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Abstract. A system of linear equations L over Fq is common if the
number of monochromatic solutions to L in any two-colouring of Fn

q is
asymptotically at least the number of monochromatic solutions in a ran-
dom two-colouring of Fn

q . The line of research on common systems of
linear equations was recently initiated by Saad and Wolf. They were mo-
tivated by existing results for specific systems (such as Schur triples and
arithmetic progressions), as well as extensive research on common and
Sidorenko graphs. Building on earlier work, Fox, Pham and Zhao charac-
terised common linear equations. For systems of two or more equations,
only sporadic results were known.
We prove that any system containing an arithmetic progression of length
four is uncommon, confirming a conjecture of Saad and Wolf. This follows
from a stronger result which allows us to deduce the uncommonness of a
general system from considering certain one- or two-equation subsystems.
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1 Introduction

A classical theorem of Goodman states that over all 2-edge-colourings of the
complete graph Kn, the number of monochromatic triangles is asymptotically
minimised by a random 2-colouring. Erdős conjectured that in Goodman’s re-
sult, the triangle can be replaced by any fixed clique Ks, and Burr and Rosta
extended the conjecture to any fixed graph. Erdős’ conjecture was disproved
by Thomason, motivating numerous results on common and Sidorenko graphs,
including the famous Sidorenko conjecture. In the arithmetic setting, Graham,
Rödl and Ruciński asked about the minimal number of Schur triples (triples
satisfying x+ y − z = 0) in 2-colourings of [n] = {1, 2, . . . , n}. Questions of this
type for linear systems of equations were studied more systematically in [1, 7, 4],
and we continue this line of research.

Following Fox, Pham and Zhao [4], we work in the finite field model – we fix
a finite field Fq, where q is a prime power, and consider a linear homogeneous
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system L on k variables with coefficients in Fq. We say that the system L is
common if the number of monochromatic solutions in any two-colouring of Fn

q

is asymptotically at least the number of monochromatic solutions in a random
two-colouring of Fn

q . Formal definitions will be given later. Let us briefly discuss
systems consisting of a single equation a1x1 + · · · + akxk = 0 with coefficients
ai ∈ Fq \ {0}, which are now completely characterised. Cameron, Cilleruelo and
Serra [1] showed that in fact, any such linear equation with an odd number of
variables k is common. For even k, Saad and Wolf [7] proved that the equation
is common whenever a1, . . . , ak can be partitioned into pairs, each pair summing
to zero. They conjectured that when k is even, this sufficient condition is also
necessary, which was confirmed by Fox, Pham and Zhao [4].

Much less is known when L consists of more than one equation. Saad and
Wolf [7] showed that arithmetic progressions of length four (4-APs) over F5 are
uncommon, and conjectured that any system containing a 4-AP is uncommon.
Their conjecture can be seen as an analogue of the famous result of Jagger,
Šťov́ıček and Thomason [6], showing that any graph containing a K4 is uncom-
mon. Fox, Pham and Zhao [4] asked for a characterisation of common systems of
equations, hoping that it might lead to a better understanding of the analogous
properties for graphs and hypergraphs, but noted that they do not have a guess
for such a characterisation.

Confirming the conjecture of Saad and Wolf, we show that any system L
containing a 4-AP is uncommon. This result follows from a more general theorem
which provides a sufficient condition for a system to be uncommon, based on
certain one- or two-equation subsystems of L. Using this theorem, we display
two large classes of uncommon systems. The reduction to one- or two-equation
systems opens up avenues for using discrete Fourier analysis in studying systems
with two or more equations.

We also give examples of common systems based on intricate relations be-
tween the condensed equations, indicating that a characterisation of common
systems might be rather elusive.

2 Results

Before stating our results, let us introduce some notation. In a slight abuse of
notation, we identify a system L with an m × k matrix L, so that the solution
set of L in Fn

q is

sol(L) = {x = (x1, . . . , xk) ∈ (Fn
q )k : LxT = 0}.

We state the definitions and results in terms of functions f : Fn
q → R,

rather than subsets of Fn
q . This is standard in arithmetic combinatorics, since a

function can be used to sample a random subset of Fn
q , and thus the commonness

property for sets is equivalent to its functional version. This correspondence
between functions and sets is explained in more detail in [4]. The density of
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solutions to a system L in f is

ΛL(f) =
1

|sol(L)|
∑

x∈sol(L)

f(x1)f(x2) . . . f(xk).

We refer to a system L with k variables and m equations as an m×k system
or a k-variable system, and we have m ≤ k throughout. An m × k system is
non-degenerate if its rank is m and there are no variables xi and xj such that
the equation xi = xj can be derived from the system. A non-degenerate m × k
system is common if for every f : Fn

q → [0, 1]

ΛL(f) + ΛL(1− f) ≥ 21−k.

Note that the right-hand side is the expected density of monochromatic solutions
in a random two-colouring of Fn

q , and if f is the indicator function of a set A,
then ΛL(f) is the density of solutions in A. Hence this definition corresponds to
the intuitive definition given above. Any degenerate system can be easily reduced
to the corresponding non-degenerate system, so we restrict our attention to non-
degenerate systems throughout the note.

Consider a k-variable system L and a 4-variable system M (such as a 4-AP).
We say that L contains M if there are coordinates a, b, c, d ∈ [k], such that
whenever (x1, . . . , xk) ∈ (Fn

q )k is a solution to L, (xa, xb, xc, xd) is a solution
to M . This is equivalent to saying that the equations for M (with relabelled
variables) can be derived from L using elementary row operations. We can now
state our first result, which confirms a conjecture of Saad and Wolf [7], when the
system M is taken to be a 4-AP.

Theorem 1. Let M be a non-degenerate 2×4 system. Any non-degenerate sys-
tem containing M is uncommon.

Even the fact that a four-variable system M itself is uncommon is a new result,
and finding a function ψ which certifies that (for any M) is not straightforward.
Indeed, previously it was only known that 4-APs are uncommon over F5 and
ZN [7, 5], and the functions used there rely on the geometric structure of 4-APs.
For a system L containing a 4-variable system M , we start with the above-
mentioned function ψ, and turn it into a ‘uniform’ function using a trick due to
Gowers [5], which in some sense isolates the contribution of the system M .

For our second result, we will introduce the notion of condensed equations of a
system L, which turn out to be the crucial equations ‘forcing’ the uncommonness
of L. A specific example can be found in Section 2.1. In reducing the properties
of L to its condensed equations, we build on the key idea from [4], where a
random function f is specified by sampling its Fourier coefficients.

Let L be an m × k matrix, which corresponds to an m × k system of m
equations on k variables. We call a set B ⊆ [k] generic if the matrix obtained
from L by removing the columns corresponding to B has rank m. We define s(L)
to be the minimal order of a non-generic set. For example, when L is a 4-AP,
we have s(L) = 3 as all column sets of order two are generic. Our next theorem
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deals with the systems L with s(L) even, for which we define a collection of
critical sets

C(L) = {B ⊆ [k] : |B| = s(L) and B is not generic}.

Note that for B ∈ C(L), the rank of the matrix obtained from L after removing
the columns corresponding to B is m − 1. Hence there is a unique equation
LB (up to rescaling) derived from L by eliminating the variables xi for i /∈ B.
This equation is called the condensed equation for B, denoted LB . The following
theorem describes a rather general class of uncommon systems L with even s(L).

Theorem 2. Let L be a system with s(L) even. Suppose that for every set B ∈
C(L), the condensed equation LB is uncommon. Then the system L is uncommon.

Recall that a single equation LB of even length is only common if its coeffi-
cients can be partitioned into pairs, each summing to zero. Thus in some sense, a
‘typical’ equation is uncommon, so we may say that a ‘typical’ system with s(L)
even is uncommon. The hypothesis that s(L) is even is more than an artefact of
our proofs, and is implicitly present in the results of [1, 4, 5].

2.1 A general theorem and an example

We will now describe our main theorem whose consequences are Theorem 1 and
Theorem 2. For this purpose, we need to generalise our notion of condensed
systems. Recall that s(L) is the minimal order of a non-generic set B. We define
a collection of sets

C(L) =

{
{B ⊆ [k] : |B| = s(L) and B is not generic}, if s(L) is even,

{B ⊆ [k] : |B| = s(L) + 1 and B is not generic}, if s(L) is odd
.

Each set B ∈ C(L) corresponds to a condensed system LB consisting of one
or two equations. We do not define LB here, but it has the key property that
any solution (xi : i ∈ B) to LB extends to a solution to L.

Recall the definition of ΛL(f). Our main theorem reduces the uncommonness
of an m×k system L to the ‘cumulative’ uncommonness of its condensed systems.

Theorem 3. Let L be a non-degenerate m×k system over Fq. L is uncommon
whenever there is a positive integer n and a function f : Fn

q →
[
− 1

2 ,
1
2

]
with

Ef = 0 and ∑
B∈C(L)

ΛLB
(f) < 0.

We finish with examples of common systems which will hopefully motivate
further research and unveil some subtle phenomena. For instance, unlike in the
single-equation case [4], the multiplicative structure of the field plays an impor-
tant role in commonness.
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Example 1. We consider a class L(q) consisting of 2 × 5 systems L over Fq

with s(L) = 4. (Note that s(L) = 4 is equivalent to the property that all 2 × 2
determinants of L are non-zero). In this case, we can also deduce the commonness
of L from considering its condensed equations. Systems in L(q) have five critical
sets C(L) = {B ⊂ [5] : |B| = 4} and five corresponding condensed equations.

1. Let M be the system whose matrix is(
1 −1 1 −1 0
1 2 −1 0 −2

)
.

The remaining condensed equations are 0 −1 −2 1 2
2 −3 0 −1 2
−1 0 −3 2 2.

 .

If q ∈ {5, 7} the system is common as 3 can be written as −2 or −22 re-
spectively, so the coefficients ‘align’ in a peculiar way for an application of
Cauchy’s inequality. For q > 7, the system is uncommon.

2. The system L generated by the equations 2x1 + x2 + 3x4 − 6x5 = 0 and
x1 +2x2 +3x3−6x5 = 0 is common over all fields Fq with q ≥ 5. We suspect
that there are no ‘similar’ systems L

3. If all five condensed equations of L ∈ L(q) are uncommon, the system is
uncommon by Theorem 2. There is also an abundance of uncommon systems
with one common condensed equation. One example is x1+3x2−x3−3x4 = 0,
x1 − 2x2 − 3x3 + 4x5 = 0.

3 Remarks and open problems

There are numerous avenues for further exploration. We select several of the
problems which we find most interesting, and state only the simplest open case.

Systems with many uncommon condensed equations. Theorem 2 states
that if s(L) is even and all the condensed equations are uncommon, then L is
uncommon. Our computational tests confirm the intuition that the conclusion
holds even if the ‘majority’ of the condensed equations are uncommon. In the
following conjecture, we propose such a class of two-equation systems.

Conjecture 1. For odd k ≥ 20, any 2×k system L with s(L) = k−1 is uncommon.

Partition regularity for linear systems For simplicity, we discuss systems
with integer coefficients. A system L is 2-partition-regular if any 2-colouring of
Z contains a monochromatic solution to L. The famous theorem of Rado char-
acterises partition-regular systems for many colours, but 2-partition regularity
seems to be much less understood. Two classes of known 2-partition regular
systems are (i) single equations with at least three variables and (ii) translation-
invariant systems [2].

Question 1. Is there a system L with s(L) ≥ 3 which is not 2-partition-regular?



6 Kamčev, Liebenau and Morrison

Commonness and translation-invariance Translation-invariance is a suf-
ficient condition for 2-partition regularity, but certainly not necessary (e.g. all
one-equation systems of odd length are common). Still, it seems difficult to con-
struct a larger common systems which is not translation-invariant.

Question 2. Is there a system with at least least two equations which is common,
but not translation-invariant?

How uncommon can an equation be? Even if a system is uncommon, it is
still natural to enquire about the minimum density of monochromatic solutions.
For single equations, this minimum density can be expressed as an apparently
simple optimisation problem in terms of Fourier coefficients (see, e.g., equation
(3) in [4]). This leads to the following question.

Question 3. Let Lk be the collection of equations of length k over Fq. What is
the asymptotically minimal density of monochromatic solutions to L, over all
colourings of Fn

q and all L ∈ L2k?

Note that for odd k and all L ∈ Lk, the density of monochromatic solutions
depends only on the size of the colour classes. The analogous question for graphs
has also been investigated [3].

Finally, many of the previous results have been generalised to the setting of
arbitrary abelian groups [1, 8]. We have not attempted to extend our results in
this direction.
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