
EasyChair Preprint
№ 9082

LSTM-NB: DoS Attack Detection On SDN
With P4 Programmable Dataplane

Sya Raihan Heggi, Parman Sukarno and Satria Akbar Mugitama

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 24, 2022

LSTM-NB: DoS Attack Detection On SDN With
P4 Programmable Dataplane

1st Sya Raihan Heggi
School of Computing

Telkom University
Bandung, Indonesia

heggiraihan@student.telkomuniversity.ac.id

2nd Parman Sukarno
School of Computing

Telkom University
Bandung, Indonesia

psukarno@telkomuniversity.ac.id

3rd Satria Akbar Mugitama
School of Computing

Telkom University
Bandung, Indonesia

satriamugitama@telkomuniversity.ac.id

Abstract—This paper proposes LSTM-NB, a combination of
Long Short-Term Memory (LSTM) and Naive Bayes (NB) algo-
rithms to tackle Denial of Service (DoS) attacks on Program-
ming Protocol-independent Packet Processors (P4) language-
based Software Defined Network (SDN). The implementation
of SDN is becoming more popular. However, there are critical
aspects of the SDN architecture, one of which is that it is
vulnerable to DoS attacks that can cause the network to lose the
availability principle of the CIA Triangle. There are a number
of works have been proposed to overcome this vulnerability,
however, the threat is still exist. The proposed technique achieves
an accuracy of 88% on SDN-DL Dataset, 98% on NSL-KDD, and
96% on CICIDS2017 with FNR score between 1-2%. In addition,
we compare our proposed technique with other machine-learning
and deep-learning methods. Through extensive experimental
evaluation, we conclude that our proposed approach exhibits a
strong potential for DoS detection in the SDN environments.

Index Terms—Computer Network Security, Intrusion Detec-
tion System (IDS), Machine Learning, Deep Learning, Denial of
Service (DoS).

I. INTRODUCTION

Computer networking is a complex matter and difficult to
manage. It happens due to the large number of equipment
used on the network [1]. Besides, the devices on traditional
networks have designs, software, and hardware related to one
vendor. Each vendor has different designs and devices [2]. To
tackle those complexities, Software Defined Network (SDN)
technique [1] is proposed. SDN has different characteristics
when it is compared to traditional networks which is the
separation of the control plane and data plane of a network
device [1], [2]. SDN applies the concept of centralization to
its network architecture like a traditional network. However, it
makes SDN architecture network vulnerable to cyber-attacks
[3]. There are three types of attacks targeting SDN networks.
These are fraud attacks, intrusion attacks, and malicious tam-
pering attacks [4]. One of the attacks on the SDN network
was Denial of Services; this vulnerability was caused by the
architecture of SDN [5] [1].

Denial of Services, commonly known as DoS, is a cyber-
crime with the method of sending packets excessively and
aiming to exploit the resources of the network [6], [7]. The
separation of the control and data planes causes DoS attack
in SDN [5]. Attackers exploit both the control plane and data

plane [8], so it disrupts the flow rule decision and can also
result in the occurrence of a bottleneck on the network. It can
be harmful if there is a failure on the network component [9].
There are two types of DoS attacks, namely volumetric attacks
such as ICMP-Flood, UDP-Flood, and TCP-SYN Flood, and
application-layer attacks [9]–[11]. This topic important can be
concluded from three-factor. Firstly, from the SDN perspec-
tive, SDN implements a centralized architecture,losing either
the control plane or the data plane is significant. Besides that,
with Openflow 1.4, we can only extract 41 Header Value.
Secondly, Economically this attack can cause losses of up to
$100,000; the most significant loss is the satisfaction of users.
Lastly, detecting DoS attack need an adaptive system because
of the variety of method used [12]. We proposed LSTM-
NB for making an Early Detection System, a combination of
Long Short-Term Memory (LSTM) and Naive Bayes (NB)
algorithms, to solve these problems.

A. Paper contribution and organization

This paper proposes LSTM-NB to make DoS early detection
system. The proposed technique is inspired by a research
conducted by Ahuja et al. which combined two different deep
learning algorithms (CNN-LSTM). However, the CNN-LSTM
method needs extensive computation resources. Moreover, as
the CNN-LSTM is a deep learning technique, it skips the
feature selection stage and neglects a flexible and configurable
system. Due to this reasons, we propose LSTM-NB where we
implement deep learning and shallow learning. We improve
shallow learning performance by using deep learning but
consume fewer computation resources.

Recurrent Neural Network (RNN) has shown great success
in language modelling, text generating, and speech recogni-
tion; based on Tang et al., RNN is believed to be a powerful
technique to represent the relationship between current and
past events and enhance anomaly detection system [2]. The
RNN-based algorithm was chosen because of its advantages
in handling time-series data. Besides that, Musumeci et al.,
in their research, advised implementing the RNN algorithm
for DoS Detection. However, RNN has some disadvantages;
one of the problems is the Long Dependency Problem; in
theory, RNN can solve that problem, but in practice, RNN

cannot solve it. This problem is called the Vanishing gradient
problem.

LSTM was chosen because of its advantages and can
optimize the long dependency problem in the Recurrent Neu-
ral Network. Besides that, LSTM also can keep records of
information on packets that have passed the system built [13]
so that the packet analysis is expected to be more accurate
with this method. Naive Bayes was chosen because it is pretty
simple to implement and has high accuracy [13].

The main contributions in this paper are as follows:
• We compare different ML algorithms to detect DoS

attacks such as Naive Bayes, LSTM, ANN, and LSTM-
NB in terms of accuracy, recall, precision, and false-
negative rates.

• We compare the performance of the machine-learning
model on NSL-KDD, SDN-DL, and simulation-generated
datasets.

• We provide P4-based data plane code for simulation,
implementing deep learning intrusion detection system,
and simulation features extraction code.

The present paper is organized as follows. In Sec. II, we
provide background on Software Defined Network, Denial
of Services attacks and P4 language. Then in Sec. III, we
overview the proposed system schema. After that, in Sec. IV
We describe the experimental framework, such as evaluation
methods, dataset, and data preprocessing. In Sec V, we provide
discussions of the experimental results. Finally in Sec VI, we
provide the conclusion.

II. BACKGROUND

A. Related Work

An intrusion Detection System (IDS) is used to prevent DoS
attacks. IDS inspects every activity that occurs on the network
[6], [14], [15]. There are two types of IDS namely signature-
based and anomaly-based. Both approaches have drawbacks,
such as low intelligence and weak adaptability if applied
traditionally. Hence, it is ineffective when implemented in
many scenarios [16].

To overcome those issues, we need a dynamic approach.
During the last decade, there have been many surveys and
reviews of the technology used in IDS, one of which is
technology by applying the machine learning method [3],
[16]. Machine-learning methods commonly used are SVM,
Random Forest, KNN, and technologies such as Artificial
Neural Network [16]. On IDS implementation, most of the
methods are currently still using variations of Shallow Learn-
ing where it needs continuous learning on the model to update
its capabilities. Besides, it needs more in-depth analysis to
select the features used [5]. The next drawback is that the
system can only detect some DoS attacks [3], [16]. Deep
Learning methods can be used to solve this problem [3], [5].
Deep Learning was chosen to solve the problem because of
its learning ability, and generalization of the existing attributes
[5].

B. DoS Attack

Denial of Service is one of the cybersecurity attacks that aim
computer networks and make computer networks inaccessible
[7], [17]. This attack targets communication nodes such as
network infrastructure or components. The methods is used
by flooding the network with packets and making the network
low on resources (overwhelm) make the network offline for
some time. Currently, there are several types of prevalent DoS
attacks, namely UDP Flood, ICMP Flood, TCP Flood, HTTP
Flood, and HTTPS Flood [18]. We can group them based on
their protocol like UDP, TCP, HTTP, and ICMP attack. The
attack can easily be classified based on the methods used.
DoS attacks have wide varieties and methods used. However,
they usually have similarities that is overwhelming the network
using packet [6]. According to Kaspersky Lab data, since
the beginning of the COVID-19 pandemic, DoS attack rate
increases up to 20% since online activities growth. The attack
mainly consists of three types of attack SYN, UDP, and TCP
attack, where SYN attacks are 78.20%, followed by UDP
15.17%, and followed by TCP attacks as much as 5.67%. To
minimize DoS attack impact, it can be avoided by making
an early detection system, the next step after detection is
by making mitigation i.e Drop Anomaly Packet after packet
classification.

C. Software Defined Network

Software-Defined Network (SDN) is an innovation in net-
working that changes how we design and manage the network
itself, using SDN management, control, and creating innova-
tion that is easier and possible to implement [1]. SDN provides
a new paradigm option that implements a centralized system; it
separates two parts of the network. The control plane tasked to
control the network, and the data plane in charge of forwarding
packet [1], [19], [20]. In addition, traditional networks which
are closed, proprietary to the control and have differences
between vendors, making it for network administrators hard
to manage and configure [2]. SDN builds on the Appli-
cation, Control, and Infrastructure layers. This architecture
allows SDN to implement the centralized architecture and
then have the advantage of modifying the network. Further-
more, infrastructure and all these layers are connected using
southbound and northbound API to communicate with each
other. Currently, the well-known SDN protocol is Openflow,
which provides a simple and robust SDN system. However,
OpenFlow has disadvantage which is lack programmability.
To tackle this problem, we use a more powerful solution that
is P4-language Dataplane.

D. P4 Language

P4 language is a high-level programming language for
routers and switches, designed to allow programming on data
plane components such as hardware or software switches,
network interface cards, routers, etc [3]. P4 is an open-source
language while OpenFlow P4 uses top-Down design. The main
difference between P4 and OpenFlow is its programmability.
In this paper, the simulation uses the behavioural model using

the Mininet simulator to simulate a DoS attack. Based on
Musumeci et al. a P4 program composed of the following
component:

• Parsers had a function to identify the allowed protocols
and fields in the program. Typically, they contain the
names of the used headers and their size in bits.

• Control Plane (Ingress/Egress) had a function to describe
the order of processing rules that is applied to the packet.

• Table had a bunch of processing rules that form ”match-
action”. When the P4 program processes packets, the
ingress pipeline is executed to look for the matching
rule(s) which fit the incoming packet.

III. PROPOSED DETECTION SYSTEM

A. System Overview

The system is built with two main components. First,
the data collector module and second, the detection system
governed by three main modules. Preprocessing, this module
prepares data from the data collector matching with classifica-
tion. Module input type, this module contains feature selection
module. The last module is normalization which uses Min-
Max Scaler module to Normalize data after the data is passed
to LSTM Module.

1) LSTM Module

(a)

(b)

Fig. 1. (a) LSTM Architecture [21], (b) LSTM Architecture [5]

LSTM Module contains LSTM-classifier. LSTM is an ap-
plication of the Recurrent Neural Network which has the
ability to learn about long-standing dependencies [5], where
the structure of the LSTM cell itself is depicted as shown
in Figure 1. In Figure 1, every t time of this LSTM cell is

controlled by various logic gates, which aim to maintain or
reset the values in the cell. Figure 1 shows three types of gates,
the gates are located sequentially from the left side, the gate
consists of Forget gate (ft), Input gate (it) , and Output gate
(ot) all of which have sigmoid activation functions. Hence,
there is one gate that uses the tanh function called candidate
value gate.

ct = ft ⊙ ct−1 + it ⊙ ct
′ (1)

ht = ot ⊙ tanh(ct−1) (2)

First step on LSTM is the forget gate to decide how much
value is removed from the state of the cell, and next stage
input gate determines how much new information stored, for
next step (ct) is described based on equation and for LSTM
result (ht) is defined by equation.

2) Naive Bayes Module
Naive Module contains Naive Bayes Classifier. Naive Bayes

is a method for classifying based on Naive Bayes theory [22].
This method is a classification using a simple probabilistic
approach. We need to calculate a set of probabilities by adding
up the frequency and combination of values from the data.

P(H|E) = P(H|E)P(H)

P(E))
(3)

P(H|E) = P(E1|H)×P(E2|H)×·· ·×P(En|H)×P(H) (4)

Values can be assigned to these attributes and the patterns
resulting from these calculations is used for classification. The
Naive Bayes system itself is classified as supervised learning
in the application of machine-learning [22]. It defined as
equation 3 and equation 4. In Naive Bayes, the calculation
of the probability of an event H which is a condition in data
E is carried out by first calculating the probability from data
E with condition H (P(H|E)), after that, the result (P(H|E)) is
multiplied by the probability condition H (P(H)), then divided
by the probability data E (P(E)). Hence, the detection of
DoS attacks can be carried out using a calculation of the
probability of the attack occurring on the data then divided
by the probability of data E [22].

IV. EXPERIMENTAL FRAMEWORK

This section describes the datasets and evaluation metrics used
in the experimental framework. We also describe the data pre-
processing procedure.

A. Dataset

The experimental evaluation framework use widely popular
datasets which is NSL-KDD and CICIDS 2017 [2]. NSL-KDD
datasets are one of the most popular datasets used on NIDS
Performance. These datasets were introduced by Tavallace et
al., but these datasets are out of date [23] and lack traffic
diversity and feature sets. CICIDS2017 is used to solve that
problem because the datasets are relatively new. These two
datasets are not specified for SDN architecture. However, the

datasets are used as there is lack of public datasets for DoS at-
tacks on SDN architecture. Several researchers generated many
SDN datasets manually, but it is closed and hence researchers
still use conventional datasets to evaluate their model [2]. In
this paper, in addition to NSL-KDD and CICIDS 2017, we
also use a dataset related to SDN architecture provided by
Ahuja et al., to develop a deep learning anomaly detection
system on an SDN-based network [24]. This dataset is used to
prove that our proposed system works on SDN architecture and
significantly improve the performance. Lastly, the simulation
dataset is created using SDN simulation using Iperf3 and
Hping3 to generate network traffic and then captured by a
network sniffing application.

B. Data Preprocessing
On NSL-KDD and CICIDS 2017, we performed one-hot en-

coding, scaling, and label transformation for features needed.
We did not do a feature selection process for this dataset when
inputted to the LSTM module, but we selected some features,
mainly LSTM prediction result and protocol type feature. For
the SDN-DL dataset, we performed feature selection using
Heatmap, Chi-Square, Tree Classifier, and Data Slice. Besides
that, we performed missing value and duplicate value handling.
Lastly, we performed normalization using min-max methods.
We did label encoding for some features like protocol type, and
the last dataset we used is the simulation dataset we generated
before we performed data normalization and feature selection
because this data was used to train our model to simulation
data. .

C. Evaluation Methods
This paper uses parameters such as Accuracy, Precision and

False Negative Rate to calculate detection system performance.
To produce that, we need to make a confusion matrix. Based
on Qin et al. confusion matrix contains the item defined below.

• True Positive (TP) is parameter of DoS Packet classified
as DoS Condition.

• True Negative (TN) is parameter of Normal Packet
classified as Normal Condition.

• False Positive (FP) is parameter of Normal Packet clas-
sified as DoS Condition.

• False Negative (FN) is parameter of DoS Packet classi-
fied as Normal Condition..

Based on the parameter explained before, we calculate per-
formance parameters such as Accuracy, Precision, and False
Negative Rate. We use an equation based on Li et al. and
Aljarwaneh et al. research to calculate the performance pa-
rameter.

• Accuracy compares the correct classification with the
total number in the dataset.

Acc =
T P+T N

T P+T N +FP+FN
(5)

• Precision is part of the data that is classified as positive
and has a true positive value.

Precision =
T P

T P+FP
(6)

• False Negative Rate is a comparison that shows the
number of incorrect packets that are classified as true.

FNR =
FN

T P+FP
(7)

From Equation 5 - 7, they consist four values: TN (True
Negative), TP (True Positive), FN (False Negative), and FP
(False Negative).

V. EXPERIMENT AND RESULT

In this section, we describe three evaluations and discuss
the results. Evaluation 1 uses SDN-DL dataset, and then
we compare the proposed method using some Vanilla al-
gorithms on Sklearn and Tensorflow library, such as ANN,
Naive Bayes, and LSTM. After that, all methods is evaluated
using evaluation parameters. Evaluation 2 uses NSL-KDD and
CICIDS datasets and it is compared to Tang et al. research.
In Evaluation 3, we evaluate the performance of the P4-based
SDN network using the dataset we generated before hand and
present the result.

A. Evaluation 1 - SDN-DL Dataset Evaluation

The goal of evaluation 1 is to carry out comparative analysis
of proposed system with the previous research using the same
dataset. This evaluation is focused to find features that have
optimal performance. On this evaluation we perform data
exploration, cleansing, transform, and normalize data using
Min-Max Scaling, after that we split data to three parts:
training, validation, and testing, which contains 70% data for
training from training split we split again 70% data for training
and 30% data for validation, and lastly 30% for testing.
Data exploration on SDN-DL Dataset finds no missing and
duplicated values.

TABLE I
FEATURE SELECTION RESULT

Algorithm Accuracy (%) Precision (%) FNR (%)

Train Test Train Test Train Test
ANN (Full Feature) 92.96 92.85 93 92 14.5 14.6
ANN (Chi Square) 69.2 69.29 78 78 43.9 43.9
ANN (Extra Tress) 93.81 93.87 94 94 15.6 15.2
ANN (Heatmap Slice) 84.99 85.10 84 84 10.9 10.8
LSTM (Full Feature) 94.24 94.09 94 94 14.2 14.2
LSTM (Chi Square) 80.78 80.39 81 81 16.6 16.6
LSTM (Extra Tress) 90.79 90.78 90 90 13.4 13.4
LSTM (Heatmap Slice) 88.57 87.86 88 87 12.6 12.5
NB (Full Feature) 60.79 61.08 30 31 - -
NB (Chi Square) 60.79 61.08 30 31 - -
NB (Extra Tress) 61.16 60.51 31 30 - -
NB (Heatmap Slice) 61.01 60.78 31 30 - -

Next step we conducted feature selection. We select feature us-
ing four ways. The first way we use all features, second we ap-
ply chi square calculation to get feature importance score. The
results are ’dst’,’src’,’Protocol’,’pktcount’,’pktcount’. The third
way we use extratreesclassifier to calculate important methods.
From this methods we obtain ’pktrate’,’pktperflow’,’Protocol’,

’src’,’dst’. The last method used is to check the correlation
heatmap and combined with another selected feature. We
decide to choose ’dst’,’src’,’Protocol’,’bytecount’. After the
features were selected, then we perform normalization pro-
cess using two methods: Normalization, and Standarization
methods. However, after performing an evaluation, several
algorithms cant handle standarization value. Hence, we choose
Normalization for feature selection evaluation. We evaluate
feature selection using LSTM, VanillaRNN, and ANN meth-
ods. The results are presented on Table I.

Fig. 2. LSTM and Naive Bayes Model Accuracy on Training Session

From Table I, it can be seen that Deep-Learning Based
methods such as LSTM and ANN are preferable to use all
features. However, the shallow learning algorithm, which is
Naive Bayes, requires feature selection process. Moreover,
Naive Bayes method has lousy performance as it only detects
non-anomalies value. From this result, it can be identified
that heatmap method has the lowest performance. Therefore,
we decide to improve the performance using our proposed
method. When developing the proposed method, we use 10
epoch to train LSTM model and using Cross-Validation to
find optimum var smoothing value. We apply 10 fold and
1000 tries on Naive Bayes model and get the optimum value
is 0.7326. The result obtains accuracy at 89%. The achieved
accuracy can be seen on Figure 2. Moreover, we improve the
Naive Bayes Slice method performance from 61% to 89%.
The we conduct test and compare the result with the previous
work as shown on Table II - IV.

TABLE II
ACCURACY PERFORMANCE COMPARISON

Algorithm Accuracy (%)

Training Validation Testing
LSTM + NB (Combined) 88.77 88.18 88.02
LSTM 88.59 87.89 88.57
Naı̈ve Bayes 62.01 61.46 61.85
ANN 87.698 87.67 87.69
CNN-LSTM [24] 99.48

From Table II - IV, it can be seen that our proposed
system obtains a lower performance compare to Ahuja et
al. However, their result is expected as they used a fully
Deep Learning method. The drawback is that Deep Learning
consumes more resource and has no feature knowledge to

TABLE III
PRECISION PERFORMANCE COMPARISON

Algorithm Precision (%)

Training Validation Testing
LSTM + NB (Combined) 85.21 82.41 84.16
LSTM 86.02 85.03 83.14
Naı̈ve Bayes 51.35 51.20 51.30
ANN 83.29 83.51 83.36
CNN-LSTM [24] 99.55

TABLE IV
FNR PERFORMANCE COMPARISON

Algorithm FNR (%)

Training Validation Testing
LSTM + NB (Combined) 13.60 10.78 14.53
LSTM 15.72 16.67 10.58
Naı̈ve Bayes 64.16 62.26 64.47
ANN 14.09 14.09 14.09
CNN-LSTM [24] 3

configure the network. However, if we compared to vanilla
machine-learning and deep learning algorithm, ours has the
highest accuracy, precision, and lowest FNR rate.

B. Evaluation 2- NSL-KDD and CICIDS Dataset Evaluation

The goal of evaluation 2 is to carry out a comparative anal-
ysis with research conducted by Tang et al. The main reason
this evaluation was conducted was to evaluate the proposed
system with a public network dataset. In addition, we need to
compare the LSTM-based model with the RNN-based model.
We split the data into three parts: Training, Validation, and
Testing, which contains 70%:30% data partition on Training
and Testing. After that, we conduct data preprocessing, and
then we use all attribute to train our LSTM-NB model. The
performance parameter we used to make the comparison is
accuracy and precision. FNR was not used because research
before did not describe that value. Results of this evaluation
are shown in Table V.

TABLE V
NSL-KDD AND CICIDS2017 PERFORMANCE COMPARISON

Algorithm NSL-KDD CICIDS2017

Accuracy Precision Accuracy Precision
LSTM + NB (Combined) 98.85 99.03 96.4 97.8

GRU-RNN [2] 89 91 99 99
DNN [2] 75.9 0 75.75 0
SVM [2] 65.67 0 69.52 0

NBTree [2] - - 82.02 0
VanillaRNN [2] 44.39 0 - -

From Table V it can be seen that our proposed system can
achieve an accuracy of 99.85% on the NSL-KDD dataset and
96.4% on CICIDS2017. It means that our proposed system
works significantly better than DNN, SVM, VanillaRNN,
and Tang et al. proposed system GRU-RNN on NSL-KDD
dataset. Besides that, on CICIDS 2017, our proposed system

achieved slightly lower than the GRU-RNN dataset, meaning
the proposed system worked significantly accurate and had
a good performance. To achieve this value, we conduct data
transformation using one-hot encoding and data preparation;
after that, we split data 70%:30%. We developed with the
same methods as evaluation one, but the difference is that
we did not choose any feature for the LSTM module, but
we selected ’lstm result 1’, ’lstm result 2’, ’lstm result 3’,
and protocol name on Naive Bayes module. We developed the
Naive Bayes module using Grid Cross-Validation methods to
get the optimum var smoothing value, and the value used is
0.7326. Besides that, on this evaluation, we got an FNR rate
range between 1-2% and this value was lower than previously
proposed methods CNN-LSTM.

C. Evaluation 3- Simulation Dataset Evaluation
The goal of evaluation 3 is to identify which features

can be used on a P4-based SDN Network as P4 has some
different features that can be extracted with OpenFlow SDN.
We extracted ’src’. ’dst’. ’length’, and ’protocol’. We use
Accuracy and FNR to evaluate our model performance with
P4-Mininet Simulation. This simulation is generated using
Hping3 and Iperf. We conduct 30 minutes network simulation,
and after that, we save data based on the session we conduct.
In the first session, we conduct normal traffic with Iperf3 and
variate windows and packet lenght between 8 -2.4 Kbits, and
in another session, we conduct an attack session we conduct
UDP, SYN, TCP Flood, after that we preprocessed data, and
use proposed system. The performance we got is accuracy
100% with FNR 0%, which can happen because the variation
of the DoS attack is obsolete.

VI. CONCLUSIONS

From the results, it can be justified that our proposed method
gives acceptable performance and less complexity in contrast
to a combination fully deep learning technique because using a
combination fully deep-learning algorithm requires more per-
ceptrons, it requires more computing resources. The proposed
method achieves 88% accuracy, 85% precision, and 10% FNR.
Using NSL-KDD and CICIDS, our proposed schema achieved
≥ 96% accuracy. The data obtain from simulation using P4-
Mininet achieved 100% accuracy. It proves that our proposed
LSTM-NB can be implemented with acceptable performance
on SDN environment.

REFERENCES

[1] H. Hendrawan, P. Sukarno, and M. A. Nugroho, “Quality of service
(qos) comparison analysis of snort ids and bro ids application in software
define network (sdn) architecture,” in 7th International Conference on
Information and Communication Technology. IEEE, 2019, pp. 1–7.

[2] T. A. Tang, D. McLernon, L. Mhamdi, S. A. R. Zaidi, and M. Ghogho,
“Intrusion detection in sdn-based networks: Deep recurrent neural net-
work approach,” in Deep Learning Applications for Cyber Security.
Springer, 2019, pp. 175–195.

[3] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted ddos attack detection with p4 language,”
in ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 2020, pp. 1–6.

[4] Y. Qin, J. Wei, and W. Yang, “Deep learning based anomaly detection
scheme in software-defined networking,” in 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS). IEEE,
2019, pp. 1–4.

[5] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença, “Long short-
term memory and fuzzy logic for anomaly detection and mitigation
in software-defined network environment,” IEEE Access, vol. 8, pp.
83 765–83 781, 2020.

[6] N. Moustafa, J. Hu, and J. Slay, “A holistic review of network anomaly
detection systems: A comprehensive survey,” Journal of Network and
Computer Applications, vol. 128, pp. 33–55, 2019.

[7] I. Ramadhan, P. Sukarno, and M. A. Nugroho, “Comparative analysis
of k-nearest neighbor and decision tree in detecting distributed denial
of service,” in 2020 8th International Conference on Information and
Communication Technology (ICoICT). IEEE, 2020, pp. 1–4.

[8] A. Sangodoyin, T. Sigwele, P. Pillai, Y. F. Hu, I. Awan, and J. Disso,
“Dos attack impact assessment on software defined networks,” in Inter-
national Conference on Wireless and Satellite Systems. Springer, 2017,
pp. 11–22.

[9] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Ddosnet:
A deep-learning model for detecting network attacks,” in 2020 IEEE
21st International Symposium on” A World of Wireless, Mobile and
Multimedia Networks”(WoWMoM). IEEE, 2020, pp. 391–396.

[10] S. R. Talpur and T. Kechadi, “A survey on ddos attacks: Router-based
threats and defense mechanism in real-world data centers,” in 2016
Future Technologies Conference (FTC). IEEE, 2016, pp. 978–984.

[11] O. Yevsieieva and S. M. Helalat, “Analysis of the impact of the slow http
dos and ddos attacks on the cloud environment,” in 2017 4th Interna-
tional Scientific-Practical Conference Problems of Infocommunications.
Science and Technology (PIC S&T). IEEE, 2017, pp. 519–523.

[12] P. Kaur, M. Kumar, and A. Bhandari, “A review of detection approaches
for distributed denial of service attacks,” Systems Science & Control
Engineering, vol. 5, no. 1, pp. 301–320, 2017.

[13] Y. Li and Y. Lu, “Lstm-ba: Ddos detection approach combining lstm and
bayes,” in 2019 Seventh International Conference on Advanced Cloud
and Big Data (CBD). IEEE, 2019, pp. 180–185.

[14] S. Anwar, J. Mohamad Zain, M. F. Zolkipli, Z. Inayat, S. Khan,
B. Anthony, and V. Chang, “From intrusion detection to an intrusion
response system: fundamentals, requirements, and future directions,”
Algorithms, vol. 10, no. 2, p. 39, 2017.

[15] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in internet of things,” Journal of Network
and Computer Applications, vol. 84, pp. 25–37, 2017.

[16] M. Zhang, J. Guo, B. Xu, and J. Gong, “Detecting network intrusion us-
ing probabilistic neural network,” in 2015 11th International Conference
on Natural Computation (ICNC). IEEE, 2015, pp. 1151–1158.

[17] V. Zlomislić, K. Fertalj, and V. Sruk, “Denial of service attacks, defences
and research challenges,” Cluster Computing, vol. 20, no. 1, pp. 661–
671, 2017.

[18] M. Aamir and M. Arif, “Study and performance evaluation on recent
ddos trends of attack & defense,” International Journal of Information
Technology and Computer Science, vol. 5, no. 8, pp. 54–65, 2013.

[19] H. Polat, O. Polat, and A. Cetin, “Detecting ddos attacks in software-
defined networks through feature selection methods and machine learn-
ing models,” Sustainability, vol. 12, no. 3, p. 1035, 2020.

[20] S. Azodolmolky, Software defined networking with OpenFlow. Packt
Publishing, 2013, vol. 153.

[21] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of long short-term
memory (lstm) neural network for flood forecasting,” Water, vol. 11,
no. 7, p. 1387, 2019.

[22] A. Mehmood, M. Mukherjee, S. H. Ahmed, H. Song, and K. M.
Malik, “Nbc-maids: Naı̈ve bayesian classification technique in multi-
agent system-enriched ids for securing iot against ddos attacks,” The
Journal of Supercomputing, vol. 74, no. 10, pp. 5156–5170, 2018.

[23] A. Yulianto, P. Sukarno, and N. A. Suwastika, “Improving adaboost-
based intrusion detection system (ids) performance on cic ids 2017
dataset,” in Journal of Physics: Conference Series, vol. 1192, no. 1.
IOP Publishing, 2019, p. 012018.

[24] N. Ahuja, G. Singal, and D. Mukhopadhyay, “Dlsdn: Deep learning
for ddos attack detection in software defined networking,” in 2021
11th International Conference on Cloud Computing, Data Science &
Engineering (Confluence). IEEE, 2021, pp. 683–688.

