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Abstract: One of the biggest unsolved mysteries in computer science is the P versus NP problem.
It asks a simple question: can every problem whose solution can be quickly verified be solved just
as quickly (Here, "quickly" means in polynomial time)? While the question itself was hinted at
in a 1955 letter from John Nash, a formalization of the problem is credited to Stephen Cook and
Leonid Levin. Despite decades of effort, no one has been able to definitively answer it. Closely
related is the concept of NP-completeness. If even one NP-complete problem can be solved efficiently
(in polynomial time), then it implies P equals NP. This work proposes that a specific NP-complete
problem, ONE-IN-THREE 3SAT, can be solved efficiently. In this way, we prove that P is equal to NP.
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1. Introduction

The field of computer science grapples with one of its most significant and challenging
unsolved problems: the P versus NP question [1]. At its core, this question asks whether
efficient verification of a solution translates to efficient solving of the problem itself. Here,
"efficient" refers to the existence of an algorithm that tackles the task in polynomial time,
meaning the time it takes scales proportionally to the size of the input data.

The class of problems solvable by such efficient algorithms is denoted by P, or "class
P." Another class, NP (standing for "nondeterministic polynomial time"), encompasses
problems where solutions themselves can be verified efficiently. This verification relies on a
"certificate," a piece of succinct information that quickly confirms the solution’s validity [2].

The P versus NP problem essentially asks if P and NP are equivalent. If, as many
believe, P is strictly contained within NP (meaning P ̸= NP), then some problems in
NP are inherently harder to solve than to verify. This distinction would have significant
ramifications for various fields like cryptography and artificial intelligence [3,4].

Cracking the P versus NP problem is considered a pinnacle achievement in computer
science. A solution would revolutionize our understanding of computation, potentially
leading to groundbreaking algorithms that address some of humanity’s most pressing
challenges. The difficulty of this problem is reflected in its inclusion among the Millennium
Prize Problems, a prestigious set of unsolved questions offering a million-dollar reward for
a correct solution [1].

2. Materials and methods

NP-complete problems is the Mount Everest of computer science challenges. These
problems are notoriously difficult because while solutions can be verified quickly, finding
them efficiently remains a mystery. In computational complexity theory, a problem is
considered NP-complete if it meets the following two criteria:

1. Fast checking: An NP-complete problem allows for speedy verification of a proposed
solution using a succinct certificate [5].

2. Universally tough relatives: Any problem in NP can be efficiently transformed into
an NP-complete problem [5].

The big implication: If we find a fast way to solve just one NP-complete problem, it becomes
a golden key - unlocking efficient solutions for all NP problems! This would revolutionize
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fields like cryptography, artificial intelligence, and planning [3,4]. Here are some examples
of NP-complete problems:

• Boolean satisfiability problem (SAT): Given a Boolean formula, determine whether
there is an assignment of truth values to the variables that makes the formula true [6].

• Independent Set: Given an undirected graph G = (V, E) (V is the set of vertices and
E is the set of edges) and positive integer k, determine whether there is a set V′ ⊆ V
of at least k vertices such that V′ is an independent set in G [6]. An independent set
V′ is a non-empty subset of vertices in a graph G where no two vertices in the set are
connected by an edge [6].

These are just a few examples of the many NP-complete problems that have been studied
and have a close relation with our current result. An undirected graph G = (V, E) is a
comparability graph if there exists a partial order P on V, say <P, such that (u, v) ∈ E if
and only if either u <P v or v <P u [7]. The problem of deciding whether an undirected
graph is a comparability graph can be solved in polynomial time [7].

Definition 1. Independent Set for Comparability Graph (ISCG)
INSTANCE: A comparability graph G = (V, E) and a positive integer k.
QUESTION: Is there set V′ of at least k vertices such that V′ is an independent set in G?
REMARKS: This problem can be solved in polynomial time [8].

Formally, an instance of Boolean satisfiability problem (SAT) is a Boolean formula ϕ
which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output,

such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [6].

We define a CNF Boolean formula using the following terms: A literal in a Boolean
formula is an occurrence of a variable or its negation [5]. A Boolean formula is in conjunctive
normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of
one or more literals [5]. A Boolean formula is in 3-conjunctive normal form or 3CNF, if
each clause has exactly three distinct literals [5].

For example, the Boolean formula:

(x1∨ ⇁ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (⇁ x1 ∨ x2∨ ⇁ x3)

is in 3CNF. The first of its three clauses is (x1∨ ⇁ x1 ∨ x2), which contains the three literals
x1, x2 and ⇁ x1.

We define the following problem:

Definition 2. ONE-IN-THREE 3SAT
INSTANCE: A Boolean formula in 3CNF.
QUESTION: Is there exists a truth assignment such that each clause contains exactly one true

literal?
REMARKS: This problem is a well-known NP-complete [6].

Putting all together yields a proof for the P versus NP problem.

3. Results

This is the main theorem.
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Theorem 1. ONE-IN-THREE 3SAT ∈ P.

Proof. We can build a special kind of graph G = (V, E) (comparability graph) from any
Boolean formula ϕ with special properties (ONE-IN-THREE 3SAT formula). The Boolean
formula ϕ contains n variables and m clauses. We assume that ϕ does not have any clause
which contains a literal and its negation. This graph will help us solve the original formula.

1. Building the Graph:

• Each literal in the formula gets its own vertex in the graph G. For each variable
x, denote the positive literal x as x+ and the negated literal ⇁ x as x−.

• For each variable x in the formula, we introduce the edge (x+, x−) connecting
both literal vertices.

• For each clause cj = (x ∨ y ∨ z) in the formula, we add three new vertices to the
graph G denoted by xj, yj and zj.

• We connect these new vertices with edges to existing literal vertices from the
clause. Indeed, for each clause cj = (x ∨ y ∨ z) in ϕ, we construct six new edges
using the new variables:

– (x⋄, xj): This enforces that at most one vertex between x⋄ and xj can be into
an independent set (⋄ = − if and only if the literal xj represents the positive
literal x; ⋄ = + if and only if the literal xj represents the negated literal
⇁ x).

– (y⋄, yj): This enforces that at most one vertex between y⋄ and yj can be into
an independent set (⋄ = − if and only if the literal yj represents the positive
literal y; ⋄ = + if and only if the literal yj represents the negated literal
⇁ y).

– (z⋄, zj): This enforces that at most one vertex between z⋄ and zj can be into
an independent set (⋄ = − if and only if the literal zj represents the positive
literal z; ⋄ = + if and only if the literal zj represents the negated literal ⇁ z).

– (xj, yj), (xj, zj) and (yj, zj): This enforces that at most one vertex between xj,
zj and zj can be into an independent set.

• These edges imply the following conditions:

– These edges ensure that at most one of the literal vertices for a single variable
can be included in an independent set.

– Whether we use a positive or negative version of the literal vertex depends
on whether the original variable is positive or negated in the clause.

– Additionally, edges are added between the new vertices created from every
clause. This further enforces the rule that at most one of these vertices can
be part of an independent set.

2. Understanding the Edges:

• These edges ensure that a set of vertices in the graph (called an independent set)
reflects a valid solution to the original formula.

• A clause contains exactly one true literal in the formula only if at least one of its
three new vertices created per clause is included in the independent set.

3. Mapping Between Solutions: An independent set in the graph corresponds to a
solution for the formula if:

• It includes at least one vertex created from every clause (ensuring all clauses
contains exactly one true literal): An independent set in G cannot contain more
that one vertex created for each clause.

• It includes at least one literal vertex only if the corresponding literal is true in the
solution: An independent set in G cannot contain both literal vertices for a single
variable in ϕ.

4. Why it Works:
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• The edges in the graph make sure the chosen vertices (independent set) represent
a consistent truth assignment for the variables in the formula.

• A truth assignment solution with exactly one true literal per clause translates to
an independent set V′ with at least m vertices (for clauses) and n literal vertices
(exactly one for each variable in ϕ). The existence of such independent set V′

guarantee that G is a comparability graph. Certainly, the graph G would be a
comparability graph since we can assign the number 3 for the vertices inside of
V′, the number 0 for the literal vertices outside of V′ and the numbers 1 and 2
for the vertices created for each clause that are outside of V′, respectively.

5. Equivalence and Complexity:

• The existence of an independent set with at least m + n vertices in the compara-
bility graph of ISCG is equivalent to a truth assignment with exactly one true
literal per clause in the Boolean formula of ONE-IN-THREE 3SAT.

• Since ISCG is solvable in polynomial time, this proves that the original Boolean
formula ϕ in ONE-IN-THREE 3SAT is also solvable in polynomial time. Besides,
we can decide whether G is a comparability graph in polynomial time [7].

In simpler terms, this construction shows that solving the ISCG problem is the same as
finding an appropriate certificate in an arbitrary instance of ONE-IN-THREE 3SAT. This
implies that the original problem can also be solved efficiently.

Theorem 2. P = NP.

Proof. This is a direct consequence of Theorem 1.

4. Conclusion

A potential proof of P = NP, if verified and accepted by the mathematical community,
would mark a monumental shift in our understanding of computational complexity. Here,
we delve into the far-reaching consequences this equivalence could have:

1. Algorithmic Revolution:

• Faster Solutions to Intractable Problems: Problems currently considered in-
tractable, like protein folding, logistics optimization, and cryptography with
certain algorithms, could be solved efficiently [3]. This would revolutionize
fields like medicine, materials science, and cybersecurity [3].

• Exponential Optimization: Everyday tasks involving complex optimization, like
scheduling, resource allocation, and financial modeling, could be tackled with
significantly faster algorithms [3]. This would lead to improved efficiency and
decision-making across various industries [3].

2. Scientific Breakthroughs:

• Accelerated Scientific Discovery: Complex simulations in physics, chemistry,
and biology could be performed in a fraction of the current time [4]. This could
unlock breakthroughs in areas like material design, drug discovery, and climate
modeling [4].

• Enhanced Big Data Analysis: The ability to efficiently analyze massive datasets
would revolutionize fields like social science, economics, and healthcare. Patterns
and insights hidden within vast amounts of data could be readily extracted [4].

3. Technological Advancements:

• Artificial Intelligence Revolution: The development of more powerful AI al-
gorithms could be significantly accelerated [4]. This could lead to significant
advancements in areas like machine learning, natural language processing, and
robotics [4].

• Cryptography Redefined: The landscape of cryptography could be fundamen-
tally altered. While P = NP might render some current encryption methods
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vulnerable, it could also pave the way for the development of new, provably
secure cryptosystems [4].

4. Economic and Societal Impact:

• Innovation Boost: The ability to solve complex problems efficiently would lead
to a surge in innovation across various sectors. New products, services, and
solutions could emerge at a much faster pace [3].

• Resource Optimization: Efficient algorithms could help us better manage re-
sources like energy, water, and transportation [3]. This would lead to a more
sustainable future and a reduced environmental footprint [3].

In conclusion, a verified proof of P = NP would be a scientific and technological game-
changer. It would unlock a new era of computational efficiency, leading to advancements
in diverse fields and potentially reshaping our world. While challenges and considerations
remain, the potential benefits are vast and warrant continued exploration of this profound
conjecture.
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