
EasyChair Preprint
№ 4816

Quantum Generators: Foundations of the
Compute Units in Pattern Reconstruction.

Poondru Prithvinath Reddy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 28, 2020

Quantum Generators: Foundations of the Compute

Units in Pattern Reconstruction.

 Poondru Prithvinath Reddy

ABSTRACT

Quantum Generators is a means of achieving mass food production with short

production cycles, and when and where required by means of machines rather than

land based farming which has serious limitations. The process for agricultural practices

for plant growth in different stages is simulated in a machine with a capacity to produce

multiple seeds from one seed input using computational models of multiplication

(generating multiple copies of kernel in repetition). In this paper, we present the

structure of Compute Units resulted by the computational models of multiplication and

also present methods related to manipulation of Compute Units so that they can be

linked to tissues of the kernel which mimic the real cell structure that grows into full-

fledged natural tissue. We use simulation to show that we achieve manipulative

structure with respect to the size of the input space and realize good pattern. The

results suggest that it is possible to achieve viable cell structure for quantum

generation.

INTRODUCTION

 A Quantum (plural quanta) is the minimum amount of any physical entity
(physical property) involved in an interaction. On the other hand, Generators don't
actually create anything instead, they generate quantity prescribed by physical
property through multiplication to produce high quality products on a mass scale. The
aim of Quantum Generators is to produce multiple seeds from one seed at high seed
rate to produce a particular class of food grains from specific class of seed on mass
scale by means of machine rather than land farming.

 The process for agricultural practices include preparation of soil, seed sowing,
watering, adding manure and fertilizers, irrigation and harvesting. However, if we

create same conditions as soil germination, special watering, fertilizers addition and
plant growth in different stages in a machine with a capacity to produce multiple seeds
from one seed input using computational models of multiplication(generating multiple
copies of kernel in repetition) then we will be closure to achieving mass food
production by means of quantum generators(machine generated) rather than
traditional land based farming which has very serious limitations such as large space
requirements, uncontrolled contaminants, etc. The development of Quantum
Generators requires specialized knowledge in many fields including Cell Biology,

Nanotechnology, 3D Cellprinting, Computing, Soil germination and initially they may be
big occupying significantly large space and subsequently small enough to be placed on
roof-tops.

 The Quantum Generators help world meet the food needs of a growing population
while simultaneously providing opportunities and revenue streams for farmers. This is
crucial in order to grow enough food for growing populations without needing to expand
farmland into wetlands, forests, or other important natural ecosystems. The Quantum
Generators use significantly less space compared to farmland and also results in
increased yield per square foot with short production cycles, reduced cost of cultivation
besides easing storage and transportation requirements.

 In addition, Quantum Generators Could Eliminate Agricultural Losses arising out of
Cyclones, Floods, Insects, Pests, Droughts, Poor Harvest, Soil Contamination, Land
Degradation, Wild Animals, Hailstorms, etc.

 Quantum generators could be used to produce most important food crop like rice,
wheat and maize on a mass scale and on-demand when and where required.

 Computers and Smartphones have become part of our lives and Quantum
Generators could also become very much part of our routine due to its potential
benefits in enhancing food production and generating food on-demand wherever
required by bringing critical advanced technologies into the farmland practices.

 3D Bioprinting

 3D Bioprinting is a form of additive manufacturing that uses cells and other
biocompatible materials known as bioinks, to print living structures layer-by-layer which
mimic the behavior of natural living systems. Three dimensional bioprinting is the
utilization of 3D printing–like techniques to combine cells, growth factors, and
biomaterials to fabricate biomedical parts that maximally imitate natural tissue
characteristics.

 Bioprinting (also known as 3D bioprinting) is combination of 3D printing with
biomaterials to replicate parts that imitate natural tissues, bones, and blood vessels in
the body. It is mainly used in connection with drug research and most recently as cell
scaffolds to help repair damaged ligaments and joints. In this paper, we are looking at
natural tissues related to food crops like rice, wheat or maize.

BASIC CONCEPTS and THE ARCHITECTURE

We give below a description of multiplication model, its execution design, its

reconstruction model and synchronization support.

 Compute Device

Input Seed

A Quantum Generator device has one or more Compute Units. A work-group

executes on a single Compute unit. A Compute Unit is composed of one Processing

Element and Seed Object. A Compute Unit may also include filter Units that can be

accessed by its processing elements.

A Device is a collection of Compute Units. Quantum Generator device typically

corresponds to a collection of multiple Compute Units generated by the seed of a

number.

A Seed is a function declared in a program and executed on a quantum

generating device. A seed is identified by the Seed Qualifier applied to any function

defined in any program.

A Seed Object encapsulates a specific seed function declared in a program and

the argument values to be used when executing this Seed Function.

A Synchronization refers to mechanisms that define the order of execution and

the visibility of operations between two or more units of execution. The Operations are

that define order controls in a program. They play a special role in controlling how

operations of in one unit of execution (such as work-items) are made visible to another.

Synchronization essentially involves establishing a relation between operations in two

different units of execution that define an order control in a device.

Seed Objects

A seed is a function declared in a program. A seed is identified by the seed

qualifier applied to any function in a program. A Seed Object encapsulates the specific

seed function declared in a program and the argument values to be used when

executing this seed function.

Seed Objects are created for any seed functions in program that have the same

function definition across all Compute Units for which a program has been built

successfully in a device.

Seed of a

Number

Generation of

Compute Units
Compute Unit
with Processing
Element

Synchronization

with Units of
Execution

Support Vector Machine for Pattern Reconstruction

Kernel machines are a class of algorithms for pattern analysis, whose best

known member is the Support Vector Machine. Kernel methods use kernel functions,

which enable them to operate in a high-dimensional, implicit feature space and this

operation is often computationally cheaper than the explicit computation of the

coordinates. This approach is called the "kernel trick" and Kernel functions have been

introduced for sequence data.

Algorithms capable of operating with kernels include Kernel Perceptron, Support

Vector Machine (SVM), Gaussion Processes, etc. Any linear model can be turned into

a non-linear model by introducing kernel function to the model replacing the features

by a kernel function.

Support Vector Machines (SVM) are widely used for classification problems in

machine learning. The SVM is essentially used for simple class separation and it tries

to find a line/hyperplane (in multidimensional space) that separates the classes.

Subsequently it classifies the new point depending on whether it lies on the positive or

negative side of the hyperplane depending on the class to predict.

 In the SVM classifier, it is easy to have a linear hyper-plane between any two

classes. The SVM kernel is a function that takes low dimensional input space and

transforms it to a higher dimensional space i.e. it converts not separable problem to

separable problem. It is mostly useful in non-linear separation problem. Simply put, it

does some extremely complex data transformations, then finds out the process to

separate the data based on the labels or outputs we’ve defined.

Hyperparameters of the SVM Algorithm

The following are the few important parameters of SVM:-

 Kernel – A kernel helps us find a hyperplane in the higher dimensional space

without increasing the computational cost. Usually, the computational cost will

increase if the dimension of the data increases. This increase in dimension is

required when we are unable to find a separating hyperplane in a given

dimension and are required to move in a higher dimension.

 Hyperplane – This is basically a separating line between two data classes in

SVM.

 Decision Boundary – A decision boundary can be thought of as a demarcation

line on one side of which lie positive examples and the other side lie the negative

examples on this very line, the examples may be classified as either positive or

negative.

 Kernel methods with some fixed set of parameters corresponding to the features

of their inputs and we used SVM algorithm for pattern recognition however, data points

are not mapped to a 3-dimensional space wherein a separating hyperplane can easily

be found.

As there are multiple Compute Units represented by the seed of a number, We

used iterative reconstruction i.e. iterative algorithm to reconstruct pattern of a

sequence of data generated by each of the Seed Object in a Compute Unit.

Since, Compute Units are similar across a device, we use recursion to generate

a Seed Structure in multiple units across a quantum device.

In this paper, we have dealt with simulation of Compute Units to show that we

achieve manipulative structure with respect to the input space and not about

synchronizing Compute Units to tissues of the kernel which mimic the real cell structure

that grows into full-fledged natural tissue.

Unlike the simulation results which are based on few parameters, In natural or

real tissues which are 3D Bioprinted there are number of parameters to be considered

for pattern analysis.

The QG System

 Our objective is to build a target system, we need to generate the cell
for the device by running synthesis and implementation on the design. The
cell includes custom logic for every Compute unit in the cell container. The
generation of custom compute units uses the High-Level synthesis tool,
which is the computer unit generator in the application compilation flow.
Therefore, it is normal for this step to run for longer period of time than the
other steps in the system build flow.

 After all compute units have been generated, these units are connected
to the infrastructure elements provided by the target device in the solution.
The infrastructure elements in a device are all of the memory, control and
output data planes which the device is formulated to support an application.
The environment combines the custom compute units and the base device
infrastructure to generate a cell binary which is used to program the QG
device during application execution.

The processing flow of application execution is given as below:-

 Input
 Seed

Seed Error

Input

Regenerated

Network

 Regenerated Seeds

 Fig. 1 Process Flow in a Quantum Generator.

The different steps in application are as below:-

1. 3D print a seed and copy its cell structure to memory.
2. Input seed with a seed of a number required.
3. Generate a seed kernel once.
4. Compare the kernel with 3d printed cell
5. If error in seed structure, generate the kernel again.
6. Repeat many times till the seed number is met.

3D

Bioprinting

Seed of

Number

SW-Emulation

HW-Emulation

Cell

Structure

Memory

TEST RESULTS

We have generated sequence of data based on function parameters and applied

SVM to find a hyperplane and pattern recognition which is of significantly popular

algorithm. Although, we have generated seed structure with good pattern but this is not

mapped to original tissues of seed kernel which are in 3D plane to test the deviation.

CONCLUSION

Quantum Generators (QG) creates new seeds iteratively using the single input

seed and the process leads to a phenomenon of generating multiple copies of kernels

in repetition. We presented the structure of Compute Units which can be manipulated

to mimic the tissues of real kernel. The results suggest that it is possible to achieve

well-organized cell structure for quantum generation.

REFERENCE

 1. Poondru Prithvinath Reddy: “Quantum Generators: A Formulation of
Computational Models of Multiplication”, Google Scholar.

