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ABSTRACT

In recommender systems, users always choose the favorite items to rate, which
leads to data missing not at random and poses a great challenge for unbiased eval-
uation and learning of prediction models. Currently, the doubly robust (DR) meth-
ods have been widely studied and demonstrate superior performance. However,
in this paper, we show that DR methods are unstable and have unbounded bias,
variance, and generalization bounds to extremely small propensities. Moreover,
the fact that DR relies more on extrapolation will lead to suboptimal performance.
To address the above limitations while retaining double robustness, we propose a
stabilized doubly robust (StableDR) learning approach with a weaker reliance on
extrapolation. Theoretical analysis shows that StableDR has bounded bias, vari-
ance, and generalization error bound simultaneously under inaccurate imputed
errors and arbitrarily small propensities. In addition, we propose a novel learn-
ing approach for StableDR that updates the imputation, propensity, and prediction
models cyclically, achieving more stable and accurate predictions. Extensive ex-
periments show that our approaches significantly outperform the existing methods.

1 INTRODUCTION

Modern recommender systems (RSs) are rapidly evolving with the adoption of sophisticated deep
learning models (Zhang et al., 2019). However, it is well documented that directly using advanced
deep models usually achieves sub-optimal performance due to the existence of various biases in
RS (Chen et al., 2020; Wu et al., 2022b), and the biases would be amplified over time (Mansoury
et al., 2020; Wen et al., 2022). A large number of debiasing methods have emerged and gradually
become a trend. For many practical tasks in RS, such as rating prediction (Schnabel et al., 2016;
Wang et al., 2020a; 2019), post-view click-through rate prediction (Guo et al., 2021), post-click con-
version rate prediction (Zhang et al., 2020; Dai et al., 2022), and uplift modeling (Saito et al., 2019;
Sato et al., 2019; 2020), a critical challenge is to combat the selection bias and confounding bias that
leading to significantly difference between the trained sample and the targeted population (Hernán
& Robins, 2020). Various methods were designed to address this problem and among them, doubly
robust (DR) methods (Wang et al., 2019; Zhang et al., 2020; Chen et al., 2021; Dai et al., 2022; Ding
et al., 2022) play the dominant role due to their better performance and theoretical properties.

The success of DR is attributed to its double robustness and joint-learning technique. However,
the DR methods still have many limitations. Theoretical analysis shows that inverse probability
scoring (IPS) and DR methods may have infinite bias, variance, and generalization error bounds, in
the presence of extremely small propensity scores (Schnabel et al., 2016; Wang et al., 2019; Guo
et al., 2021; Li et al., 2023b). In addition, due to the fact that users are more inclined to evaluate the
preferred items, the problem of data missing not at random (MNAR) often occurs in RS. This would
cause selection bias and results in inaccuracy for methods that more rely on extrapolation, such as
error imputation based (EIB) (Marlin et al., 2007; Steck, 2013) and DR methods.
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Figure 1: During the training of updating a prediction model, two-phase learning (Marlin et al.,
2007; Steck, 2013; Schnabel et al., 2016) uses a fixed imputation/propensity model (Left), whereas
DR-JL (Wang et al., 2019), MRDR-DL (Guo et al., 2021), and AutoDebias (Chen et al., 2021)
uses alternative learning between the imputation/propensity and the prediction model (Middle). The
proposed learning approach updates the three models cyclically with stabilization (Right).

To overcome the above limitations while maintaining double robustness, we propose a stabilized
doubly robust (SDR) estimator with a weaker reliance on extrapolation, which reduces the negative
impact of extrapolation and MNAR effect on the imputation model. Through theoretical analysis,
we demonstrate that the SDR has bounded bias and generalization error bound for arbitrarily small
propensities, which further indicates that the SDR can achieve more stable predictions.

Furthermore, we propose a novel cycle learning approach for SDR. Figure 1 shows the differences
between the proposed cycle learning of SDR and the existing unbiased learning approaches. Two-
phase learning (Marlin et al., 2007; Steck, 2013; Schnabel et al., 2016) first obtains an imputa-
tion/propensity model to estimate the ideal loss and then updates the prediction model by minimizing
the estimated loss. DR-JL (Wang et al., 2019), MRDR-DL (Guo et al., 2021), and AutoDebias (Chen
et al., 2021) alternatively update the model used to estimate the ideal loss and the prediction model.
The proposed learning method cyclically uses different losses to update the three models with the
aim of achieving more stable and accurate prediction results. We have conducted extensive exper-
iments on two real-world datasets, and the results show that the proposed approach significantly
improves debiasing and convergence performance compared to the existing methods.

2 PRELIMINARIES

2.1 PROBLEM SETTING

In RS, due to the fact that users are more inclined to evaluate the preferred items, the collected
ratings are always missing not at random (MNAR). We formulate the data MNAR problem using
the widely adopted potential outcome framework (Neyman, 1990; Imbens & Rubin, 2015). Let
U = {1, 2, ..., U}, I = {1, 2, ..., I} and D = U × I be the index sets of users, items, all user-item
pairs. For each (u, i) ∈ D, we have a treatment ou,i ∈ {0, 1}, a feature vector xu,i, and an observed
rating ru,i, where ou,i = 1 if user u rated the item i in the logging data, ou,i = 0 if the rating is
missing. Let ru,i(1) is defined as the be the rating that would be observed if item i had been rated
by user u, which is observable only for O = {(u, i) | (u, i) ∈ D, ou,i = 1}. Many tasks in RS can
be formulated by predicting the potential outcome ru,i(1) using feature xu,i for each (u, i).

Let r̂u,i(1) = f(xu,i;ϕ) be a prediction model with parameters ϕ. If all the potential outcomes
{ru,i(1) : (u, i) ∈ D} were observed, the ideal loss function for solving parameters ϕ is given as

Lideal(ϕ) = |D|−1
∑

(u,i)∈D

eu,i,

where eu,i is the prediction error, such as the squared loss eu,i = (r̂u,i(1)−ru,i(1))
2. Lideal(ϕ) can

be regarded as a benchmark of unbiased loss function, even though it is infeasible due to the miss-
ingness of {ru,i(1) : ou,i = 0}. As such, a variety of methods are developed through approximating
Lideal(ϕ) to address the selection bias, in which the propensity-based estimators show the relatively
superior performance (Schnabel et al., 2016; Wang et al., 2019), and the IPS and DR estimators are

EIPS = |D|−1
∑

(u,i)∈D

ou,ieu,i
p̂u,i

and EDR = |D|−1
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
,

where p̂u,i is an estimate of propensity score pu,i := P(ou,i = 1|xu,i), êu,i is an estimate of eu,i.
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2.2 RELATED WORK

Debiased learning in recommendation. The data collected in RS suffers from various biases (Chen
et al., 2020; Wu et al., 2022b), which are entangled with the true preferences of users and pose a great
challenge to unbiased learning. There is increasing interest in coping with different biases in recent
years (Zhang et al., 2021; Ai et al., 2018; Liu et al., 2016; Liu et al., 2021). Schnabel et al. (2016)
proposed using inverse propensity score (IPS) and self-normalized IPS (SNIPS) methods to address
the selection bias on data missing not at random, Saito (2019) and Saito et al. (2020) extended them
to implicit feedback data. Marlin et al. (2007) and Steck (2013) derived an error imputation-based
(EIB) unbiased learning method. These three approaches adopt two-phase learning (Wang et al.,
2021), which first learns a propensity/imputation model and then applies it to construct an unbi-
ased estimator of the ideal loss to train the recommendation model. A doubly robust joint learning
(DR-JL) method (Wang et al., 2019) was proposed by combining the IPS and EIB approaches. Sub-
sequently, strands of enhanced joint learning methods were developed, including MRDR (Guo et al.,
2021), Multi-task DR (Zhang et al., 2020), DR-MSE (Dai et al., 2022), BRD-DR (Ding et al., 2022),
TDR Li et al. (2023b), uniform data-aware methods (Bonner & Vasile, 2018; Liu et al., 2020; Chen
et al., 2021; Wang et al., 2021; Li et al., 2023c) that aimed to seek better recommendation strategies
by leveraging a small uniform dataset, and multiple robust method (Li et al., 2023a) that specifies
multiple propensity and imputation models and achieves unbiased learning if any of the propensity
models, imputation models, or even a linear combination of these models can accurately estimate the
true propensities or prediction errors. Chen et al. (2020) reviewed various biases in RS and discussed
the recent progress on debiasing tasks. Wu et al. (2022b) established the connections between the
biases in causal inference and the biases, thereby presenting the formal causal definitions for RS.

Stabilized causal effect estimation. The proposed method builds on the stabilized average causal
effect estimation approaches in causal inference. Molenberghs et al. (2015) summarized the limita-
tions of doubly robust methods, including unstable to small propensities (Kang & Schafer, 2007; Wu
et al., 2022a), unboundedness (van der Laan & Rose, 2011), and large variance (Tan, 2007). These
issues inspired a series of stabilized causal effect estimation methods in statistics (Kang & Schafer,
2007; Bang & Robins, 2005; van der Laan & Rose, 2011; Molenberghs et al., 2015). Unlike previ-
ous works that focused only on achieving learning with unbiasedness in RS, this paper provides a
new perspective to develop doubly robust estimators with much more stable statistical properties.

3 STABILIZED DOUBLY ROBUST ESTIMATOR

In this section, we elaborate the limitations of DR methods and propose a stabilized DR (SDR)
estimator with a weaker reliance on extrapolation. Theoretical analysis shows that SDR has bounded
bias and generalization error bound for arbitrarily small propensities, while IPS and DR don’t.

3.1 MOTIVATION

Even though DR estimator has double robustness property, its performance could be significantly
improved if the following three stabilization aspects can be enhanced.

More stable to small propensities. As shown in Schnabel et al. (2016), Wang et al. (2019) and Guo
et al. (2021), if there exist some extremely small estimated propensity scores, the IPS/DR estimator
and its bias, variance, and tail bound are unbounded, deteriorating the prediction accuracy. What’s
more, such problems are widespread in practice, given the fact that there are many long-tailed users
and items in RS, resulting in the presence of extreme propensities.

More stable through weakening extrapolation. DR relies more on extrapolation because the
imputation model in DR is learned from the exposed events O and extrapolated to the unexposed
events. If the distributional disparity of eu,i on ou,i = 0 and ou,i = 1 is large, the imputed errors are
likely to be inaccurate on the unexposed events and incur bias of DR. Therefore, it is beneficial to
reduce bias if we can develop an enhanced DR method with weaker reliance on extrapolation.

More stable training process of updating a prediction model. In general, alternating training be-
tween models results in better performance. From Figure 1, Wang et al. (2019) proposes joint learn-
ing for DR, alternatively updating the error imputation and prediction models with given estimated
propensities. Double learning (Guo et al., 2021) further incorporates parameter sharing between the
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imputation and prediction models. Bi-level optimization (Wang et al., 2021; Chen et al., 2021) can
be viewed as alternately updating the prediction model and the other parameters used to estimate
the loss. To the best of our knowledge, this is the first paper that proposes a algorithm to update
the three models (i.e., error imputation model, propensity model, and prediction model) separately
using different optimizers, which may resulting in more stable and accurate rating predictions.

3.2 STABILIZED DOUBLY ROBUST ESTIMATOR

We propose a stabilized doubly robust (SDR) estimator that has a weaker dependence on extrapola-
tion and is robust to small propensities. The SDR estimator consists of the following three steps.

Step 1 (Initialize imputed errors). Pre-train imputation model êu,i, let Ê ≜ |D|−1∑
(u,i)∈D êu,i.

Step 2 (Learn constrained propensities). Learn a propensity model p̂u,i satisfying

1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

(
êu,i − Ê

)
= 0. (1)

Step 3 (SDR estimator). The SDR estimator is given as

ESDR =
∑

(u,i)∈D

ou,ieu,i
p̂u,i

/ ∑
(u,i)∈D

ou,i
p̂u,i

≜
∑

(u,i)∈D

wu,ieu,i,

where wu,i =
ou,i

p̂u,i

/∑
(u,i)∈D

ou,i

p̂u,i
. It can be seen that SDR estimator has the same form as SNIPS

estimator, but the propensities are learned differently. In SDR, the estimation of propensity model
relies on the imputed errors, whereas not in SNIPS.

Each step in the construction of SDR estimator plays a different role. Specifically, the Step 2 is
designed to enable double robustness property as shown in Theorem 1 (see Appendix A.1 for proofs).
Theorem 1 (Double Robustness). ESDR is an asymptotically unbiased1 estimator of Lideal, when
either the learned propensities p̂u,i or the imputed errors êu,i are accurate for all user-item pairs.

We provide an intuitive way to illustrate the rationale of SDR. On the one hand, if the propensities
can be accurately estimated (i.e., p̂u,i = pu,i) by using a common model (e.g., logistic regression)
without imposing constraint (1). Then the expectation of the left hand side of constraint (1) becomes

EO

[ 1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

(
êu,i − Ê

) ]
=

1

|D|
∑

(u,i)∈D

(
êu,i − Ê

)
≡ 0,

which indicates the constraint (1) always holds as the sample size goes to infinity by the strong
law of large numbers2, irrespective of the accuracy of the imputed errors êu,i. This implies that
the constraint (1) imposes almost no restriction on the estimation of propensities. In this case, the
SDR estimator is almost equivalent to the original SNIPS estimator. On the other hand, if the
propensities cannot be accurately estimated by using a common model, but the imputed errors are
accurate (i.e., êu,i = eu,i). In this case, Ê is an unbiased estimator. Specifically, ESDR satisfies

1

|D|
∑

(u,i)∈D

ou,i(eu,i − ESDR)

p̂u,i
= 0. (2)

Combining the constraint (1) and equation (2) gives

1

|D|
∑

(u,i)∈D

[
ou,i(eu,i − êu,i)

p̂u,i
+

ou,i(Ê − ESDR)

p̂u,i

]
= 0, (3)

where the first term equals to 0 if êu,i = eu,i, it implies that ESDR = Ê , then the unbiasedness of
ESDR follows immediately from the unbiasedness of Ê .

1Asymptotically unbiased means unbiasedness as the sample size goes to infinity.
2This is the reason why we adopt the notation of ”asymptotically unbiased”.
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In addition, Step 3 is designed for two main reasons to achieve stability. First, ESDR is more robust
to extrapolation compared with DR. This is because the propensities are learned from the entire data
and thus have less requirement on extrapolation. Second, ESDR is more stable to small propensities,
since the self-normalization imposes the weight wu,i to fall on the interval [0,1].

In summary, forcing the propensities to satisfy the constraint (1) makes the SDR estimator not only
doubly robust, but also captures the advantages of both SNIPS and DR estimators. The design of
SDR enables the constrained propensities to adaptively find the direction of debiasing if either the
learned propensities without imposing constraint (1) or the imputed errors are accurate.

3.3 THEORETICAL ANALYSIS OF STABLENESS

Through theoretical analysis, we note that previous debiasing estimators such as IPS (Schnabel et al.,
2016) and DR-based methods (Wang et al., 2019; Guo et al., 2021) tend to have infinite biases,
variances, tail bound, and corresponding generalization error bounds, in the presence of extremely
small estimated propensities. Remarkably, the proposed SDR estimator doesn’t suffer from such
problems and is stable to arbitrarily small propensities, as shown in the following Theorems (see
Appendixes A.2, A.3 and A.4 for proofs).

Theorem 2 (Bias of SDR). Given imputed errors êu,i and learned propensities p̂u,i satisfying the
stabilization constraint (1), with p̂u,i > 0 for all user-item pairs, the bias of ESDR is

Bias(ESDR) =

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

(
δu,i −

∑
(u,i)∈D δu,ipu,i/p̂u,i∑

(u,i)∈D pu,i/p̂u,i

)∣∣∣∣∣+O(|D|−1),

where δu,i = eu,i − êu,i is the error deviation.

Theorem 2 shows the bias of the SDR estimator consisting of a dominant term given by the difference
between δu,i and its weighted average, and a negligible term of order O(|D|−1). The fact that the
δu,i and its convex combinations are bounded, shows that the bias is bounded for arbitrarily small
p̂u,i. Compared to the Bias (EIPS) = |D|−1|

∑
u,i∈D (p̂u,i − pu,i)eu,i/p̂u,i| and Bias (EDR) =

|D|−1|
∑

u,i∈D (p̂u,i − pu,i)δu,i/p̂u,i|, it indicates that IPS and DR will have extremely large bias
when there exists an extremely small p̂u,i.

Theorem 3 (Variance of SDR). Under the conditions of Theorem 2, the variance of ESDR is

Var (ESDR) =

∑
(u,i)∈D pu,i(1− pu,i)h

2
u,i/p̂

2
u,i(∑

(u,i)∈D pu,i/p̂u,i

)2 +O(|D|−2),

where hu,i = (eu,i − êu,i)−
∑

(u,i)∈D{pu,i(eu,i − êu,i)/p̂u,i}/
∑

(u,i)∈D{pu,i/p̂u,i} is a bounded
difference between eu,i − êu,i and its weighted average.

Theorem 3 shows the variance of the SDR estimator consisting of a dominant term and a neg-
ligible term of order O(|D|−2). The boundedness of the variance for arbitrarily small p̂u,i
is given directly from the fact that SDR has a bounded range given by the self-normalized
form. Compared to the Var (EIPS) = |D|−2∑

u,i∈D pu,i(1− pu,i)e
2
u,i/p̂

2
u,i and Var (EDR) =

|D|−2∑
u,i∈D pu,i(1− pu,i)(eu,i − êu,i)

2/p̂2u,i, it indicates that IPS and DR will have extremely
large variance (tend to infinity) when there exist an extremely small p̂u,i (tends to 0).

Theorem 4 (Tail Bound of SDR). Under the conditions of Theorem 2, for any prediction model,
with probability 1− η, the deviation of ESDR from its expectation has the following tail bound

|ESDR − EO(ESDR)| ≤

√√√√1

2
log

(
4

η

) ∑
(u,i)∈D

(δmax − δu,i)2 + (δu,i − δmin)2

{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}2

where δmin = min(u,i)∈D δu,i, δmax = max(u,i)∈D δu,i, ϵ′ =
√
log(4/η)/2 ·

∑
D\(u,i) 1/p̂

2
u,i, and

D \ (u, i) is the set of D excluding the element (u, i).
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Note that
∑

D\(u,i) pu,i/p̂u,i = O(|D|) and ϵ′ = O(|D|1/2) in Theorem 4, it follows that the tail
bound of the SDR estimator converges to 0 for large samples. In addition, the tail bound is bounded
for arbitrarily small p̂u,i. Compared to the tail bound of IPS and DR, with probability 1−η, we have

|EIPS − EO [EIPS ]| ≤

√√√√ log (2/η)

2|D|2
∑

(u,i)∈D

(
eu,i
p̂u,i

)2

, |EDR − EO [EDR]| ≤

√√√√ log (2/η)

2|D|2
∑

(u,i)∈D

(
δu,i
p̂u,i

)2

,

which are both unbounded when p̂u,i → 0. For SDR in the prediction model training phase, the
boundedness of the generalization error bound (see Theorem 5 in Appendix A.5) follows imme-
diately from the boundedness of the bias and tail bound. The above analysis demonstrates that
SDR can comprehensively mitigate the negative effects caused by extreme propensities and results
in more stable predictions. Theorems 2-5 are stated under the constraint (1). If we estimate the
propensities with constraint (1), but finally constraint (1) somehow doesn’t hold exactly, the associ-
ated bias, variance, and generalization error bound of SDR are presented in Appendix B.

4 CYCLE LEARNING WITH STABILIZATION

In this section, we propose a novel SDR-based cycle learning approach, that not only exploits the
stable statistical properties of the SDR estimator itself, but also carefully designs the updating pro-
cess among various models to achieve higher stability. In general, inspired by the idea of value
iteration in reinforcement learning (Sutton & Barto, 2018), alternatively updating the model tends to
achieve better predictive performance, as existing debiasing training approaches suggested (Wang
et al., 2019; Guo et al., 2021; Chen et al., 2021). As shown in Figure 1, the proposed approach
dynamically interacts with three models, utilizing the propensity model and imputation model si-
multaneously in a differentiated way, which can be regarded as an extension of these methods. In
cycle learning, given pre-trained propensities, the inverse propensity weighted imputation error loss
is used to first obtain an imputation model, and then take the constraint (1) as the regularization
term to train a stabilized propensity model and ensure the double robustness of SDR. Finally, the
prediction model is updated by minimizing the SDR loss and used to readjust the imputed errors.
By repeating the above update processes cyclically, the cycle learning approach can fully utilize and
combine the advantages of the three models to achieve more accurate rating predictions.

Specifically, the data MNAR leads to the presence of missing ru,i(1), so that all eu,i cannot be
used directly. Therefore, we obtain imputed errors by learning a pseudo-labeling model r̃u,i(1)
parameterized by β, and the imputed errors êu,i = CE(r̃u,i(1), r̂u,i(1)) are updated by minimizing

Le (ϕ, α, β) = |D|−1
∑

(u,i)∈D

ou,i(êu,i − eu,i)
2

π(xu,i;α)
+ λe∥β∥2F ,

where eu,i = CE(ru,i(1), r̂u,i(1)), λe ≥ 0, p̂u,i = π(xu,i;α) is the propensity model, ∥ · ∥2F is the
Frobenius norm. For each observed ratings, the inverse of the estimated propensities are used for
weighting to account for MNAR effects. Next, we consider two methods for estimating propensity
scores, which are Naive Bayes with Laplace smoothing and logistic regression. The former provides
a wide range of opportunities for achieving stability constraint (1) through the selection of smoothing
coefficients. The latter requires user and item embeddings, which are obtained by employing MF
before performing cycle learning. The learned propensities need to both satisfy the accuracy, which
is evaluated with cross entropy, and meet the constraint (1) for stabilization and double robustness.
The propensity model π(xu,i;α) is updated by using the loss Lce (ϕ, α, β) + η · Lstable (ϕ, α, β),
where Lce (ϕ, α, β) is cross entropy loss of propensity model and

Lstable (ϕ, α, β) = |D|−1
{ ∑

(u,i)∈D

ou,i
π(xu,i;α)

(
êu,i − Ê

)}2

+ λstable∥α∥2F ,

where λstable ≥ 0, and η is a hyper-parameter for trade-off. Finally, the prediction model f(xu,i;ϕ)
is updated by minimizing the SDR loss

Lsdr (ϕ, α, β) =
[ ∑
(u,i)∈D

ou,ieu,i
π(xu,i;α)

]/[ ∑
(u,i)∈D

ou,i
π(xu,i;α)

]
+ λsdr∥ϕ∥2F ,
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Algorithm 1: The Proposed Stable DR (MRDR) Cycle Learning, Stable-DR (MRDR)
Input: observed ratings Yo, and η, λe, λstable, λsdr ≥ 0

1 while stopping criteria is not satisfied do
2 for number of steps for training the imputation model do
3 Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
4 Update β by descending along the gradient ∇βLe (ϕ, α, β);
5 end
6 for number of steps for training the propensity model do
7 Sample a batch of user-item pairs {(uk, ik)}Kk=1 from D;
8 Calculate the gradient of propensity cross entropy error ∇αLce (ϕ, α, β);
9 Calculate the gradient of propensity stable constraint (1) ∇αLstable (ϕ, α, β);

10 Update α by descending along the gradient ∇αLce (ϕ, α, β) + η · ∇αLstable (ϕ, α, β)
11 end
12 for number of steps for training the prediction model do
13 Sample a batch of user-item pairs {(ul, il)}Ll=1 from O;
14 Update ϕ by descending along the gradient ∇ϕLsdr (ϕ, α, β);
15 end
16 end

where the first term is equivalent to the left hand side of equation (3), and λsdr ≥ 0. In cycle
learning, the updated prediction model will be used for re-update the imputation model using the
next sample batch. Notably, the designed algorithm strictly follows the proposed SDR estimator
in Section 3.2. From Figure 1 and Alg. 1, our algorithm first updates imputed errors ê by Step 1,
and then learns a propensity p̂ based on learned ê to satisfy the constraint (1) in Step 2. The main
purpose of the first two steps is to ensure that the SDR estimator in Step 3 has double robustness
and has a lower extrapolation dependence compared to the previous DR methods. Finally, from
Step 3 we update the predicted rating r̂ by minimizing the estimation of the ideal loss using the
proposed SDR estimator. For the next round, instead of re-initializing, Step 1 updates the imputed
errors ê according to the new prediction model, then Step 2 re-updates the constrained propensities
p̂, and then uses Step 3 to update the prediction model r̂ again, and so on. We summarized the cycle
learning approach in Alg. 1.

5 REAL-WORLD EXPERIMENTS

In this section, several experiments are conducted to evaluate the proposed methods on two real-
world benchmark datasets. We conduct experiments to answer the following questions:

RQ1. Do the proposed Stable-DR and Stable-MRDR approaches improve in debiasing perfor-
mance compared to the existing studies?

RQ2. Do our methods stably perform well under the various propensity models?
RQ3. How does the performance of our method change under different strengths of the stabiliza-

tion constraint?

5.1 EXPERIMENTAL SETUP

Dataset and preprocessing. To answer the above RQs, we need to use the datasets that contain both
MNAR ratings and missing-at-random (MAR) ratings. Following the previous studies (Schnabel
et al., 2016; Wang et al., 2019; Guo et al., 2021; Chen et al., 2021), we conduct experiments on
the two commonly used datasets: Coat3 contains ratings from 290 users to 300 items. Each user
evaluates 24 items, containing 6,960 MNAR ratings in total. Meanwhile, each user evaluates 16
items randomly, which generates 4,640 MAR ratings. Yahoo! R34 contains totally 311,704 MNAR
and 54,000 MAR ratings from 15,400 users to 1,000 items. Baselines. In our experiments, we take
Matrix Factorization (MF) (Koren et al., 2009), Sparse LInear Method (SLIM) (Ning & Karypis,

3https://www.cs.cornell.edu/˜schnabts/mnar/
4http://webscope.sandbox.yahoo.com/
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Table 1: Performance on Coat and Yahoo!R3, using MF, SLIM, and NCF as the base models.

Dataset Coat Yahoo!R3

Method MSE AUC N@5 N@10 MSE AUC N@5 N@10

MF 0.2428 0.7063 0.6025 0.6774 0.2500 0.6722 0.6374 0.7634
+ IPS 0.2316 0.7166 0.6184 0.6897 0.2194 0.6742 0.6304 0.7556
+ SNIPS 0.2333 0.7070 0.6222 0.6851 0.1931 0.6831 0.6348 0.7608
+ AS-IPS 0.2121 0.7180 0.6160 0.6824 0.2391 0.6770 0.6364 0.7601
+ CVIB 0.2195 0.7239 0.6285 0.6947 0.2625 0.6853 0.6513 0.7729

+ DR 0.2298 0.7132 0.6243 0.6918 0.2093 0.6873 0.6574 0.7741
+ DR-JL 0.2254 0.7209 0.6252 0.6961 0.2194 0.6863 0.6525 0.7701
+ Stable-DR (Ours) 0.2159 0.7508 0.6511 0.7073 0.2090 0.6946 0.6620 0.7786

+ MRDR-JL 0.2252 0.7318 0.6375 0.6989 0.2173 0.6830 0.6437 0.7652
+ Stable-MRDR (Ours) 0.2076 0.7548 0.6532 0.7105 0.2081 0.6915 0.6585 0.7757

SLIM 0.2419 0.7074 0.7064 0.7650 0.2126 0.6636 0.7190 0.8134
+ IPS 0.2411 0.7058 0.7235 0.7644 0.2046 0.6583 0.7285 0.8244
+ SNIPS 0.2420 0.7071 0.7369 0.7672 0.2155 0.6720 0.7303 0.8227
+ AS-IPS 0.2133 0.7105 0.6238 0.6975 0.1946 0.6769 0.6508 0.7702
+ CVIB 0.2413 0.7108 0.7214 0.7638 0.2024 0.6790 0.7335 0.8221

+ DR 0.2334 0.7064 0.7267 0.7649 0.2054 0.6771 0.7344 0.8248
+ DR-JL 0.2407 0.7090 0.7279 0.7655 0.2044 0.6792 0.7360 0.8260
+ Stable-DR (Ours) 0.2356 0.7201 0.7389 0.7724 0.2080 0.6874 0.7473 0.8349

+ MRDR-JL 0.2409 0.7074 0.7329 0.7679 0.2016 0.6791 0.7338 0.8239
+ Stable-MRDR (Ours) 0.2369 0.7148 0.7378 0.7711 0.2086 0.6842 0.7435 0.8308

NCF 0.2050 0.7670 0.6228 0.6954 0.3215 0.6782 0.6501 0.7672
+ IPS 0.2042 0.7646 0.6327 0.7054 0.1777 0.6719 0.6548 0.7703
+ SNIPS 0.1904 0.7707 0.6271 0.7062 0.1694 0.6903 0.6693 0.7807
+ AS-IPS 0.2061 0.7630 0.6156 0.6983 0.1715 0.6879 0.6620 0.7769
+ CVIB 0.2042 0.7655 0.6176 0.6946 0.3088 0.6715 0.6669 0.7793

+ DR 0.2081 0.7578 0.6119 0.6900 0.1705 0.6886 0.6628 0.7768
+ DR-JL 0.2115 0.7600 0.6272 0.6967 0.2452 0.6818 0.6516 0.7678
+ Stable-DR (Ours) 0.1896 0.7712 0.6337 0.7095 0.1664 0.6907 0.6756 0.7861

+ MRDR-JL 0.2046 0.7609 0.6182 0.6992 0.2367 0.6778 0.6465 0.7664
+ Stable-MRDR (Ours) 0.1899 0.7710 0.6380 0.7082 0.1671 0.6910 0.6734 0.7846

2011), and Neural Collaborative Filtering (NCF) (He et al., 2017) as the base model respectively,
and compare against the proposed methods with the following baselines: Base Model, IPS (Saito
et al., 2020; Schnabel et al., 2016), SNIPS (Swaminathan & Joachims, 2015), IPS-AT (Saito, 2020),
CVIB (Wang et al., 2020b), DR (Saito, 2020), DR-JL (Wang et al., 2019), and MRDR-JL (Guo
et al., 2021). In addition, Naive Bayes with Laplace smoothing and logistic regression are used to
establish the propensity model respectively.

Experimental protocols and details. The following four metrics are used simultaneously in the
evaluation of debiasing performance: MSE, AUC, NDCG@5, and NDCG@10. All the experi-
ments are implemented on PyTorch with Adam as the optimizer5. We tune the learning rate in
{0.005, 0.01, 0.05, 0.1}, weight decay in {1e− 6, 5e− 6, . . . , 5e− 3, 1e− 2}, constrain parameter
eta in {50, 100, 150, 200} for Coat and {500, 1000, 1500, 2000} for Yahoo! R3, and batch size in
{128, 256, 512, 1024, 2048} for Coat and {1024, 2048, 4096, 8192, 16384} for Yahoo! R3. In ad-
dition, for the Laplacian smooth parameter in Naive Bayes model, the initial value is set to 0 and the
learning rate is tuned in {5, 10, 15, 20} for Coat and in {50, 100, 150, 200} for Yahoo! R3.

5.2 PERFORMANCE COMPARISON (RQ1)

Table 1 summarizes the performance of the proposed Stable-DR and Stable-MRDR methods com-
pared with previous methods. First, the causally-inspired methods perform better than the base
model, verifying the necessity of handling the selection bias in rating prediction. For previous meth-

5For all experiments, we use NVIDIA GeForce RTX 3090 as the computing resource.
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Figure 2: MSE, AUC and Increasing Ratio (IR) of Stable-DR and Stable-MRDR comparing with
two baseline algorithms DR-JL and MRDR-JL in two different propensity model setting: Naive
Bayes with Laplace smoothing (Top) and logistic regression (Bottom) respectively.

ods, SNIPS, CVIB and DR demonstrate competitive performance. Second, the proposed Stable-DR
and Stable-MRDR have the best performance in all four metrics. On one hand, our methods outper-
form SNIPS, attributed to the inclusion of the propensity model in the training process, as well as
the boundedness and double robustness of SDR. On the other hand, our methods outperform DR-JL
and MRDR-JL, attributed to the stabilization constraint introduced in the training of the propensity
model. This further demonstrates the benefit of cycle learning, in which the propensity model is
acted as the mediation between the imputation and prediction model during the training process,
rather than updating the prediction model from the imputation model directly.

5.3 ABLATION AND PARAMETER SENSITIVITY STUDY (RQ2, RQ3)

The debiasing performance under different stabilization constraint strength and propensity models is
shown in Figure 2. First, the proposed Stable-DR and Stable-MRDR outperform DR-JL and MRDR-
JL, when either Naive Bayes with Laplace smoothing or logistic regression is used as propensity
models. It indicates that our methods have better debiasing ability in both the feature containing and
collaborative filtering scenarios. Second, when the strength of the stabilization constraint is zero,
our method performs similarly to SNIPS and slightly worse than the DR-JL and MRDR-JL, which
indicates that simply using cross-entropy loss to update the propensity model is not effective in im-
proving the model performance. However, as the strength of the stabilization constraint increases,
Stable-DR and Stable-MRDR using cycle learning have a stable and significant improvement com-
pared to DR-JL and MRDR-JL. Our methods achieve the optimal performance at the appropriate
constraint strength, which can be interpreted as simultaneous consideration of accuracy and stability
to ensure boundedness and double robustness of SDR.

6 CONCLUSION

In this paper, we propose an SDR estimator for data MNAR that maintains double robustness and
improves the stability of DR in the following three aspects: first, we show that SDR has a weaker
extrapolation dependence than DR and can result in more stable and accurate predictions in the
presence of MNAR effects. Next, through theoretical analysis, we show that the proposed SDR has
bounded bias, variance, and generalization error bounds under inaccurate imputed errors and arbi-
trarily small estimated propensities, while DR does not. Finally, we propose a novel learning ap-
proach for SDR that updates the imputation, propensity, and prediction models cyclically, achieving
more stable and accurate predictions. Extensive experiments show that our approach significantly
outperforms the existing methods in terms of both convergence and prediction accuracy.
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APPENDIX

Throughout, following existing studies (Schnabel et al., 2016; Wang et al., 2019; Guo et al., 2021;
Dai et al., 2022), we assume that the indicator matrix O contains independent random variables and
each ou,i follows a Bernoulli distribution with probability pu,i.

A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. To demonstrate the double robustness of the SDR, first note that
P
(
lim|D|→∞ ESDR = Lideal

)
= 1 if the learned propensities are accurate (Swaminathan &

Joachims, 2015), since |D|−1
∑

(u,i)∈D ou,i/p̂u,i converges to 1 almost surely as |D| goes to in-
finity and IPS is unbiased. Besides, the constraint (1) is constructed to ensure the unbiasedness of
ESDR if the error imputation model is correctly specified. In fact, ESDR satisfies

1

|D|
∑

(u,i)∈D

ou,i(eu,i − ESDR)

p̂u,i
= 0. (4)

Combining the constraint (1) and equation (4) gives

1

|D|
∑

(u,i)∈D

[
ou,i(eu,i − êu,i)

p̂u,i
+

ou,i(Ê − ESDR)

p̂u,i

]
= 0,

where the first term equals to 0 when the imputation model is correctly specified, it implies that
ESDR = Ê , then the unbiasedness of ESDR follows immediately from the unbiasedness of Ê .

A.2 PROOF OF THEOREM 2

Proof of Theorem 2. Equation (3) implies that ESDR can be expressed as

ESDR =
[ 1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i + Ê)
p̂u,i

]/[ 1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

]
. (5)

For notational simplicity, let

wu,i ≜ ou,i/p̂u,i and vu,i ≜ ou,i(eu,i − êu,i + Ê)/p̂u,i,

then ESDR can be written as a ratio statistic

ESDR =
1

|D|
∑

(u,i)∈D

vu,i

/ 1

|D|
∑

(u,i)∈D

wu,i ≜ f(v̄, w̄),

where f(v, w) = v/w, v̄ = |D|−1
∑

(u,i)∈D vu,i, and w̄ = |D|−1
∑

(u,i)∈D wu,i.

Applying the Taylor expansion around (µv, µw) ≜ (E[v̄],E[w̄]) yields that

f(v̄, w̄) = f(µv, µw) + f ′
v(µv, µw) (v̄ − µv) + f ′

w(µv, µw) (w̄ − µw)

+
1

2

{
f ′′
vv(µv, µw) (v̄ − µv)

2
+ 2f ′′

vw(µv, µw) (v̄ − µv) (w̄ − µw) + f ′′
ww (w̄ − µw)

2
}

+R(ṽ, w̃),

where R(ṽ, w̃) is the remainder term. Note that f ′′
vv(µv, µw) = 0, f ′′

vw(µv, µw) = −1/µ2
w, and

f ′′
ww(µv, µw) = 2µv/µ

3
w, then taking an expectation on both sides of the Taylor expansion leads to

E(v̄/w̄) =
µv

µw
− Cov(v̄, w̄)

(µw)
2 +

Var(w̄)µv

(µw)
3 + E[R(ṽ, w̃)].
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By some calculations, we have Cov(v̄, w̄) = O(|D|−1),Var(w̄) = O(|D|−1),E[R(ṽ, w̃)] =
o(|D|−1). Thus, the bias of ESDR is given as

Bias(ESDR) =

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

(
δu,i −

∑
(u,i)∈D δu,ipu,i/p̂u,i∑

(u,i)∈D pu,i/p̂u,i

)∣∣∣∣∣+O(|D|−1).

A.3 PROOF OF THEOREM 3

Proof of Theorem 3. According to the proof of Theorem 2, we have

E[v̄/w̄]− µv/µw = O(|D|−1). (6)

Then the variance of ESDR can be decomposed into as

Var(ESDR) = Var(v̄/w̄) = E
[
{v̄/w̄ − E(v̄/w̄)}2

]
= E

[
{v̄/w̄ − µv/µw}2 − 2O(|D|−1) · {v̄/w̄ − µv/µw}+O(|D|−2)

]
,

= V1 + V2 +O(|D|−2),

where V1 ≜ E[{v̄/w̄ − µv/µw}2], V2 ≜ −2O(|D|−1) · [E(v̄/w̄) − µv/µw]. Equation (6) implies
that V2 = O(|D|−2).

Denote f(v, w) = v/w, and apply delta method around (µv, µw) ≜ (E[v̄],E[w̄]) to calculate V1

yields that

V1 = E
{[

f(µv, µw) + f ′
v(µv, µw) (v̄ − µv) + f ′

w(µv, µw) (w̄ − µw) +Op(|D|−1)− f(µv, µw)
]2}

= E
{[

f ′
v(µv, µw) (v̄ − µv) + f ′

w(µv, µw) (w̄ − µw) +Op(|D|−1)
]2}

= E
{
f ′2
v (µv, µw) (v̄ − µv)

2
+ 2f ′

v(µv, µw) (v̄ − µv) f
′
w(µv, µw) (w̄ − µw)

+ f ′2
w (µv, µw) (w̄ − µw)

2
}
+O(|D|−2)

= f ′2
v (µv, µw)Var(v̄) + 2f ′

v(µv, µw)f
′
w(µv, µw) Cov(v̄, w̄) + f ′2

w (µv, µw)Var(w̄) +O(|D|−2)

Note that f ′
v(µv, µw) = 1/µw and f ′

w(µv, µw) = −µv/µ
2
w. Then we have

V1 =
1

(µw)
2 Var(v̄) + 2

−µv

(µw)
3 Cov(v̄, w̄) +

(µv)
2

(µw)
4 Var(w̄) +O(|D|−2)

=
(µv)

2

(µw)
2

[
Var(v̄)

(µv)
2 − 2

Cov(v̄, w̄)

µvµw
+

Var(w̄)

(µw)
2

]
+O(|D|−2)

=
E
(
v̄ − µv

µw
w̄
)2

µ2
w

+O(|D|−2)

=

∑
(u,i) pu,i(1− pu,i)h

2
u,i/p̂

2
u,i(∑

(u,i) pu,i/p̂u,i

)2 +O(|D|−2),

where hu,i = (eu,i− êu,i)−
∑

(u,i){pu,i(eu,i− êu,i)/p̂u,i}/
∑

(u,i){pu,i/p̂u,i} is a bounded differ-
ence between eu,i− êu,i and its weighted average. The conclusion that the SDR variance is bounded
for any propensities is given directly by the self-normalized form of SDR, i.e., the bounded range of
SDR is [δmin, δmax].
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A.4 PROOF OF THEOREM 4

Proof of Theorem 4. The McDiarmid’s inequality states that for independent bounded random vari-
ables X1, X2, . . . Xn, where Xi ∈ Xi for all i and a mapping f : X1×X2×· · ·×Xn → R. Assume
there exist constant c1, c2, . . . , cn such that for all i,

sup
x1,··· ,xi−1,xi,x′

i,xi+1,··· ,xn

|f (x1, . . . , xi−1, xi, xi+1, · · · , xn)− f (x1, . . . , xi−1, x
′
i, xi+1, · · · , xn)| ≤ ci.

Then, for any ϵ > 0,

P (|f (X1, X2, · · · , Xn)− E [f (X1, X2, · · · , Xn)]| ≥ ϵ) ≤ 2 exp

(
− 2ϵ2∑n

i=1 c
2
i

)
.

In fact, equation (5) implies that the SDR estimator can be written as

ESDR =
∑

(u,i)∈D

ou,i(eu,i − êu,i)

p̂u,i

/ ∑
(u,i)∈D

ou,i
p̂u,i

+ Ê ,

denoted as f(o1,1, . . . , ou,i, . . . , oU,I). Note that

sup
ou,i,o′u,i

∣∣f (o1,1, . . . , ou,i, . . . , oU,I)− f
(
o1,1, . . . , o

′
u,i . . . , oU,I

)∣∣

≤


δmax −

δu,i/p̂u,i +
∑

D\(u,i) ou,i/p̂u,iδmax

1/p̂u,i +
∑

D\(u,i) ou,i/p̂u,i
, if δu,i ≤ (δmin + δmax)/2,∑

D\(u,i) ou,i/p̂u,iδmin + δu,i/p̂u,i∑
D\(u,i) ou,i/p̂u,i + 1/p̂u,i

− δmin, if δu,i > (δmin + δmax)/2,

(7)

where D \ (u, i) is the set of D excluding the element (u, i).

Next, we focus on analyzing the
∑

D\(u,i) ou,i/p̂u,i. The Hoeffding’s inequality states that for
independent bounded random variables X1, . . . , Xn that take values in intervals of sizes ρ1, . . . , ρn
with probability 1 and for any ϵ > 0,

P
(∣∣∣∑

k

Xk − E(
∑
k

Xk)
∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2ϵ2∑

k ρ
2
k

)
.

For
∑

D\(u,i) ou,i/p̂u,i, we have

P
(∣∣∣ ∑

D\(u,i)

ou,i/p̂u,i −
∑

D\(u,i)

pu,i/p̂u,i

∣∣∣ ≥ ϵ) ≤ 2 exp

(
−2ϵ2∑

D\(u,i) 1/p̂
2
u,i

)
,

Setting the last term equals to η/2, and solving for ϵ gives that with probability at least 1− η/2, the
following inequality holds∣∣∣∣∣ ∑

D\(u,i)

ou,i/p̂u,i −
∑

D\(u,i)

pu,i/p̂u,i

∣∣∣∣∣ ≤
√√√√1

2
log

4

η

∑
D\(u,i)

1

p̂2u,i
≜ ϵ′. (8)

Therefore, combining (7) and (8) yields that with probability at least 1− η/2,

sup
o1,1,...,ou,i,o′u,i,...,oU,I

∣∣f (o1,1, . . . , ou,i, . . . , oU,I)− f
(
o1,1, . . . , o

′
u,i . . . , oU,I

)∣∣

≤


δmax −

δu,i/p̂u,i + (
∑

D\(u,i) pu,i/p̂u,i − ϵ′)δmax

1/p̂u,i + (
∑

D\(u,i) pu,i/p̂u,i − ϵ′)
, if δu,i ≤ (δmin + δmax)/2,

(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)δmin + δu,i/p̂u,i

(
∑

D\(u,i) pu,i/p̂u,i − ϵ′) + 1/p̂u,i
− δmin, if δu,i > (δmin + δmax)/2,

≤

{
(δmax − δu,i)/{1 + p̂u,i(

∑
D\(u,i) pu,i/p̂u,i − ϵ′)}, if δu,i ≤ (δmin + δmax)/2,

(δu,i − δmin)/{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}, if δu,i > (δmin + δmax)/2,
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where δu,i = eu,i− êu,i is the error deviation, δmin = min(u,i)∈D δu,i, and δmax = max(u,i)∈D δu,i.

Invoking McDiarmid’s inequality leads to that

P (|ESDR − EO(ESDR)| ≥ ϵ)

≤ 2 exp

{
−2ϵ2

/( ∑
(u,i):δu,i≤

δmin+δmax
2

(δmax − δu,i)
2

{1 + p̂u,i(
∑

D−(u,i) pu,i/p̂u,i − ϵ′)}2

+
∑

(u,i):δu,i>
δmin+δmax

2

(δu,i − δmin)
2

{1 + p̂u,i(
∑

D−(u,i) pu,i/p̂u,i − ϵ′)}2

)}

≤ 2 exp

(
−2ϵ2∑

(u,i){(δmax − δu,i)2 + (δu,i − δmin)2}/{1 + p̂u,i(
∑

D−(u,i) pu,i/p̂u,i − ϵ′)}2

)

Setting the last term equals to η/2, and solving for ϵ complete the proof.

A.5 GENERALIZATION BOUND UNDER INACCURATE MODELS

Theorem 5 (Generalization Bound under Inaccurate Models). For any finite hypothesis space of
predictions H = {Ŷ1, . . . , Ŷ|H|}, with probability 1 − η, the true risk R(Ŷ†) deviates from the
SDR estimator with imputed errors êu,i and learned propensities p̂u,i satisfying the stabilization
constraint 1 is bounded by

R(Ŷ†) ≤ ÊSDR(Ŷ
†) +

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

δ†u,i −
∑

(u,i)∈D δ†u,ipu,i/p̂u,i∑
(u,i)∈D pu,i/p̂u,i

∣∣∣∣∣︸ ︷︷ ︸
Bias Term

+

√√√√1

2
log

(
4|H|
η

) ∑
(u,i)∈D

(δmax − δ§u,i)
2 + (δ§u,i − δmin)2

{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}2︸ ︷︷ ︸
Variance Term

where δ§u,i is the error deviation corresponding to the prediction model

Ŷ§ = argmaxŶh∈H

∑
(u,i)∈D

(δmax − δ§u,i)
2 + (δ§u,i − δmin)

2

{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}2
.

Proof of Theorem 5. Proof. Theorem 4 shows that for all predictions Ŷh ∈ H, we have

P
(∣∣∣ESDR(Ŷ

h)− E[ESDR(Ŷ
h)]
∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2ϵ2∑

(u,i){(δmax − δhu,i)
2 + (δhu,i − δmin)2}/{1 + p̂u,i}2

)
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McDiarmid’s inequality and union bound ensures the following uniform convergence results:

P
(∣∣∣ESDR(Ŷ

†)− E[ESDR(Ŷ
†)]
∣∣∣ ≤ ϵ

)
≥ 1− η

⇐ P

(
max
Ŷh∈H

∣∣∣ESDR(Ŷ
h)− E[ESDR(Ŷ

h)]
∣∣∣ ≤ ϵ

)
≥ 1− η

⇔ P

 ∨
Ŷi∈H

∣∣∣ESDR(Ŷ
h)− E[ESDR(Ŷ

h)]
∣∣∣ ≥ ϵ

 < η

⇐
|H|∑
h=1

P
(∣∣∣ESDR(Ŷ

h)− E[ESDR(Ŷ
h)]
∣∣∣ ≥ ϵ

)
< η

⇐
|H|∑
h=1

2 exp

(
−2ϵ2∑

(u,i){(δmax − δhu,i)
2 + (δhu,i − δmin)2}/{1 + p̂u,i(

∑
D−(u,i) pu,i/p̂u,i − ϵ′)}2

)
< η

⇐ |H| · 2 exp

(
−2ϵ2∑

(u,i){(δmax − δ§u,i)
2 + (δ§u,i − δmin)2}/{1 + p̂u,i(

∑
D−(u,i) pu,i/p̂u,i − ϵ′)}2

)
< η

Solving the last inequality for ϵ, it is concluded that, with probability 1− η, the following inequality
holds

E[ESDR(Ŷ
†)]− ESDR(Ŷ

†) ≤

√√√√1

2
log

(
4|H|
η

) ∑
(u,i)∈D

(δmax − δ§u,i)
2 + (δ§u,i − δmin)2

{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}2
.

Theorem 2 shows that for the optimal prediction model Ŷ†, the following inequality holds

R(Ŷ†)− E[ESDR(Ŷ
†)] ≤

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

δ†u,i −
∑

(u,i)∈D δ†u,ipu,i/p̂u,i∑
(u,i)∈D pu,i/p̂u,i

∣∣∣∣∣.
The stated results can be obtained by adding the two inequalities above.

B FURTHER THEORETICAL ANALYSIS OF SDR

Without loss of generality, we assume
1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

(êu,i − Ê) = λ, λ ̸= 0.

In this case, the learned propensities must be inaccurate; otherwise, the constraint (1) holds naturally
as the same size increases. Thus, if the imputed errors are accurate, then Lideal = Ê . By a exactly
same arguments of equation (3), we have

1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

(Ê − ESDR) = λ,

which implies that

ESDR = Lideal − λ
/ 1

|D|
∑

(u,i)∈D

ou,i
p̂u,i

.

This means that the degree of violation of constraint (1) determines the size of the bias of SDR.

Furthermore, we can compute the bias, variance, tail bound, and generalization error bound of SDR.
Specifically, if both the learned propensities and imputed errors are inaccurate, constraint (3) does
not hold either. Then the bias of SDR is

Bias(ESDR) =

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

(
eu,i −

∑
(u,i)∈D eu,ipu,i/p̂u,i∑

(u,i)∈D pu,i/p̂u,i

)∣∣∣∣∣+O(|D|−1),
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the variance of SDR becomes

Var (ESDR) =

∑
(u,i) pu,i(1− pu,i)h̃

2
u,i/p̂

2
u,i(∑

(u,i) pu,i/p̂u,i

)2 +O(|D|−2),

where h̃u,i = eu,i −
∑

(u,i)∈D{pu,ieu,i/p̂u,i}
/∑

(u,i)∈D{pu,i/p̂u,i}. The tail bound of SDR is
given as

|ESDR − EO(ESDR)| ≤

√√√√1

2
log

(
4

η

) ∑
(u,i)∈D

(emax − eu,i)2 + (eu,i − emin)2

{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}2
,

where δmin = min(u,i)∈Deu,i, δmax = max(u,i)∈Deu,i, ϵ′ =
√
log(4/η)/2 ·

∑
D\(u,i) 1/p̂

2
u,i, and

D\ (u, i) is the set of D excluding the element (u, i). In addition, we can derive the generation error
bound of SDR. Given a finite hypothesis space H of the prediction model, then for any a prediction
model h ∈ H, with probability 1−η, the true risk R(h) deviates from the SDR estimator is bounded
by

R(h) ≤ ÊSDR(h) + Bias(ESDR) +

√√√√1

2
log(

4|H|
η

)
∑

(u,i)∈D

(emax − e§u,i)
2 + (e§u,i − emin)2

{1 + p̂u,i(
∑

D\(u,i) pu,i/p̂u,i − ϵ′)}2
,

where e§u,i is the error deviation corresponding to the prediction model

h§ = argmax
h∈H

∑
(u,i)∈D

(emax − e§u,i)
2 + (e§u,i − emin)

2

{1 + p̂u,i(
∑

D−(u,i) pu,i/p̂u,i − ϵ′)}2
.
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