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Abstract—In a complex and constantly evolving environment, 

decision-making has become a major challenge for organizations, 

governments, and individuals. Faced with this complexity, Multi-

Criteria Decision Making (MCDM) methods have proven to be 

valuable tools. Among them, the TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) technique stands out 

for its ability to provide informed and justified decisions. This issue 

is particularly relevant in the automotive industry, where 

resistance spot welding plays a critical role in the assembly of car 

bodies. However, the choice of optimal welding parameters 

requires taking into account many conflicting criteria. In this 

conference paper, we will present the results of training an 

artificial neural network, with the objective of classifying and 

validating weld spots according to their dimensions, indentations, 

and sheet thicknesses. This innovative approach aims to optimize 

the resistance spot welding process in the automotive industry, 

leveraging the advancements in artificial intelligence. 
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I. INTRODUCTION  

The automotive industry, whether in Morocco or 
internationally, is constantly evolving [1 - 6]. The quality of 
resistance spot welding (RSW) is of crucial importance in the 
manufacturing of safe and reliable vehicles. RSW is widely used 
in automotive production to assemble metal components such as 
car bodies and chassis, due to its efficiency, speed, and low cost. 
Each vehicle can contain between 6,000 and 7,000 welding 
points, and the total number per day can reach 7 million welding 
points on a production line [7 - 11]. However, ensuring the 
quality of RSW remains a major challenge due to the complexity 
of welding parameters and variations in materials and 
manufacturing conditions. In this context, multi-criteria 
decision-making (MCDM) methods offer a promising approach 
to evaluate and optimize welding parameters to improve the 
quality of RSW. These methods allow for the consideration of 
various criteria to select the optimal welding parameters. The 
technique for order preference by similarity to an ideal solution 
(TOPSIS) is one of the most commonly used MCDM techniques 

to evaluate alternatives and identify the best solution. In this 
approach, TOPSIS compares each alternative to an ideal and 
anti-ideal criterion, and then calculates the Euclidean distance 
between each alternative and these two references to rank them 
in order of preference [12 - 20]. In the field of automotive 
manufacturing, the integration of artificial neural networks 
(ANNs) into multi-criteria decision-making (MCDM) methods 
offers new perspectives for the optimization of resistance spot 
welding (RSW). ANNs are capable of learning from complex 
data and modeling nonlinear relationships between the studied 
parameters and the performance of RSW. In 2014, a study 
examined the use of an artificial neural network (ANN) to 
optimize the resistance welding (RSW) parameters of the 6061-
T6 aluminum alloy  [21]. In 2021, another study focused on 
predicting the contact resistance of spot-welded joints on three-
sheet zirconium assemblies using ultrasonic simulations and an 
artificial neural network (ANN). This study concluded that the 
combination of numerical simulation and ANNs proved 
effective for the prediction and optimization of resistance 
welding of multi-materials [22]. In this study, we propose to 
combine Artificial Neural Networks (ANNs) with the TOPSIS 
(Technique for Order of Preference by Similarity to Ideal 
Solution) method to develop a more accurate prediction model 
aimed at classifying and validating the quality of welding points. 
This synergy capitalizes on the learning capabilities of ANNs to 
apprehend complex structures, while integrating the robustness 
and efficiency of the TOPSIS method in multi-criteria decision-
making. Thus, welding processes can be optimized in a more 
targeted and efficient manner, resulting in significant 
improvements in terms of quality and productivity. 

Input data, such as diameter and indentation, are collected 
using the ultrasonic technique with a Resistance Spot Weld 
Analyzer (RSWA) device (2D Matrix Array Technology) [23]. 
Sheet metal thickness is automatically deduced by subtracting 
the indentation from the total sheet metal thickness. 

Regarding the weighting of each criterion, we first defined 
the relative importance of each criterion compared to the others. 
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Then, we calculated the geometric mean of these relative 
importances for each criterion. It is from these geometric means 
that we determined the final weighting of each criterion [24]. 

II. METHODOLOGY 

A. Multi-Criteria Decision Making (MCDM) 

MCDM is a powerful tool that allows complex decisions to 
be made in a more structured and transparent manner. Although 
it requires specific skills, its many advantages make it an 
increasingly used method in various fields. To implement the 
MCDM approach, we need to clearly define the problem, 
identify the possible alternatives, determine the relevant 
evaluation criteria and their importance, evaluate the 
performance of each alternative, and then aggregate these 
evaluations to obtain a ranking or selection, as illustrated in the 
overall approach shown in Fig. 1. 

 

 MCDM presents a multitude of advantages, namely the 
consideration of the complexity of real problems, the structuring 
and formalization of the decision-making process, the promotion 
of stakeholder participation, the identification of the best 
compromises, and the improvement of the quality and 
justification of decisions. However, it also has disadvantages and 
limitations, such as the subjectivity in the weighting of criteria, 
the complexity of data collection and aggregation, the risk of 
being perceived as a "black box", and the sensitivity of the 
results to assumptions and input data[13], [23 - 29]. 

B. TOPSIS method 

The TOPSIS (Technique for Order Preference by Similarity 
to Ideal Solution) method is a multi-criteria analysis tool 
(MCDM) that aims to identify the best alternative among a set 
of options. Its principle is to select the alternative closest to the 
positive ideal solution and farthest from the negative ideal 
solution [30 - 38], as illustrated in Fig. 1:  

 

Fig.  1. TOPSIS Diagram 

 The application of the TOPSIS method begins by 
constructing the decision matrix 𝑋 = [𝑥𝑖𝑗] where  𝑥𝑖𝑗represents 

the performance of alternative i with respect to criterion j. Then, 
the normalization of this matrix to obtain comparable values, 

where 𝑅 = [𝑟𝑖𝑗], the normalized matrix with 𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

1
2

   (1)  

Then it proceeds to determine the weighted matrix                

𝑉 = [𝑣𝑖𝑗]  ;  V = (vij) = ωj × rij          (2) 

Where 𝜔𝑗  is the weight of criterion j. 

We then determine the positive ideal solutions                   
𝐴+  =  {𝑎1

+, 𝑎2
+, 𝑎3

+ … , 𝑎𝑛
+} and We then determine the negative 

ideal solutions 𝐴− =  {𝑎1
−, 𝑎2

−, 𝑎3
− … , 𝑎𝑛

−}. 

Then, for each alternative, we calculate the Euclidean 
distances to these two solutions D+ et D- : 
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Finally, we calculate the relative proximity coefficient Pf :   

𝑃𝑓 =
𝐷𝑖

−

𝐷𝑖
−+𝐷𝑖

+   (5) 

The final ranking of the alternatives is then done in 
descending order of this Pf coefficient, with the best alternative 
being the one whose value is closest to 1. 

C. Artificial Neural Networks (ANN) 

They are machine learning models inspired by the 
functioning of the human brain. They are composed of multiple 
layers of interconnected neurons that learn to perform specific 
tasks from training data, where each neuron receives inputs, 
performs simple mathematical operations (such as a weighted 
sum followed by an activation function), and produces an output 
that is transmitted to the neurons of the next layer. The weights 
of the connections between the neurons are adjusted iteratively 
during the learning phase to minimize the error between the 
model's predictions and the target values, as seen in equation (6) 
and Fig. 2  [39 - 49]. 

𝑦 = 𝑓(∑ 𝜔𝑛𝑖 × 𝑥𝑖 + 𝑏)   (6)

𝑛

1

 

 

Fig.  2. Process ANN 

The learning of a neural network consists of adjusting its 
parameters (weights and biases) in order to minimize the cost 
function that reflects the difference between the model's outputs 
and the target values. This adjustment of the parameters is 
generally done by an iterative optimization method, such as 
gradient descent, as shown in equations (7) and (8). 

    𝜔𝑛𝑖 ←  (𝜔𝑛𝑖 −  𝜗
𝜕𝐿

𝜕𝜔𝑛𝑖

)   (7) ;  𝑏 ← (𝑏 − 𝜗
𝜕𝐿

𝜕𝑏
)   (8) 

D. K-Fold Cross-Validation. 

Since its introduction by M. Stone in 1974 [52], the K-fold cross-

validation method has seen the emergence of several distinct 

variants. These include the stratified K-fold cross-validation 

variant, which ensures a balanced distribution of classes within 

the datasets [53]. There is also nested K-fold cross-validation, an 

approach known for its usefulness in hyperparameter 

optimization and selecting the most performing models  [54]. In 

addition, repeated K-fold cross-validation is distinguished by its 

ability to provide a more stable and reliable estimate of the 

performance of the evaluated models  [55]. Moreover, group-



based cross-validation is particularly suitable for the accurate 

evaluation of data with a grouped structure [56]. Finally, block-

based cross-validation is particularly useful for the fine 

evaluation of time-series data [57]. Thus, these different variants 

of K-fold cross-validation offer specific advantages depending 

on the characteristics and structure of the data to be analyzed. 

Applications of the K-fold method include modeling a 

photovoltaic-thermal (PV/T) air system using machine learning 

techniques [58], optimizing the parameters of the friction stir 

welding process for AA2050-T8 aluminum alloy [59], automatic 

detection of porosity in welds made by the pulsed gas tungsten 

arc welding (P-GTAW) process, used in particular in the nuclear 

industry [60], and automatic classification of Hindi poems into 

3 categories (romance, courage, sadness) using machine learning 

techniques [61]. The principle of applying K-fold cross-

validation is to provide a reliable and robust estimate of the 

performance of a model, taking into account the variability of 

the results. It is widely used to evaluate and compare the 

performance of different models on the same dataset. Its 

principle consists of dividing the provided data into K subsets of 

equal (or approximately equal) size, of which the model is 

trained K times, using K-1 subsets for training and the remaining 

subset for testing [62], see Fig. 3: 

 

Fig.  3. K-Fold cross validation 

E. Evaluation of the chosen model 

To evaluate a regression model, we could use a wide variety 
of metrics. In our study, we have chosen to work with a number 
of indicators such as the MSE (Mean Squared Error) which 
represents the squared difference between the predicted value 
and the real value that we would expect to see on average. It is 
expressed in the same unit as the target value squared, as shown 
in equation (9). While the MAE (Mean Absolute Error) defines 
the average of all the absolute prediction errors, where the 
prediction error is the difference between the real value and the 
predicted value. Using the absolute value of the prediction errors 
prevents the mutual cancellation of errors. The MAE value is 
expressed in the same unit as the target value, as shown in 
equation (11). However, the RMSE (Root Mean Squared Error) 
is the square root of the mean squared error and can be 
interpreted as the average +/- expected difference between a 
predicted value and the real value. It is the standard deviation of 
the residuals (the difference between the observed value and the 
predicted value of a feature). The RMSE value is expressed in 
the same unit as the target value, as shown in equation (10). 
Finally, we have the R2 (Coefficient of Determination) The 
coefficient of determination R-squared (R2) is a unitless 
measure of the correlation of the features with respect to the 
target, as shown in equation (12). 

𝑀𝑆𝐸 = ∑
(𝑦𝑖,𝑜𝑏𝑠 − 𝑦𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡)

2

𝑛

𝑛

1

  (9)   

𝑅𝑀𝑆𝐸 = √∑
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2

𝑛

𝑛
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     𝑅2 = 1 − ∑
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(𝑦𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑦𝑚𝑒𝑎𝑛)2

𝑛

1

 (12) 

III. MODELING THE SOLUTION 

After collecting the results of the non-destructive test using 
the ultrasound technique, our work will aim to design a deep 
learning algorithm in order to automate the process of sorting 
and validating the spot welds. The general scheme of our study 
will unfold as shown in Fig. 4. The first step is to gather and 
prepare the data that will be used to train the deep learning 
model. This may include collecting, cleaning and formatting the 
data to make it compatible with the model. Secondly, before 
proceeding with the training, it is important to validate the data 
to ensure its quality and representativeness. This may involve 
consistency tests, the identification and management of missing 
values or anomalies, which is why we will use K-fold cross-
validation. Once the data is prepared, the deep learning model is 
trained using this data. This generally involves optimizing the 
model parameters to minimize a cost or error function. After 
training, it is necessary to evaluate the model's performance on 
an independent validation dataset. This allows measuring the 
model's ability to generalize to new data and identifying any 
potential overfitting or underfitting issues. 

 

Fig.  4. Learning Process 

The input elements of our model will be the electrode 
indentation, the sheet thickness and diameter, the model will 
calculate the true values of the proximity factor which will be 
used to train our model, while using the K-fold cross-validation 
whose objective is to determine the best K that gives the best 
values of MSE, MAE, RMSE, and R2, and the optimal number 
of iterations in order to have a better cost function, such that 
K={2,3,4,...,15} as shown in Fig. 5. 

 

Fig.  5. Application diagram 

The parameters of the studied model are: 

• Model used: MLPRegressor (Multi-Layer Perceptron 
Regressor) 

• Model configurations: 

• Hidden_layer_sizes=(1000, 1000): two hidden layers of 
1000 neurons each 



• Max_iteration=1000: maximum number of training 
iterations 

• Random_state=42: random initialization of parameters 
with a fixed seed 

• Early_stopping=True: activation of early stopping to 
avoid overfitting 

• Validation_fraction=0.2: proportion of validation data 
used for early stoppingModèle utilisé : MLPRegressor 
(Regressor à Réseau de Neurones Multicouche) 

IV. RESULTS AND DISCUSSION 

In Fig. 6, we have the predicted values for each K in 
comparison with the actual values, while calculating the values 
of the test evaluation indicators shown in the table. 

 

Fig.  6. Actual vs predicted values 

TABLE 1.           RESULTS OF MODEL EVALUATION PARAMETERS 

K MSE MAE RMSE R2 

2 0.0032 0.0449 0.0567 0.9984 

3 0.0035 0.0469 0.0596 0.9998 

4 0.0033 0.0459 0.0576 0.9997 

5 0.0037 0.0504 0.0610 0.9995 

6 0.0028 0.0433 0.0533 0.9997 

7 0.0026 0.0418 0.0510 0.2398 

8 0.0039 0.0507 0.0624 0.3197 

9 0.0027 0.0423 0.0519 0.2770 

10 0.0030 0.0451 0.0547 0.9995 

11 0.0040 0.0501 0.0629 0.9995 

12 0.0026 0.0430 0.0510 0.9998 

13 0.0030 0.0444 0.0544 0.9998 

14 0.0033 0.0463 0.0576 0.2733 

15 0.0037 0.0481 0.0605 0.2734 

 

The best model according to these results presents the best 
balance between an excellent explanatory power R2 close to 1 
and very low prediction errors, namely, MSE, MAE and RMSE. 
According to the TABLE 1, the best model corresponds to the 
value of K = 12, because the coefficient of determination R2 is 
the highest for K = 12, at 0.9998. This means that the model with 
3 explanatory variables explains 99.98% of the variance of the 
target variable, which is excellent. Moreover, the other error 
measures are also the best for K = 12, namely, MSE = 0.0026, 
which is very low, MAE = 0.0430 and RMSE = 0.0510 with an 
optimal number of iterations equal to 126 iterations. Fig. 7 
illustrates the graph of the predicted values and actual values for 
the parameter K=12, which is the most suitable for our data. 

 

Fig.  7. Actual vs predicted values for K=12 

This graph shows a comparison between the actual values (in 
blue) and the predicted values (in orange) for a model with 
K=12. Here are the main elements to note: 

• Dynamics of the values: The actual and predicted values 
follow similar trends, with peaks and troughs at the same 
locations. This indicates that the model captures the 
overall dynamics of the phenomenon well. 

• Punctual deviations: Although the dynamics are well 
reproduced, we observe punctual deviations between the 
actual and predicted values. Some samples show more 
significant differences than others. 

• Overall performance: Overall, the model seems quite 
effective at predicting the values, with an ability to follow 
the major trends. However, improvements could be made 
to reduce the punctual deviations. 

• Optimization potential: Analyzing these punctual 
deviations could help identify avenues for improving the 
model, for example by adjusting certain parameters or 
exploring other architectures. 

Evolution of the cost function: At the beginning of the 
training, the loss function is quite high, around 0.18. This 
indicates that the model has not yet learned the characteristics of 
the training data well. However, we observe a rapid decrease in 
the loss function over the first few iterations, dropping below 
0.05 after only 20 iterations. This shows that the model is able to 
effectively learn the patterns present in the training data. 
Subsequently, the loss function continues to decrease more 
slowly and stabilizes around a value close to 0, around 60-80 
iterations. This suggests that the model has reached an optimal 
performance level on the training data. Overall, we observe a 
rapid convergence of the loss function towards a minimum 
value, which indicates that the model training process is 
progressing satisfactorily (Fig. 8). As a result, this graph shows 
the model's good ability to capture the overall dynamics, while 
highlighting possibilities for optimization to reduce the punctual 
deviations between actual and predicted values. A more in-depth 
analysis of the residuals could help identify potential sources of 
error and advance the model's performance. 

 

Fig.  8. Loss Function K=12 



V. CONCLUSION  

In conclusion, this study highlights the crucial importance of 
the quality of resistance spot welding (RSW) in the automotive 
industry. Faced with the challenges related to the complexity of 
welding parameters and variations in materials, multi-criteria 
decision-making (MCDM) methods, such as TOPSIS, offer a 
promising approach for the evaluation and optimization of 
welding processes. The integration of artificial neural networks 
(ANNs) in these methods opens up new perspectives, enabling 
more accurate modeling of the relationships between welding 
parameters and RSW performance. By combining ANNs with 
the TOPSIS method, it is possible to develop more robust and 
efficient predictive models, leading to significant improvements 
in terms of quality and productivity in automotive 
manufacturing. The results of this study demonstrate that the 
proposed model, particularly with a K parameter equal to 12, 
presents an optimal balance between a high explanatory power 
(R2 close to 1) and minimal prediction errors (low MSE, MAE, 
and RMSE). The analysis of the predicted values compared to 
the actual values highlights the model's ability to capture the 
overall dynamics of the phenomenon, while identifying avenues 
for improvement to reduce the punctual deviations. Finally, the 
evolution of the cost function during the model training confirms 
the rapid convergence towards optimal performance, thus 
illustrating the efficiency of the optimization process. Overall, 
this study offers a valuable contribution to the optimization of 
welding processes in the automotive industry, paving the way 
for significant advancements in quality and efficiency. 

This research emphasizes the critical role of high-quality 
resistance spot welding (RSW) in car manufacturing.  Since 
RSW involves complex settings and material variations, the 
study proposes a new approach for optimizing the welding 
process. This approach combines two methods: 

TOPSIS (multi-criteria decision-making): This method helps 
evaluate and improve the welding process by considering 
multiple factors. 

Artificial Neural Networks (ANNs):  These networks can 
learn complex relationships between welding settings and the 
resulting weld quality. 

By combining TOPSIS with ANNs, the researchers created 
a more accurate model to predict the best welding settings for a 
desired outcome. This model achieved a high success rate (close 
to 100% accuracy) with minimal errors. The analysis showed the 
model can capture the overall welding process behavior and 
pinpoint areas for improvement. Additionally, the training 
process converged quickly, indicating efficient optimization. In 
conclusion, this research offers a valuable tool for optimizing 
RSW in car manufacturing, ultimately leading to better quality 
and production efficiency. 
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