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Abstract. Augmentations are the key factor in determining the performance of 

any neural network as they provide a model with a critical edge in boosting its 
performance. Their ability to boost a model’s robustness depends on two factors, 

viz-a-viz, the model architecture, and the type of augmentations. Augmentations 

are very specific to a dataset, and it is not imperative that all kinds of 
augmentation would necessarily produce a positive effect on a model’s 

performance. Hence there is a need to identify augmentations that perform 
consistently well across a variety of datasets and also remain invariant to the type 

of architecture, convolutions, and the number of parameters used. This paper 
evaluates the effect of parameters using 3x3 and depth-wise separable 

convolutions on different augmentation techniques on MNIST, FMNIST, and 
CIFAR10 datasets. Statistical Evidence shows that techniques such as Cutouts 

and Random horizontal flip were consistent on both parametrically low and high 
architectures. Depth-wise separable convolutions outperformed 3x3 convolutions 

at higher parameters due to their ability to create deeper networks. Augmentations 
resulted in bridging the accuracy gap between the 3x3 and depth-wise separable 

convolutions, thus establishing their role in model generalization. At higher 
number augmentations did not produce a significant change in performance.  The 

synergistic effect of multiple augmentations at higher parameters, with 
antagonistic effect at lower parameters, was also evaluated. The work proves that 

a delicate balance between architectural supremacy and augmentations needs to 

be achieved to enhance a model’s performance in any given deep learning task.   

Keywords: Deep Learning, Depth-wise Separable convolutions, Global Average 

Pooling, Cutouts, Mixup, Augmentations, Augmentation paradox.  

1 Introduction  

Data augmentations have become a crucial step in the model building of any deep 

learning algorithm due to their ability to give a distinctive edge to a model’s 

performance and robustness [1]. The efficiency of these augmentations largely depends 
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on the type and the number of augmentations used in each scenario. The effectiveness 

of augmentations in improving a model’s performance depends on model capacity, the 

number of training parameters, type of convolutions used, the model architecture, and 

the dataset used. Augmentations are very specific to the factors mentioned herewith, 

and it is not imperative that all kinds of augmentation would necessarily produce a 

positive effect on a model’s performance. Furthermore, very few studies have evaluated 

the relationship between augmentations, model capacity, and types of convolutions 

used.  

 

Data augmentations can range from simple techniques such as Rotation or random flip 

to complex techniques such as Mixup and Cutouts. The efficiency of these techniques 

in improving a model’s performance and robustness is critical in the case of smaller 

architectures as they are ideal for deployment on Edge / Mobile devices due to the lesser 

model size and decreased training parameters. Not every deep learning task requires an 

architecture optimized on generic datasets like Imagenet. Hence, there is a need to build 

custom-made lightweight models that perform as efficiently as an over-parameterized 

architecture. One such technique to help achieve reduced model size is the utilization 

of Depth-wise Separable convolutions[2]. In this paper, experiments have been 

designed to answer the primary objectives mentioned below. 

 

- To evaluate the relationship between model capacity and augmentation  

- To evaluate the effect of model capacity on multiple augmentations 

- To evaluate the effect of depth wise separable convolution on augmentation 

 

 

2 Literature Review  

Lately, work on augmentations and architectural efficiency has been the hallmark of 

research, making models more efficient and robust. The research methods implemented 

in the paper have been implemented in various works summarized below.   

2.1 Depth-wise Separable Convolutions and GAP   

Depth-wise convolutions were first established in the Xception network [3] and were 

later incorporated in the MobileNet [2] architecture to build lighter models. Due to the 

mathematical efficiency, these convolutions help reduce the number of training 

parameters in contrast to a conventional 3x3 kernel. Traditional CNNs linearize the 

learned parameters by creating a single dimension vector at the end of all convolutional 

blocks. However, it was shown that this compromises a network’s ability to localize the 

features extracted by the preceding convolutional blocks [4]. It was also shown that [5] 

that earlier layers capture only low-level features while the higher layers capture task-

specific features, which need to be preserved to retain much of the information. This 

was made possible by the concept of Global Average Pooling, wherein the information 

learned by the convolutions is condensed into a single dimension vector. The work done 



by [6] has also stressed the importance of Depth-wise convolutions and Global average 

pooling layer wherein deep neural networks were trained using these techniques, and a 

significant improvement in model performance was observed despite the reduction in 

the number of parameters. The techniques have been widely used in industrial setting 

as in the case of detecting minor faults in case of gear box anomalies [7], where in 

retaining special dimension of features is very important, considering the minor nature 

of these faults and a high probability of missing them during regular convolutions. A 

similar study in the classification of teeth category was done where in the results of max 

pooling was compared with that of average pooling [8].   

2.2 Data Augmentation  

Work on Regularization functions was done as early as 1995 to make models more 

robust, such as the radial and hyper basis functions [9]. These focus on a better 

approximation of the losses. Bayesian regularized ANNs [10] were more robust than 

conventional regularization techniques, which work on the mathematical principle of 

converting non-Linear regression into ridge regression, eliminating the need for lengthy 

cross-validation. State-of-the-art results were obtained on CIFAR-10 and CIFAR-100 

datasets using Cutouts [11] to make models more robust and generalizable. Similarly, 

[12] the concept of mixup wherein combining the input and target variables resulting in 

a completely new virtual example resulted in higher model performance due to 

increased generalization. Even conventional baseline augmentations [1] have been 

shown to perform complex augmentation techniques such as GANs in augmenting the 

training samples. Combining self-supervision learning and transfer learning has also 

been shown to boost model performance [13]  when no label is provided in some 

instances to enable powerful learning of the feature representations that are not biased. 

However, the effects of augmentations are not simply restricted to the improvement of 

model performance alone, as seen in the work done by [14], where other properties of 

augmentation such as test-time, resolution impact, and curriculum learning were 

studied. Though augmentations generally improve model performance most of the time, 

augmentation may not necessarily and always positively affect a neural network. They 

do have their shortcomings, as described in work done by [15].   

3 Research Methodology  

The methodology focuses on studying the effect of augmentations on different 

architectures (varying parameters) across three different datasets (CIFAR10, FMNIST 

and MNIST consisting of 50000 training and 10000 validation samples) using 3x3 and 

depth wise separable convolutions. Augmentation techniques have been chosen 

judiciously to perform a wide variety of transformations to the input images so that the 

effect of these techniques would be more explainable from the research perspective. 

The augmentations have been performed using Pytorch and the Mosaic ML library[16].   



 

 

Figure 1. A representation of various augmentation techniques 

 

 
Figure 2. Cutout 

 
Figure 3. Mixup 

3.1 Depth-wise Separable Convolutions  

The mathematical intuition behind the depth wise convolutions is reducing the number 

of training parameters for the same number of features extracted by a 3x3 kernel. This 

is achieved by combining depth-wise channel separation and a 3x3 kernel followed by 

a point-wise convolution to summate the separated features learned in the previous step.  

 

3.2 Global Average Pooling  

Global average Pooling (GAP) is performed by taking the average of all the 

neurons/pixels in each output channel of the last convolutional layer resulting in a linear 

vector.  



3.3 Random Rotation and Random Horizontal Flip 

Random Rotation of 10 degrees (Figure 1) was chosen and applied uniformly on all the 

datasets to keep the variation constant across datasets. The rotation was kept minimal 

at 10 degrees to avoid any significant distortion of the original distribution. In case of 

random horizontal flip, the augmentation is applied with a probability of 0.5, where 

there is a lateral rotation of the images.  

 

3.4 Random Affine and Random Perspective 

Random Affine (Figure 1) is a combination of rotation and a random amount of 

translation along the width and the height of the image as defined by the model's 

hyperparameters. Random perspective performs a random perspective transformation 

of the input image along all the three axes. 

 

3.5 Cutout 

The Cutout is a regularisation or augmentation technique in which pixels from an input 

image are clipped.  Random 8x8 masks (Figure 2 – Sample) have been clipped in the 

experiments to avoid any extreme influence of both smaller and larger Cutouts which 

can affect model performance significantly. 

 

3.6 Mixup  

Mixup is a regularization technique in different input samples and their target labels to 

create a different set of virtual training examples, as shown in Figure 3. A 

hyperparameter δ controls the mixup. The mathematical formula for mixup is shown in 

Equation 1 where �̂�  and �̂�  are new virtual distributions created from the original 

distribution 

 

Equation 1. Virtual distribution  

3.7 Loss Function  

The loss function used here is the cross-entropy loss as this is a multiclass classification. 

  

Equation 2. Cross-Entropy Loss  

 



3.8 Evaluation Metrics  

Validation Accuracy and the percentage of accuracy change from the baseline model 

for every architecture are used as evaluation metrics.   

3.9 Model Architecture  

Table 1. Model Architectures  

Architectures incorporating Global Average Pooling across datasets  

MNIST  Fashion MNIST  CIFAR-10  

1.5K - 1560 1.5K DW - 1560 

5.7K NDW  - 5722  

5.6K DW - 5626 

7.8K NDW - 7,777  

7.6K DW - 7,621  

25K NDW - 25,154 

25K DW - 24,644  

140K NDW - 142,930  

140K DW - 143,118  

600K NDW - 600,575 

600K DW - 599,625 

5.8K NDW  - 5,886  

7.9K NDW - 7,921 

25K NDW  - 25,298 

25K DW - 24,788  

140K NDW - 143,218   

140K DW - 143,406   

340K NDW - 340,010   

340K DW - 344,508   

600K NDW - 590,378 

600K DW - 599,913 

1M NDW - 1,181,970 

1M DW - 1,159,474 

(* NDW – non depth wise (3x3) / DW - Depth-wise Separable convolutions) 

 

Architectures (Table 1) have been built by sequentially reducing the number of 

parameters using the concepts of Depth Wise Convolutions and Global Average 

Pooling followed by application of various augmentations (Figure 4).   

 

 
 

Figure 4. Proposed Methodology 

 



4 Results 

The validation accuracies of different architectures (parameters) have been summarized 

in Tables 1,2,3, and 4 on both the FMNIST and CIFAR 10 datasets.  
 

Table 1. Accuracies of 3x3 Convolutions – FMNIST 
 

Techniques 5.7K 7.8K 25K 140K 600K 

Baseline 90.12 90.6 91.81 93.55 94.19 

Cutouts 91 91.51 92.45 93.87 94.7 

Mixup 90.03 90.29 91.65 94.17 94.7 

Random Rotation 90.17 90.34 91.64 93.57 94.39 

Random horizontal flip 91.07 91.23 92.17 93.81 94.72 

Color jitters 88.04 88.69 88.61 91.38 92.17 

Random Affine  86.38 86.52 89.12 92.36 93.51 

Random perspective 88.72 89.17 90.89 92.83 94.06 
 

Table 2.Accuracies of Depth-wise Separable Convolutions - FMNIST 

Techniques 1.5K 5.6K 7.6K 25K 140K 600K 

Baseline 87.39 89.32 90.03 91.28 93.36 94.19 

Cutouts 88.74 91.09 91.22 92.18 93.82 94.85 

Mixup 86.49 89.69 89.9 91.71 93.99 94.84 

Random Rotation 87.51 90.24 90.47 91.29 93.45 94.42 

Random horizontal flip 87.57 90.37 91.27 91.86 93.57 94.92 

Color jitters 84.7 88 88.09 88.51 91.28 92.13 

Random Affine  83.23 85.85 86.68 88.29 92.41 93.57 

Random perspective 85.41 88.29 88.59 90.31 92.86 94.43 
 

Table 3.Accuracies of 3x3 Convolutions - CIFAR10 

Techniques 5.7K  7.8K  25k  140k  340K 590K 1M 

Baseline 70.12 72.15 73.67 82.79 85.49 86.3 85.69 

Cutouts 70.89 72.06 75.91 84.53 87.04 87.6 87.49 

Mixup 71.62 73.33 76.33 84.81 87.62 87.54 88.21 

Random Rotation 70.35 72.11 74.97 83.02 85.84 86.45 86.16 

Random horizontal flip 71.58 73.32 77.41 84.9 87.76 88.53 88.12 

Color jitters 69.2 68.79 71.96 79.91 82.92 83.93 83.31 

Random Affine  59.93 60.61 68.39 81.13 84.76 85.55 85.17 

Random perspective 67.31 67.85 74.55 82.7 86.71 87.66 86.83 
 

Table 4. Accuracies of Depth-wise Separable Convolutions - CIFAR10 

Techniques 25k 140K 340K 590K 1M 

Baseline 70.75 81.06 83.7 86.7 85.96 

Cutouts 72.49 82.56 85.36 87.85 87.89 

Mixup 72.85 83.45 86.14 88.86 88.55 

Random Rotation 72.1 81.34 83.81 87.62 86.71 

Random horizontal flip 74.66 84.04 86.72 89.12 89.01 

Color jitters 70.89 78.98 81.09 84.2 84.17 

Random Affine  61.8 79.43 82.58 86.74 86.3 

Random perspective 69.95 81.34 84.77 88.38 86.38 



4.1 Augmentations on Depth-Wise Separable Convolutions  

Equivocal performances on Architectural Saturation.  On the FMNIST dataset, 

baseline architectures with fewer parameters and 3x3 convolutions performed better 

than depth wise separable convolutions due to a 3x3 convolution's improved feature 

extraction. However, on the incorporation of augmentation techniques, the difference 

in validation accuracies between the depth-wise Conv and 3x3 Conv architectures 

diminishes considerably (“Diminishing differences’) with equivocal performances by 

both types of convolutions in most cases (Table 5 and Table 6) as the architecture 

approaches saturation, beyond which there is no significant improvement in accuracy 

even with augmentations. 

 
Table 5. The difference in accuracies (3x3 Conv - depth wise conv) – FMNIST 

 

Techniques 5.5K 7.8K 25K 140K 600K 

Baseline 0.8 0.57 0.53 0.19 0 

Cutouts -0.09 0.29 0.27 0.05 -0.15 

Mixup 0.34 0.39 -0.06 0.18 -0.14 

Random Rotation -0.07 -0.13 0.35 0.12 -0.03 

Random horizontal flip  0.7 -0.04 0.31 0.24 -0.2 

Colour jitters 0.04 0.6 0.1 0.1 0.04 

Random affine  0.53 -0.16 0.83 -0.05 -0.06 

Random perspective 0.43 0.58 0.58 -0.03 -0.37 
 

Table 6. Difference in accuracies (3x3 conv - depth wise Conv) - CIFAR10 
 

Techniques 25K 140K 340K 600K 1M 

Baseline 2.92 1.73 1.79 -0.4 -0.27 

Cutouts 3.42 1.97 1.68 -0.25 -0.4 

Mixup 3.48 1.36 1.48 -1.32 -0.34 

Random Rotation 2.87 1.68 2.03 -1.17 -0.55 

Random horizontal flip  2.75 0.86 1.04 -0.59 -0.89 

Colour jitters 1.07 0.93 1.83 -0.27 -0.86 

Random affine  6.59 1.7 2.18 -1.19 -1.13 

Random perspective 4.6 1.36 1.94 -0.72 0.45 

 

Additive effect of Model capacity in Depth wise convolutions.    The above 

phenomenon of diminishing differences is not seen in the CIFAR-10 experiments 

suggesting that there is scope for improvement in model performance by fine-tuning the 

layers. However, with a higher number of parameters (>600K), depth wise 

convolutions perform better than 3x3 convolutions as they enable a neural 

network to go deeper in terms of the number of convolutional layers.   

4.2 Consistency of Augmentations on Architectural Diversity 

Augmentation techniques have been applied to different architectures and a relative 

ranking score was given to each of these techniques based on the average change in 



accuracy and standard deviation. A higher ranking was given to augmentations with the 

least standard deviation and higher gain in accuracy (Table 7). It was observed that 

Cutouts and a simple technique such as Random Horizontal Flip performed consistently 

superior to other techniques. It remained invariant to change in model capacity, 

architectural depth, and convolutions as evident from the least standard deviation and 

highest change in accuracy. On the CIFAR-10 dataset, mixup achieved the highest 

accuracy which is attributed to the wide distribution of classes. At the same time, the 

same technique and random horizontal flip decreased model performance on the MNIST 

dataset. Random affine, colour jitters, and random perspective negatively impacted 

(Augmentation paradox) on the accuracy on both the datasets.  

 
Table 7. Change in accuracies / Change in Standard Deviation - Augmentation 

Aug 
FMNIST CIFAR 10 MNIST 

STD 

Change 

in Acc  Rank STD 

Change 

in Acc  Rank 

Change 

in Acc 

Cutouts 0.47 0.96 1 0.76 1.78 2 0.1 

Mixup 0.53 0.15 4 0.59 2.59 1 -0.5 

Rand Rotate 0.34 0.17 3 0.61 0.65 3 0.46 

Rand HFlip 0.38 0.67 2 1.10 3.21 1 -0.81 

Color jitters 0.54 -2.41 5 1.13 -2.56 5 0.74 

Rand affine 1.52 -2.81 6 5.87 -4.80 6 -2 

Rand perspective 0.69 -1.04 7 2.35 -0.14 4 -0.99 

 

4.3 The superiority of parameters over augmentations  

The difference in accuracy gains/losses across the various augmentation strategies 

reduces as the number of model parameters increases. This tendency is particularly 

pronounced in augmentation strategies that degrade model performance. This is seen 

statistically (Figure 5), where higher architectures have lower standard deviations of 

accuracies. This phenomenon is indicative of the following hypothesis. Positive 

augmentations such as Cutouts, Mixup, Random rotation, and random horizontal flip 

have no meaningful influence on accuracy at larger parameter counts (low SD). In 

contrast, the performance of negative augmentations such as Color Jitters, Random 

affine, and Random perspective improves with the number of parameters. The neurons' 

enhanced learning capacity mitigates the effect of negative augmentation strategies at 

higher settings. In contrast, at lesser number of parameters, the effect of negative 

augmentation is exaggerated on both datasets as evident by the increased SD. 

 

4.4 Combining Augmentations  

Augmentations that positively affect the model performance in terms of accuracy were 

combined in varying combinations. At higher number of parameters combining 

different augmentations resulted in a synergistic effect. However, an antagonistic effect 

was observed at a lesser number of parameters. This can be attributed to models' 



relatively lesser learning capability with fewer parameters. The observations are 

summarized in Tables 8, 9, 10, and 11. 

 

 
 

Figure 5. Standard deviation of changes in accuracy for various techniques 

Table 8.Effect of Combining Augmentations - MNIST 

Models (1.5K params) - MNIST Accuracy Effect 

1. Baseline 98.35 Baseline 

2. Cutout +Random Rotation 98.73 Synergist to 1 

3. Cutout + Random Rotation + Colour Jitters 98.23 Antagonist to 1 & 2 

4. Cutout + Colour jitters 98.9 Synergist to 1,2 & 3 

 
Table 9. Effect of Combining Augmentations - FMNIST 

Architecture  Accuracy w.r.t Augmentations - FMNIST Effect 

140k  

3x3 convolutions 

1.Baseline             – 93.55 

2.Cutout + Horizontal flip            – 94.55 

3. Cutout + Horizontal flip + mixup – 94.22 

Baseline 

Synergist to 1 

Antagonist to 2 

140k  

depth wise convs 

1.Baseline             – 93.36 

2.Cutout + Horizontal flip            – 94.48 

3. Cutout + Horizontal flip + mixup – 93.71 

Baseline 

Synergist to 1 

Antagonist to 2 

600 K  

3x3 convolutions 

1.Baseline             – 94.19 

2.Cutout + Horizontal flip            – 94.98 

3. Cutout + Horizontal flip + mixup – 95.06 

Baseline 

Synergist to 1 

Synergist to 1 and 2 

6000K  

depth wise convs 

1.Baseline             – 94.19 

2.Cutout + Horizontal flip            – 94.97 

3. Cutout + Horizontal flip + mixup – 95.22 

Baseline 

Synergist to 1 

Synergist to 1 and 2 

 

Table 10. Effect of Combining Augmentations - CIFAR10 – Lower architectures 

 

Sl Techniques 

5.7K 

NDW 

7.8K 

NDW 

25k 

NDW 

25k 

DW 

140k 

NDW 

140K 

DW 

1 Baseline 70.12 72.15 73.67 70.75 82.79 81.06 

2 MU + RHP 72.51 73.88 78.05 74.71 86.55 85.65 

3 MU + RHP + CO 71.46 73.93 77.59 75.02 86.64 86.64 

4 Effect of 3 w.r.t 2 Ant Syn Ant Syn Syn Ant 



 
Table 11. Effect of Combining Augmentations - CIFAR10 - Higher architectures 

Sl 

No Techniques 

340K 

NDW 

340 K  

DW 

590 K 

NDW 

590 K  

DW 

1M 

NDW 

1M 

DW 

1 Baseline 85.49 83.7 86.3 86.7 85.69 85.96 

2 MU + RHP 89.72 88.51 90.05 91.88 89.76 90.58 

3 MU + RHP + CO 89.92 88.75 90.69 91.98 90.2 90.98 

4 Effect of 3 w.r.t 2 Syn Syn Syn Syn Syn Syn 

 

 

5 Conclusion  

The focus area of research in this paper has primarily been evaluating various 

augmentation techniques and arriving at an understanding of how model capacity and 

depth wise convolutions affect the outcome of an augmentation. The work has identified 

a new direction in appreciating those consistently invariant techniques and would apply 

them across a wide variety of datasets. Furthermore, this is the first study of its kind to 

unravel the relationship that exists between depth-wise convolutions, model capacity, 

and augmentations across a wide variety of standard datasets. The conclusions of the 

experiments are summarized below.  

Augmentations such as Cutout, Random Horizontal flip, and Random Rotation 

performed consistently across all architectures. Considering the trade-off among 

training time, mathematical computational time, and model accuracy, it is suggested 

that a simple technique such as random horizontal flip, which performs equally well, 

may be used as a baseline augmentation. Further, these techniques were invariant to the 

number of parameters and the type of convolutions used, hence making them ideal for 

deployment on other real-life datasets. Combining augmentations worked well on over-

parameterized architectures with the synergistic effect seen in all the cases. Depth wise 

separable Convolutions were effective on a higher number of parameters as they gave 

the ability of a model to go deeper and hence outperformed models with lesser 

parameters. Though on lesser parameterized architectures, 3x3 performed better, the 

application of augmentations bridged the accuracy gap between these architectures.  
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