 〈Fmω

Σ, T 〉 is a model ofCNP (in par-
ticular, of C), and so is its consistent finitely-generated submatrixB′ ,
〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.7). Hence, by Lemma 2.1, there are some

finite setI, someC ∈ S∗(A)I , some subdirect productD of it, being a strict
surjective homomorphic counter-image of a strict surjective homomorphic
image ofB′, in which case, by (2.7),D is a consistent model ofCNP, so
it is not∼-paraconsistent. Thus, by Lemma 9.2 and Corollary 7.4,C is ∼-
subclassical, as required.
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Lemma 9.4. Suppose{f, t} forms a subalgebra ofA (i.e.,C is∼-subclassi-
cal; cf. Corollary 7.4). Then, ((i)⇒(ii) and) (ii)⇒(iii)⇒(iv), where:

(i) A is regular;

(ii) K3(+1) , {〈f, f〉, 〈b, f〉, (〈b, t〉, )〈t, t〉} forms a subalgebra ofA2;

(iii) CnA�{f,t}(∅) = CnA(∅);

(iv) A is not implicative.

Proof. (First, assume (i) holds. LetD be the subalgebra ofA2 generated by
K4, in which case it is a subalgebra ofA × (A�{f, t}), for {f, t} = π1[K4]
forms a subalgebra ofA. If 〈t, f〉 was inD, there would be someϕ ∈ Fm4

Σ

such that bothϕA(f, b, b, t) = t andϕA(f, f, t, t) = f, in which case, since
a v b, for everya ∈ {f, t}, by the regularity ofA, we would getf v t.
Therefore, as∼B(f/t) = (t/f), we conclude thatD = K4, and so (ii) holds.)

Next, assume (ii) holds, in which case(π0[+1]�K3(+1)) ∈ homS
[S](A2�

K3(+1),A[�{f, t}]), and so (2.7) and (2.8) yield (iii).
Finally, (iii)⇒(iv) is by (2.1) and Corollary 8.6.

Lemma 9.5. Suppose{f, t} forms a subalgebra ofA (i.e.,C is∼-subclassi-
cal; cf. Corollary 7.4). Then, (i)⇔(ii)⇐(iii)⇒(iv), where:

(i) ∼(x0 Z∼x0) 6∈ C(∅);

(ii) neither∼Ab = b (that is,C(x0) = C(∼∼x0)) nor b ≤A t;

(iii) L5 , ((A× {f, t}) \ {〈b, f〉}) forms a subalgebra ofA2;

(iv) CNP has a proper non-axiomatic extension being both that ofC and a
proper sublogic ofCMP, being, in its turn, an axiomatic extension ofC,
and so ofCNP.

Proof. First, (i)⇔(ii) is immediate.
Next, if (∼Ab = b)/(b ≤A t), then we have(∼A2〈b, t〉/(〈b, t〉 ZA2

〈t, f〉)) = 〈b, f〉 6∈ L5, in which caseL5 ⊇ {〈b, t〉, 〈t, f〉} does not form a
subalgebra ofA2, and so (iii)⇒(ii) holds.

Further, assume (iii) holds, in which case (ii) holds too, as it has been
proved above. Then, by (2.7) and Theorem 9.3, the consistentΣ-logic C ′ of
the consistent submatrixD , (A2�L5) of B , (A2�(A × {f, t})), defining
CNP, is a consistent extension ofC [NP] and so a sublogic ofCPC = CMP (cf.
Corollary 7.5, Theorem 8.3 and Remark 9.1). Moreover, (8.1) is not true inD

30



under[x0/〈b, t〉, x1/〈f, t〉], and soC ′ is a proper sublogic ofCMP. And what
is more, since, for alla ∈ D = L5, it holds that(∼Da ∈ DD) ⇒ (a = 〈f, f〉),
whileA is Y-disjunctive, whereasf 6∈ DA, we conclude that

{∼x0, x0 Y x1} ` x1 (9.1)

is true inD. However, (9.1) is not true inB under[x0/〈b, f〉, x1/〈f, t〉], and
soC ′ is a proper extension ofC [NP]. In addition,(π0�D) ∈ homS(D,A), in
which case, by (2.8), we haveC(∅) ⊆ CNP(∅) ⊆ C ′(∅) ⊆ C(∅), and so
C ′ is not an axiomatic extension ofC [NP]. Finally, by (ii),A is ¬-negative,
where¬x0 , ∼(x0 Z (∼∼x0 Y∼x0)), in which case it, beingY-disjunctive,
is A-implicative, where(x0 A x1) , (¬x0 Y x1), and so Corollary 8.6
completes the argument of (iv), as required.

Lemma 9.6. LetC ′ be an extension ofC. Suppose(8.1) is not satisfied in
C ′ andL5 does not form a subalgebra ofA2 (in particular,∼(x0 Z ∼x0) ∈
C(∅), i.e., either∼Ab = b — that is,C(x0) = C(∼∼x0) — or b ≤A t; cf.
Lemma 9.5(iii)⇒(ii)⇔(i)). Then,C ′ is a sublogic ofCNP.

Proof. The case, whenCNP is inconsistent, is evident. Otherwise, by Theo-
rem 9.3,C is ∼-subclassical, in which case{f, t} forms a subalgebra ofA,
CNP being defined by the submatrixB , (A × (A�{f, t})) of A2, and so
it suffices to prove thatB ∈ Mod(C ′). On the other hand, asC ′ does not
satisfy (8.1), by Theorem 2.2, there are some finite setI, someC ∈ S∗(A)I

and some subdirect productD ∈ Mod(C ′) of it not being a model of (8.1), in
which case there are somea ∈ DD ⊆ {b, t}I and someb ∈ (D \DD) such
that(∼Da YD b) ∈ DD, and soJ , {i ∈ I | πi(a) = b} ⊇ K , {i ∈ I |
πi(b) = f} 6= ∅. PutL , {i ∈ I | πi(b) = t}. Then, given anȳa ∈ A5, set
(a0|a1|a2|a3|a4) , ((((I \ (L∪K))∩J)×{a0})∪ ((I \ (L∪J))×{a1})∪
((L \ J)× {a2}) ∪ ((L ∩ J)× {a3}) ∪ (K × {a4})) ∈ AI . In this way:

D 3 a = (b|t|t|b|b), (9.2)

D 3 b = (b|b|t|t|f). (9.3)

Moreover, by Lemma 3.1, we also have:

D 3 f , (f|f|f|f|f), (9.4)

D 3 ∼Df = (t|t|t|t|t). (9.5)

Consider the following exhaustive (as∼Ab ∈ DA = {b, t}) cases:
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1. ∼Ab = b.
Then, in caseb ≤A t, by (9.2) and (9.3), we have:

D 3 e , (a ZD b) = (b|b|t|b|f), (9.6)

D 3 ∼De = (b|b|f|b|t), (9.7)

D 3 c , (e YD ∼Db) = (b|b|t|b|t), (9.8)

D 3 ∼Dc = (b|b|f|b|f). (9.9)

Likewise, in caseb(≤ / ≥)At, by (9.2) and (9.6)/(9.3), we have:

D 3 d , ((e/b) YD ∼Da) = (b|b|t|b|b), (9.10)

D 3 ∼Dd = (b|b|f|b|b). (9.11)

Consider the following complementary subcases:

(a) L ⊆ J .
Then, sinceI ⊇ K 6= ∅ = (L \ J), by (9.4), (9.5) and (9.10),
〈g, I × {g}〉 | g ∈ A} is an embedding ofA into D, in which
case, by (2.7),A is a model ofC ′, for D is so, and so isB, for
{f, t} forms a subalgebra ofA.

(b) L * J .
Then, consider the following complementary subsubcases:

i. there is someϕ ∈ Fm2
Σ such thatϕA(b, f) = f andϕA(f, f)

= t,
in which case, by (9.4) and (9.11), we have:

D 3 ϕD(∼Dd, f) = (f|f|t|f|f), (9.12)

D 3 ∼DϕD(∼Dd, f) = (t|t|f|t|t). (9.13)

Then, since(L \ J) 6= ∅ 6= K, taking (9.4), (9.5), (9.10),
(9.11), (9.12) and (9.13) into account, we see that

{〈〈g, h〉, (g|g|h|g|g)〉 | 〈g, h〉 ∈ B}

is an embedding ofB intoD, and so, by (2.7),B is a model
of C ′, forD is so.

ii. there is noϕ ∈ Fm2
Σ such thatϕA(b, f) = f andϕA(f, f) =

t,
Then,b ≤A t, for, otherwise, we would havet ≤A b, in
which case we would getϕA(b, f) = f andϕA(f, f) = t,
whereϕ , ∼(x0 Z ∼x1) ∈ Fm2

Σ. Consider the following
complementary subsubsubcases:
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A. (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) = ∅.
Then, taking (9.6), (9.7), (9.8), (9.9), (9.10) and (9.11)
into account, asK 6= ∅ 6= (L \ J), we conclude that
{〈〈g, h〉, (b|b|h|b|g)〉 | 〈g, h〉 ∈ B} is an embedding of
B intoD, and so, by (2.7),B is a model ofC ′, for D is
so.

B. (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅.
Let G be the subalgebra ofB × A generated by(B u
2) , ((B × {b}) ∪ {〈〈i, i〉, i〉 | i ∈ {f, t}}). Then, as
(((I \ (L ∪ K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6=
∅ 6∈ {K,L \ J}, by (9.4), (9.5), (9.6), (9.7), (9.8), (9.9),
(9.10) and (9.11), we see that{〈〈〈g, h〉, j〉, (j|j|h|j|g)〉 |
〈〈g, h〉, j〉 ∈ G} is an embedding ofG , ((B × A)�G
intoD, in which case, by (2.7),G is a model ofC ′, forD
is so. Let us prove, by contradiction, that((DB ×{f})∩
G) = ∅. For suppose((DB × {f}) ∩ G) 6= ∅. Then,
there is someψ ∈ Fm8

Σ such thatψA(t, b, b, b, b, b, b, f)
= f andψA(t, t, t, t, f, f, f, f) = t, for π1[DB] = {t}.
Let ϕ , (∼x1,∼x0,∼x0,∼x0, x0, x0, x0, x1) ∈ Fm2

Σ.
Then,ϕA(b, f) = f andϕA(f, f) = t. This contradic-
tion shows that((DB × {f}) ∩ G) = ∅, in which case
(π0�G) ∈ homS

S(G,B), and so, by (2.7),B is a model of
C ′, for G is so.

2. ∼Ab = t,
Consider the following exhaustive (as〈A,≤A〉 is a chain poset) sub-
cases:

(a) b ≤A t.
Then, by (9.2) and (9.3), we get:

D 3 c′ , (a YD b) = (b|t|t|t|b), (9.14)

D 3 d′ , ∼Dc′ = (t|f|f|f|t), (9.15)

D 3 e′ , ∼Dd′ = (f|t|t|t|f), (9.16)

D 3 f ′ , (c′ ZD d′) = (b|f|f|f|b). (9.17)

Consider the following complementary subsubcases:

i. ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) = ∅.
Then, sinceI ⊇ K 6= ∅, by (9.4), (9.5) and (9.14), we see
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that{〈g, I × {g}〉 | g ∈ A} is an embedding ofA intoD, in
which case, by (2.7),A is a model ofC ′, forD is so, and so
isB, for {f, t} forms a subalgebra ofA.

ii. ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) 6= ∅.
Then, asK 6= ∅, by (9.4), (9.5), (9.14), (9.15), (9.16) and
(9.17), we conclude that{〈〈g, h〉, (g|h|h|h|g)〉 | 〈g, h〉 ∈ B}
is an embedding ofB intoD, in which case, by (2.7),B is a
model ofC ′, forD is so.

(b) t ≤A b.
Then, by (9.2) and (9.3), we get:

D 3 c′′ , (a YD b) = (b|b|t|b|b), (9.18)

D 3 d′′ , ∼Dc′′ = (t|t|f|t|t), (9.19)

D 3 e′′ , ∼Dd′′ = (f|f|t|f|f). (9.20)

Consider the following complementary subsubcases:

i. L ⊆ J .
Then, asK 6= ∅ = (L\J), taking (9.4), (9.5) and (9.18) into
account, we see that{〈g, I × {g}〉 | g ∈ A} is an embedding
of A intoD, in which case, by (2.7),A is a model ofC ′, for
D is so, and so isB, for {f, t} forms a subalgebra ofA.

ii. L * J .
Then, asL5 does not form a subalgebra ofA2, and so of its
subalgebraB, there is someϕ ∈ Fm5

Σ such thatϕA(f, t, f,
b, t) = b andϕA(f, f, t, t, t) = f, in which case, by (9.4),
(9.5), (9.18), (9.19) and (9.20), we get:

D 3 f ′′ , ϕD(f, d′′, e′′, c′′,∼Df) = (b|b|f|b|b), (9.21)

and so, asK 6= ∅ 6= (L \ J), taking (9.4), (9.5), (9.18),
(9.19), (9.20) and (9.21) into account, we see that

{〈〈g, h〉, (g|g|h|g|g)〉 | 〈g, h〉 ∈ B}

is an embedding ofB intoD, in which case, by (2.7),B is a
model ofC ′, forD is so.

Theorem 9.7. SupposeC is [not] non-∼-subclassical. Then, extensions of
C form the(2[+2])-element chainC ( CNP = [CnωA×(A�{f,t}) (]CMP|R =
[CPC = CnωA�{f,t} (] Cnω∅, CNP [not] being axiomatic/Y-disjunctive, [iff
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L5 does not form a subalgebra ofA2 (in particular,∼(x0 Z ∼x0) ∈ C(∅),
i.e., either∼Ab = b — that is,C(x0) = C(∼∼x0) — or b ≤A t), in
which caseCPC is Y-disjunctive, while, providingA is A-implicative, where
A ∈ Fm2

Σ,/ K3(+1) forms a subalgebra ofA2 (in particular, A is regular),
CPC is relatively axiomatized by(8.3)/CPC(∅) = C(∅), in which caseCPC

is an axiomatic extension ofC/ both proper consistent extensions ofC are not
axiomatic, and soC has a unique/no proper consistent axiomatic extension].

Proof. By Theorems 8.3, 9.3, Lemmas 9.4, 9.5, 9.6, Corollaries 7.2, 7.4, 7.5,
8.4, 8.6 and Remark 9.1.

Concluding this subsection, we briefly discuss various representative in-
stances, assuming thatΣ ⊇ Σ(⊃)

∼[,01] , ({∧,∨(,⊃)[,⊥,>]}), where both∨
and∧ (as well as⊃) are binary [while both⊥ and> are nullary, whereas
⊥A = f and>A = t].

First of all, taking Corollary 4.5 into account, the case, when∼Ab = b,
Z = ∧, Y = ∨ andb ≤A t, covers arbitrarythree-valuedexpansions of the
Σ∼-logic of paradoxLP [6] (cf. [7] for the equivalent matrix definition of
it tacitly used here), including those by constants — as regular ones — (in
particular, theboundedΣ∼,01-expansionLP01 of LP ) as well as arbitrary
three-valuedexpansions of theΣ⊃

∼-logic of antinomiesLA [1], when(ā ⊃A

b̄) = 〈max(1− a0, b0),max(1− a0, b1)〉, for all ā, b̄ ∈ A, in which caseA is
⊃-implicative (in particular, theboundedΣ⊃

∼,01-expansionLA01 of LA). In
this way, Theorem 9.7 subsumes respective results obtained originally in [7],
[8] and [11]ad hoc. Moreover, this case covers the axiomatic extensions of
arbitrary non-maximally∼-paraconsistent four-valued logics studied in [12]
by theExcluded Middle Lawaxiomx0 ∨ ∼x0 includingL(P/A)[01].

Likewise, taking Corollary 4.5 into account, the case, when∼Ab = b and
A is a (∧,∨)-lattice with zerob and unitt (in which caseA is neither∧-
conjunctive nor∨-disjunctive, though), and so a(Z,Y)-lattice, whereZ = ∧̃
andY = ∨̃ (cf. Remark 2.3), with zerof and unitb (it is this non-artificial
instance that warrants regarding the case, whent ≤A b), in which caseA is
A-implicative, where(x0 A x1) , ((∼x0 ∧ ∼x1) ∨ x1), covers arbitrary
three-valuedexpansions of theΣ∼-logic HZ [3]. In this way, Theorem 9.7
subsumes respective results obtained originally in [9] and [11]ad hoc.

And what is more, the case, when∼Ab = t, in which case∼A is not
regular,Z = ∧, Y = ∨ andb ≤A t (as well as(a ⊃A b) = min{c ∈ A |
b 6 max(c, a)}, for all a, b ∈ A), in which case, whenΣ = Σ(⊃)

∼,01, {f, t}
forms a subalgebra ofA, whileK3{+1} does{not} form a subalgebra ofA2

— it is this case that warrants involvingK3 in addition toK4, and soA is not
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(⊃-)implicative, in view of Lemma 9.4, is equally covered by Theorem 9.7.
In this connection, the subcase, whenΣ = Σ(⊃)

∼,01, and soC is actually dual
— via both the lattice duality and the truth predicate complement — to the
Σ∼,01-fragment of (resp., to) G̈odel’s three-valued logic [2] (itself), deserves
a particular emphasis. Then,{f, t} forms a unique subalgebra ofA, while
A2 , (A�{f, t}) satisfies the identity:

(x0 ∧ ∼x0) ≈ ⊥, (9.22)

not being true inA under[x0/b]. Therefore, that subprevarietyP2 of the pre-
variety P3 generated byA, which is relatively axiomatized by the (9.22),
is generated byA2 — the reader is referred to [8] as for the conception
of prevariety. Moreover,A/A2 is embeddable into any/ non-one-element
member of(P3 \ P2)/P2, respectively. Hence,P2 is the only subprevari-
ety of P3 distinct from this and containing a non-one-element algebra. On
the other hand, according to Theorem 9.7,C has two distinct proper con-
sistent extensions. In this way, as opposed to the above instances, when
DA = {a ∈ A | A |= (x0 ≈ (x0 ∨ ∼x0)[a]}, the general study [8] is
not applicable to the one under consideration. This highlights a particular
value of Theorem 9.7 as well as of the case involved, though being, to some
extent, rather artificial.

After all, the following counterexample collectively with Lemma 9.5(iii)
⇒(iv) show that the condition ofL5’s not forming a subalgebra ofA2 cannot
be omitted in the formulations of Lemma 9.6 and Theorem 9.7:

Example 9.8. Let Σ = Σ∼, ∼Ab = t, Z = ∧, Y = ∨ andf ≤A t ≤A b,
in which case{f, t} forms a subalgebra ofA (i.e., C is ∼-subclassical; cf.
Corollary 7.4), whileL5 forms a subalgebra ofA2.

10 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION AND CLASSICALLY-VAL-
UED CONNECTIVES

An n-ary, wheren ∈ ω, operationf onA is said to beclassically-valued, if
(img f) ⊆ {f, t}.

Throughout this subsection, it is supposed thatC is Y-disjunctive (that
is,A is so; cf. Lemma 8.1) and all primary operations ofA are classically-
valued, in which case:

• ∼Ab = t;
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• {f, t} forms a subalgebra ofA, and soC is both∼-subclassical (cf.
Corollary 8.5) and maximally∼-paraconsistent (cf. Corollary 8.9);

• A is both¬-negative,Z-conjunctive andA-implicative, where:

¬x0 , ∼(x0 Y x0),

(x0 Z x1) , ¬(¬x0 Y ¬x1),

(x0 A x1) , (¬x0 Y x1),

and soCPC is an extension of any consistent extension ofC (cf. Corol-
lary 7.5) and the only proper consistent axiomatic extension ofC (cf.
Corollary 8.6), whileεA

∼ , {∼ixj A ∼ix1−j | i, j ∈ 2} is an ax-
iomatic binary equality determinant forA (cf. Remark 4.2).

It is remarkable thatYA = YA
A, while the⊃-implicative∼-super-classical

{∼,⊃}-matrixS with ∼Sb = t and⊃S = AA defines the{∼,⊃}-logic P 1

[13]. In this way,P 1 is a term-wise definitionally minimal instance of the
case under consideration.

Theorem 10.1. There is an increasing countable chain of finitary extensions
of C, and so such finitary extension ofC that is not (relatively) finitely-
axiomatizable, in which case this is consistent.

Proof. We use Theorem 2.2 withK , Mod(C) tacitly.
Let n ∈ (ω \ 1) andCn the finitary (forC, being three-valued, is so) ex-

tension ofC relatively axiomatized by the finitary ruleRn , (({∼xi | i ∈
n}∪{Y〈xi〉i∈n}) ` xn). Then, asC, beingY-disjunctive, satisfies (2.3), and
so does anyB ∈ K, whenRn is not true inB under anyv : Vn+1 → B, for ev-
erym ∈ (ω\n),Rm is not true inB underv∪[xj/v(x0);xm/v(xn)]j∈(m\n).
So,〈Cn〉i∈n is an increasing denumerable chain of finitary extensions ofC.

Claim 10.2. For anyn ∈ (ω \ (1(+1))), there is a consistent subdirectn-
powerAn ∈ Mod(C) of A such thatRn is [not] true in An+1[−1] (and
DAn = {n× {t}}).

Proof. Since all primary operations ofA are classically-valued, the setAn ,
({f, t}n ∪ {{〈i, b〉} ∪ ((n \ {i}) × {f}) | i ∈ n}) 3 (n × {f}) forms a
subalgebra ofAn, so we have the consistent (forn 6= 0) subdirectn-power
An , (An�An) ∈ Mod(C) (cf. (2.7)) ofA with DAn = {n × {t}},
whenevern 6= 1. Then, asA is Y-disjunctive,Rn is not true inAn under
[xi/({〈i, b〉}∪ ((n \ {i})×{f}));xn/(n×{f})]i∈n but is true inAn+1.

37



Then, by Claim 10.2, the increasing chain〈Cn〉n∈(ω\1) is injective, and
so countable, in which case the finitary (for bothC, being three-valued, and
all Rn, n ∈ (ω \ 1), are so) extensionCω of C relatively axiomatized by
{Rn | n ∈ (ω \ 1)} is a proper extension ofCn, for anyn ∈ (ω \ 1), and so,
by the Compactness Theorem for classes of algebraic systems closed under
ultra-products (cf. [5]) — in particular, finitary logic model classes, being
universal Horn model classes axiomatized by calculi of all rules satisfied in
finitary logics,Cω is not (relatively) finitely axiomatizable, as required.

As it has been demonstrated in the previous section, the condition ofA’s
primary operations’ being classically-valued cannot be omitted in the formu-
lation of Theorem 10.1. It is remarkable thatR1 = (2.5), in which case
C1 = CNP, while Cω, being a consistent extension ofC, is a sublogic of
CPC, and so the infinite chain involved appears intermediate betweenCNP

andCPC, in contrast to Theorem 9.7. And what is more, we have:

Proposition 10.3. There is noϕ ∈ Fm2
Σ such that the identities:

ϕ(x0, x0) ≈ x0, (10.1)

ϕ(x0, x1) ≈ ϕ(x1, x0) (10.2)

are true inA.

Proof. By contradiction. For suppose there is someϕ ∈ Fm2
Σ such that

(10.1) and (10.2) are true inA. Then,ϕ ∈ V2, for, otherwise, (10.1) would not
be true inA under[x0/b], because all its primary operations are classically-
valued. However, in that case, (10.2) is not true inA under[x0/f, x1/t]. This
contradiction completes the argument.

This makes the present section essentially disjoint with Section 9. In addi-
tion, in contrast to Lemma 9.2, we have:

Lemma 10.4. B , A2 ∈ Mod(CMP) ⊆ Mod(CNP) (cf. Claim 10.2) is a
consistent subdirect square ofA such thathom(B,A�{f, t}) = ∅.

Proof. Then,B , A2 ∈ Mod(C) is a consistent subdirect square ofA.
Moreover, as2 6∈ 2, DB = {〈t, t〉}, while, for everyb ∈ B, it holds that
(∼B〈t, t〉 YB b) = (〈f, f〉 YB b) ∈ DB implies b ∈ DB, in view of theY-
disjunctivity ofA and the fact thatf 6∈ DA. Hence, (8.1) is true inB. Finally,
let us prove, by contradiction, thathom(B,A�{f, t}) = ∅. For suppose
hom(B,A�{f, t}) 6= ∅. Take anyh ∈ hom(B,A�{f, t}), in which case
h(〈t, t〉) = t, for 〈t, t〉 ∈ DB. Therefore, if, for anya ∈ {〈b, f〉, 〈f, b〉} ⊆ B,
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it did hold thath(a) = t, we would havef = ∼At = h(∼Ba) = h(〈t, t〉) =
t. Hence,h(〈b, f〉) = f = h(〈f, b〉). Then, we getf = (f YA f) = h(〈b, f〉 YB

〈f, b〉) = h(〈t, t〉) = t. This contradiction completes the argument.

As a consequence, in contrast to Theorem 9.3/both Theorem 8.3 and Re-
mark 9.1, we get:

Corollary 10.5. CNP/MP is not defined byD , ((A × (A�{f, t}))/(A�{f,
t}))./ In particular,CMP 6= CR is notY-disjunctive.

Proof. By contradiction. For supposeCNP/MP is defined byD. Then, by
Lemma 10.4,B , A2 ∈ Mod(CNP/MP) is a consistent subdirect square
of A such thathom(B,A�{f, t}) = ∅, in which case it is finite, forA is
so, and so is a finitely-generated consistent model ofCNP/MP/, in which
case this is consistent. Therefore, by Lemmas 2.1, 3.3, 3.4 and 3.6, there
are some setI, someC ∈ S(D)I , some subdirect productE of it and some
g ∈ homS

S(E ,B), in which caseE is consistent, forB is so (cf. (2.7)), and so
I 6= ∅. On the other hand, by Lemmas 3.3, 3.4 and 3.6,g is injective, and so
((π1/∆{f,t}) ◦ πi ◦ g−1) ∈ hom(B,A�{f, t}) = ∅, wherei ∈ I 6= ∅. This
contradiction/ and Theorem 8.3 completes/complete the argument.

Finally,P 1 collectively with Theorem 10.1 show that, despite of Theorem
9.7, three-valued (even both conjunctive, disjunctive and subclassical) para-
consistent logics with subclassical negation need not have finitely many (even
merely finitary) extensions.

11 CONCLUSIONS

Aside from quite useful non-trivial general results and their numerous illus-
trative applications, the present paper (like [12]) demonstrates a special value
of the conception of equality determinant initially suggested in [10] just for
the sake of construction oftwo-sidesequent calculi formany-valued logics,
within the framework ofalgebraic aspects of MVL.

And what is more, the principal advance of the present study with regard
to the reference [Pyn 95b] of [7] consists in proving both the maximal para-
consistency of subclassical disjunctive three-valued paraconsistent logics and
inheritance of the maximal paraconsistency bythree-valuedexpansions of
maximally paraconsistent three-valued logics with subclassical negation, be-
cause both paraconsistency, subclassical negation and ternaryb-relative con-
junction are inherited by expansions, while the property of being subclassical
is not, generally speaking, so.
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After all, various effective algebraic criteria definitely make the paper
well-related toSoft Computing.
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