
EasyChair Preprint
№ 7347

WANDS: Dataset for Product Search Relevance
Assessment

Yan Chen, Shujian Liu, Zheng Liu, Weiyi Sun, Linas Baltrunas and
Benjamin Schroeder

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 21, 2022



WANDS: Dataset for Product Search Relevance
Assessment

Yan Chen, Shujian Liu, Zheng Liu,
Weiyi Sun, Linas Baltrunas, Benjamin Schroeder

{ychen4, sliu1, zliu2, wsun1, lbaltrunas, beschroeder}@wayfair.com
Search and Recommendation, Wayfair, U.S.A

Abstract. Search relevance is an important performance indicator used
to evaluate search engines. It measures the relationship between users’
queries and products returned in search results. E-commerce sites use
search engines to help customers find relevant products among millions
of options. The scale of the data makes it difficult to create relevance-
focused evaluation datasets manually. As an alternative, user click logs
are often mined to create datasets. However, such logs only capture a slice
of user behavior in the production environment, and do not provide a
complete set of candidates for annotation. To overcome these challenges,
we propose a systematic and effective way to build a discriminative,
reusable, and fair human-labeled dataset, Wayfair Annotation DataSet
(WANDS), for e-commerce scenarios. Our proposal introduces an impor-
tant cross-referencing step to the annotation process which significantly
increases dataset completeness. Experimental results show that this pro-
cess is effective in improving the scalability of human annotation efforts.
We also show that the dataset is effective in evaluating and discrimi-
nating between different search models. As part of this contribution, we
also released the dataset. To our knowledge, it is the biggest publicly
available search relevance dataset in the e-commerce domain.

Keywords: product search · search Relevance · dataset · evaluation

1 Introduction

Search engines are a big part of our day-to-day lives. They are behind many
applications we have come to rely on daily, from web retrieval to e-commerce.
Thus, it is hardly a surprise that a lot of research has been poured into improving
and evaluating search engines. Search relevance is a measure of the accuracy of
the relationship between the search query and the search results. It is commonly
used to assess the performance of search engines.

Evaluating search relevance is inherently tricky. It is a common practice to
use annotators to indicate the relevancy of a query-result pair. However, on a
large scale, it is not possible to ensure the completeness of the evaluation set. The
purpose and use case of queries also vary significantly, which makes discerning the
intent of the query a challenge. This, in turn, makes it hard to pinpoint the exact
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search results that are expected. For example, if a user is interested in finding
induction cooktops, and attempts to search for them using the query cooktop, it
poses an interesting annotation challenge - how do we discern between results
which include only induction cooktops from those which return all cooktops?

In this paper, we introduce and describe WANDS, an open-source e-commerce
product dataset that can be used to fairly and accurately evaluate the rele-
vancy of e-commerce product search engines. We will explain our data collection
methodology, as well as share experiments that we have conducted to validate
the efficacy and value of WANDS. The key contributions of this paper include:

– releasing a public dataset, which is built on top of real-world e-commerce
production data. To the best of our knowledge, this is the biggest search
relevance dataset in the e-commerce domain.

– detailing the methodology used to construct the dataset to allow for trans-
parency and reproducibility.

– proposing an iterative product mining technique called ”cross-referencing”
to improve the completeness of our annotations while keeping the annotation
problem tractable.

2 Related Work

There has been a sizable body of work created on the problem of evaluating
search relevance. We partition this prior work into Web Search Relevance and
Product Search Relevance.

Web Search Relevance deals with retrieving unstructured search responses
from large web-scale datasets. The best-known body of work around web-scale
relevance evaluation is from the Text REtrieval Conferences (TREC), a series of
evaluation workshops conducted for several years. TREC 2007 and 2008 featured
the million query track [6, 5] which involved searching over the GOV2 dataset [2].
The dataset used is a collection of web pages from within the .gov domain, and
includes around 25 million documents. Part of the track’s goal was to investigate
whether multiple shallow judgments might be a better alternative to using fewer,
more thorough judgments. The 2009 run of this track [9] used a new ClueWeb09

dataset [3] instead of GOV2. This is a much larger dataset of one billion web
pages in 10 languages.

Besides academia, multiple enterprises in the tech industry have also shared
their research in this space. Google released a sample of their internal anno-
tation guidelines 1. While it provides a useful peek at how they define rele-
vance, the guidelines do not shed sufficient insights into what Google defines
as a “best” match. Microsoft Bing made available a package of benchmark
dataset LETOR [18] for learning to rank, which contains standard features,

1 https://static.googleusercontent.com/media/guidelines.raterhub.com/en//searchquality
evaluatorguidelines.pdf
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data, and evaluation tools. Sogou, a Chinese search engine, released SOGOU-
SRR (Sogou Search Result Relevance) [27] and SOGOU-QCL [29]. These are
large and high-quality datasets. However, these datasets would not be the most
appropriate for evaluating product search relevance, since their ranking target
is web pages instead of products.

Product Search Relevance focuses on retrieving items from datasets of prod-
ucts and merchandise. The community has adopted two main approaches to
build product search relevance datasets: mining user click logs and annotating
via crowdsourcing.

Mining user click logs is a popular way to build up significantly sized datasets
for large enterprises which have ready access to these logs. The rising popularity
of embedding-based product retrieval [24, 15, 25, 26, 28] is facilitated by datasets
assembled from these web-scale search logs. However, these datasets can be noisy
as users can click on irrelevant but popular products, and also because non-
clicks are difficult to interpret in terms of relevance. Moreover, such datasets are
proprietary and have not been released to the public domain.

Datasets in the public domain tend to be crowdsourced datasets that do
not leak proprietary and important data. The two following datasets are closely
related to WANDS.

– Home Depot2 released the “Home Depot Product Search Relevance Dataset” [1,
10] on Kaggle. It contains 75K training data samples and 166K evaluation
samples. Queries are sampled from Home Depot’s search logs. Ground truth
labels, between 1 (not relevant) to 3 (highly relevant), are created via crowd-
sourcing. Each annotation was evaluated by at least three human raters, and
the final relevance score is defined to be the average of these human ratings.

– Crowdflower also released a dataset [4] that contains relevance annotations
from several e-commerce sites. This is a smaller dataset than the Home Depot
one, including 261 search terms and a list of products for each of these terms.
Annotations are based on a sliding scale from 1 to 4, where 4 indicates that
the product fully satisfies the search query, and 1 indicates that the product
does not match a query.

Both of these datasets only provide relevance scores or labels for their training
samples, but not for testing samples. This reduces the usability of these datasets
for benchmarks and comparison purposes.

Compared to the Home Depot and Crowdflower datasets, WANDS is signifi-
cantly larger in terms of annotated query and product pairs. It includes relevance
labels for both training and evaluation datasets to facilitate benchmarking and
comparisons. Unlike the two existing datasets, with our WANDS dataset we will
also release the full annotation guidelines we used, to ensure reproducibility and
also to share best practices for future data collectors. WANDS also innovates on
the annotation process to improve the number of relevant products per query
(i.e., the cross-referencing process described in Section 4).

2 Major U.S.A. home improvement retailor: http://www.homedepot.com
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3 Annotation Guidelines Design

3.1 Design Principles

In this section, we will detail the design of our annotation guidelines. We design
the WANDS dataset to meet the following criteria:

Reusable. Our dataset should apply to a wide variety of systems, and provide
reproducible results. The most straightforward way to annotate an evaluation
dataset is to present a particular Information Retrieval (IR) system’s outputs to
the annotators and to obtain human judgement specific to the IR system outputs.
However, such annotation is not suitable for judging a different IR system. We
aim to design a relevance dataset that can be used to evaluate multiple systems.

Fair [17]. It should be agnostic to the systems to be evaluated, and be able
to evaluate product search engines fairly and objectively. As discussed in Sec-
tion 2, user behavioral data becomes an increasingly popular choice as relevance
evaluation datasets [24, 15, 25, 26, 28]. User behavior log data suffer from posi-
tional biases and would favor the rankings similar to the production system. We
will alleviate positional bias issues by presenting pair-wise query and product
information for annotators to judge.

Discriminative. It should have the power to discern the performance of differ-
ent product search engines given a robust and discriminative evaluation metrics
such as nDCG [20, 19, 14, 21]. In order to design a dataset that can differentiate
great search algorithms from the good ones, we make sure to include hard neg-
atives, the products are almost relevant to a query but not quite. We mined the
hard negatives both arithmetically and from user behavior logs.

Completeness. As a core element in the Cranfield paradigm [11], completeness
has been a debated quality of a relevance dataset since then [23]. Completeness
refers to the property that within a relevance dataset, all relevant documents
for a given query are known. Indeed, modern relevance datasets have mostly
prioritized dataset size over completeness [22], and various evaluation metrics
have been proposed to deal with incompleteness of evaluation datasets [7, 19].
However, as we will show in Section 6, incompleteness in Product Search dataset
does negatively impact the discriminative power of the evaluation. Incomplete-
ness in Product Search evaluation data also contributes to the problem that
offline evaluation results cannot predict online metrics [13]. While we acknowl-
edge that absolute completeness is impossible to achieve for a dataset the size
of WANDS, we take measures to minimize the impact of incompleteness.

To understand why completeness is important, let’s assume that we have a
target query, which is expected to return 3 products (p1, p2, p3) out of a set of
10. Let’s assume that we have two versions of the dataset, A, and B. A includes
2 “relevant” annotations for p1 and p2. B includes 3 “relevant” annotations
for p1, p2, p3. Suppose also that we have two search engines that we want to
evaluate, α and β. α is able to return two results (p1, p2), while β returns all
three relevant products. When evaluated on dataset A, the two search engines
will perform identically. It is not possible to tell them apart. However, we will
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Fig. 1: Screenshot of Annotation Web UI.

be able to tell using dataset B that β is the better search engine, because it is
able to return a better set of results than α.

3.2 Query-Product Annotation

We had three dedicated annotators from the data annotation agent working on
this project. Each query, qk, and its set of candidate products, θqk = {ik1, ik2, ..., ikn},
are sent to the three annotators. The annotators see one query-product pair at
a time and judge each query-product pairing with one of these possible annota-
tions3:

– Exact match: The surfaced product fully matches the search query.
– Partial match: The surfaced product does not fully match the search query.

It only matches the target entity of the query, but does not satisfy the
modifiers for the query.

– Irrelevant: The product is not relevant to the query.

The annotators are given access to a web-based annotation tool to perform the
labeling tasks as shown in Fig. 1.

4 Annotation Process

The overview of the annotation process is illustrated in Fig. 2. We started by
stratified-sampling of search queries from a pool of historical customer queries
stored in the e-commerce customer behavior logs. We then collected the prod-
ucts potentially relevant to one or more of the selected queries and constructed
a Product Pool. Once the query and product pools were constructed, we per-
formed Iterative Product Mining to identify the query-product pairs to be anno-
tated. Three annotators then provided independent judgments on the selected
query-product pairs, according to the Annotation Guidelines. To reduce dataset

3 Please refer to our Annotation Guidelines released as a supplement to the dataset
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Fig. 2: Overview of the Annotation Process

incompleteness, we introduce the Iterative Product Mining process as described
in Section 4.3. In the remainder of this section, we will discuss in detail each
step of the annotation process.

4.1 Query Sampling

Our e-commerce website serves millions of queries every day. A good search
relevance dataset should represent the diversity of real-world queries. To this
end, we performed stratified sampling over tens of millions of customer search
queries from the 2021 first quarter search log at our U.S. website. This resulted
in a total of 480 English search queries.

Specifically, we stratified search queries along the following dimensions: 1) on-
site organic searches vs. marketing-redirected searches, 2) searches that resulted
in customer engagement (e.g., added products to cart) vs. searches that didn’t
result in customer engagement, and 3) popularity over the past two years. Within
each stratified query group, we picked queries from both the head (frequent) and
the tail (infrequent) of the frequency distribution. This approach improves the
diversity of the queries in the query pool. Fig. 3 illustrated the diverse query
distribution over the popularity and engagement dimensions.

4.2 Constructing the Product Pool

Our product catalog contains tens of millions of products. For this annotation
task, we need to sample a small subset of our product catalog, such that the
resulting relevance data set can differentiate great search models from good
ones. This means that for the selected queries, we not only need to include
clearly relevant products and clearly irrelevant products, but also need to ensure
that there are hard-to-determine, almost-relevant products.

To mimic the real-world difficulty of a product search engine, we adopted
two strategies to construct the product pool: using customer engagement data,
and using a combination of lexical and neural retrieval systems:
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Fig. 3: Query Distributions on Add to Cart and Search Volume.

1. We leveraged user engagement data, and included the products that users
clicked on or added to shopping cart during a search experience. Our hy-
pothesis is that the user’s added-to-cart products are good approximation of
potentially relevant products4, and their clicked-on (but not added-to-cart)
products could be hard negatives, or almost-relevant products.

2. We further mine our product catalog using an open source lexical search
engine Solr5, and a neural product retrieval system inspired by Nigam et
al. [16]. The two systems provide different ways to approximate relevant
product retrieval. Neither system is perfect thus providing us more chances
to include almost-relevant products in additional to relevant products.

3. We didn’t attempt to sample easy negative samples (i.e. clearly irrelevant
products). We assume that some of the selected products for certain queries
will become negative samples for other queries.

4.3 Iterative Product Mining for Dataset Completeness

The query-product pairs resulting from the Product Pool Construction step were
sent to the annotators as the first batch of annotation data. Pooling products
related to different queries can cause dataset incompleteness [23]. In an ideal
world, we would ask our annotators to judge every product and query pairs
but that would be intractable - to do so in WANDS would require 60 million
annotation judgements (480 queries x 42,994 products x 3 passes). To reduce
the number of unjudged but relevant query-product pairs, we iteratively mined
the entire product pool for unjudged but potentially relevant products for each
query as cross-referencing. We presented the mined product-query pairs to the
annotators in batches of decreasing likelihood of containing relevant pairs, and
monitored the percentage of exact match query-product pairs in the annotation
results. Once the percentage of exact match labels dropped to a predetermined

4 Users purchasing irrelevant products in search results is a well documented phe-
nomenon[8], however, it is not a concern in our case.

5 https://solr.apache.org/
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Table 1: Summaries of WANDS and other open-source datasets.
Feature WANDS Home Depot Crowdflower

Query
Counts 480 11,795 261
Predicted Class 3 7 7

Product
Counts 42,994 54,682 29,790
Primary Class 3 7 7
Title 3 3 3
Description 3 3 3
Attributes 3 3 7
Category Hierarchy 3 7 7
Average Rating 3 7 7
Number of Reviews 3 7 7

Annotated Query-Product Relevance Labels
Counts 233,448 74,067 22,513

level (5%), we would stop the product mining step and assume that the majority
of relevant products had been found.

Specifically, we applied the lexical and neural retrieval systems described in
Section 4.2 to discover more potentially relevant products. We further utilized
a proprietary deep learning query classification model, which won during A/B
test, to predict the product type that a certain query refers to (e.g. query “tex-
tured cotton throw pillow” was classified to “accent pillow” product class), and
collected all the items in the product pool that belonged to this product class.
After the iterative mining, we have reduced the chance of having unjudged but
related query-product pairs in our dataset, and improved dataset completeness.

5 Dataset

The main contribution of this paper is the WANDS dataset6 itself. We collected
a total of 480 queries, 42,994 products, and 233K annotated query-product rele-
vance labels. Table 1 shows a summary of WANDS relative to the Home Depot
and Crowdflower datasets. WANDS contains the largest number of relevance
labels for query-product pairs. It also contains the richest descriptions of the
products and queries in the English language. It includes details such as: product
title, product description, primary classes that product belongs to (i.e., chair),
product category hierarchy, various product attributes such as size and color,
average customer ratings, and review numbers.

Each entry in the dataset maps a (query-product) pair to a single relevance
label, which could be one of 1) exact match, 2) partial match, or 3) irrelevant.
This label is obtained by aggregating up to 3 entries from our annotators, using
the majority vote strategy.
Quality Assurance is a common challenge for human-annotated datasets.
Without a rigorous quality control strategy, annotators would produce an abun-
dance of poor judgments. To ensure the quality of the annotations, we tracked

6 https://github.com/wayfair/WANDS
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Table 2: Change in inter-annotator agreement over time.
Months 1 & 2 Month 3 Month 4

Cohen’s Kappa 0.467 0.664 0.826
OPA 0.688 0.812 0.916

changes in inter-annotator agreement over time. We do this using two objective
quality metrics: 1) Cohen’s Kappa [12] and 2) the overlap percentage of agree-
ment (OPA). Both metrics measure the agreement between raters, based on the
judgments they make. OPA describes how frequently annotators agree with each
other. For example, if 3 annotators all come to the same conclusion, then the
inter-annotator agreement is 100%. If 2 out of 3 of them have the same conclu-
sion, then the agreement is 66%. Table 2 shows the changes in inter-annotator
agreement over a period of several months. The annotators started with mod-
erate agreement, which steadily increased over the period of 4 months to an
almost perfect agreement. Overall, there is a high level of agreement between
our annotators leading to the high-quality dataset. We identified four reasons
that contribute to significantly improved agreement: 1) Daily routine to discuss
the conflicting annotations can help our annotators get calibrated to the annota-
tion guidelines. 2) Regular audits and reviews help to train and align annotators.
3) With the input from annotators, we refine and fine-tune annotation guide-
lines. 4) Each query-product pair from a new annotator is also labeled by the
other two annotators. This ensures data quality and facilitates future alignment.
As annotators get trained and are more effective at the task, the overlapped
examples are reduced to improve throughput.
Throughput is an important practical aspect of data collection. To determine
the initial throughput, we piloted an annotation exercise with four team mem-
bers. Following our annotation guidelines, we could achieve an initial throughput
of 200 query-product pairs per hour, with an OPA of over 90%. The annotators
performed consistently for the observed period of time. The throughput after 4
months is at around 190 query-product pairs per hour.

6 Experimental Evaluation

Datasets. Publicly available datasets are used to evaluate performance of search
models. We prefer a dataset that provides statistically significant separation be-
tween competing search models. We designed an experiment to compare dis-
criminative power of WANDS with other two public datasets. Home Depot [1]
and Crowdflower [4] are public e-commerce product search datasets consisting of
query and product pairs from popular e-commerce websites. Table 1 summarizes
the differences between each of these datasets.
Search Models. For the experiment, we also needed to select a set of search
models that by design, have known retrieval performance. Note that we are not
evaluating the models themselves, but rather how well the dataset can differ-
entiate between two similar models. We chose the following search models with
known performance properties:
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Table 3: Mapping of labels across each dataset to a standardized set of scores
for metric computation.
Home Depot Dataset Crowdflower Dataset WANDS Relevance Score

≥ 2.5 1 exact match 1.0

≥ 1.5 and < 2.5
2

partial match 0.53
≤ 1.5 4 irrelevant 0.0

Fig. 4: nDCG@10 with varying β.

– Random ranking (RANDOM). This is a naive baseline that generates a
random list of products as the result to a query.

– Okapi BM25 (BM25). That is a probabilistic retrieval ranking model
which is integrated into Apache Solr. It is based on a bag-of-words rep-
resentation and uses TF-IDF to estimate the relevance between query and
products. This is a widely used and very popular unsupervised search algo-
rithm. In our experiments, we make use of product titles and descriptions in
each of the different dataset for ranking.

– Linear combination of RANDOM and BM25 (LINEAR-β). This
combines both RANDOM and BM25 linearly. The score of a product is
computed as follows: β ∗SRANDOM + (1−β)∗SBM25, where Sx denotes the
score assigned to a product by system x and β is a parameter that defines
mixing ratio between two base algorithms.

We use nDCG@10 [20] to evaluate the performance of different search models.
To compute the metric, we have to resolve the differences in labels used across
all three datasets. We map them to the relevance score as shown in Table 3.

Results. We ran RANDOM, BM25 and LINEAR-β on three datasets, while
varying the values of β from 0.0 to 1.0. Each experiment was repeated 5 times
and values averaged. Note that performance of LINEAR-0.0 is equivalent to
BM25 and LINEAR-1.0 is equivalent to RANDOM. Figure 4 shows a plot of
the nDCG@10 scores for varying levels of β on each of the experimental datasets.
Observations. The first observation is that nDCG@10 remains nearly constant
across all values of β for the Home Depot dataset. This indicates the dataset is
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Table 4: Label Distribution for different sampling sources.
exact match partial match irrelevant

User click logs 8,420 (62.47%) 4,624 (34.31%) 434 (3.22%)
Open-source ranking systems 12,040 (30.95%) 24,797 (63.74%) 2,066 (5.31%)

not able to differentiate between search engines in terms of performance, even
though RANDOM is expected to under-perform BM25. In fact, we could not
differentiate between any LINEAR-β on Home Depot dataset (one-sided T-test,
p < 0.01). On the other hand, on the Crowdflower and WANDS datasets, we
can see an expected gradual decrease in nDCG@10 scores as the value of β
increases. The graph is monotonically decreasing, with the highest nDCG@10
score for BM25 (i.e. β = 0.0), and the lowest for RANDOM (i.e. β = 1.0). When
comparing Crowdflower and WANDS, we can see that WANDS is more discrim-
inative of the two. We can reject the null hypothesis that LINEAR-0.0 and
LINEAR-0.3 have the same performance (one-sided T-test, p < 0.01). However,
we cannot statistically separate LINEAR-0.0 and LINEAR-0.3 when using the
Crowdflower dataset. For Crowdflower, we only see the same level of statistical
significance for LINEAR-0.0 and LINEAR-0.5. Thus, we conclude that WANDS
has the highest discriminative power as compared to other datasets.

7 Discussion

7.1 Effectiveness of Sampling Sources

Constructing the product pool step uses two candidate sources: user click logs, and
open-source ranking systems (e.g. Solr). Using user click logs is a popular way
to gather query-product pairs and provide a valuable relevance signal. However,
relying solely on click logs can lead to an incomplete dataset. This approach
misses out on a lot of relevant items that users do not interact with. We augment
this with results using open-source ranking systems. While these systems are
imperfect, they do greatly expand the possible query-product pairings.

Table 4 shows the breakdown of the distribution of our annotation labels for
each of these two sources. We see that the exact match labels mined from user
click logs are relatively high at 62.47%, and irrelevant candidates only account
for 3.22% of all labels. For open-source ranking systems, we achieve around 31%
of exact match labels and 64% partial match labels.

The high proportion of relevant matches from both approaches suggests that
our sampling step is working as it was intended - to help narrow down a good list
of candidates so that our annotators can pick out relevant matches efficiently.

7.2 Iterative Product Mining for Dataset Completeness Step

We analyzed iterative annotation process to understand how much value it
added. After completing the step Constructing the product pool, for 49,390 query-
product candidates and 480 queries, we obtained a set of 46,875 relevant (e.g.
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Table 5: Distribution of labels across annotation steps 1 and 2.
exact match partial match irrelevant

Step 1 18,018 (36.48%) 28,857 (58.43%) 2,515 (5.09%)
Step 2 7,596 (4.12%) 117,776 (63.99%) 58,686 (31.88%)

either exact match or partial match) query-product annotations. After itera-
tive mining, the number of relevant matches increased to 172,247 out of a total
of 233,448 annotations. This represents a 3x increase and shows that Step 2 is
critical to the annotation process.

Table 5 lists the differences in distribution of labels we obtained in both steps.
We can see that we get a higher proportion of exact match for Step 1 than Step
2 (i.e. 36% vs 4%). Step 2 produces a higher proportion of partial match labels
(i.e. 64% vs 58%).

This second step is important, since it can give us more more exact match

labels. And also we can view these partial match labels as a possible reflection
of the harder-to-score/debatable items on the decision boundary. This increases
the difficulty of the dataset to further the discriminative power of the dataset.

8 Conclusions and Future Work

Search engines are critical to the success of e-commerce platforms. Much of the
work around the evaluation of these systems tends to be proprietary. We hope
that the release of WANDS will spur continued research in this domain. In
this paper, we described the annotation process we have used in detail, as well
as shared evaluation results to showcase the discriminative power of WANDS.
To recap, our key contributions include: 1) making the dataset available in the
public domain, 2) introducing the annotation process and releasing the anno-
tation guidelines we used for reproducibility, and 3) sharing our proposal of
cross-referencing as a way to improve dataset completeness while keeping the
annotation problem tractable. To the best of our knowledge, WANDS is the
largest search relevance dataset targeted at e-commerce applications.

Looking ahead, we plan to investigate and compare more approaches for
cross-referencing. We also want to confirm our hypothesis that the guidelines
we have refined through our annotator training process are sufficient to allow
less-trained crowdsourced annotators to produce similarly high-quality datasets.
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