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THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract. In mathematics, the Riemann Hypothesis is a conjecture that the
Riemann zeta function has its zeros only at the negative even integers and

complex numbers with real part 1
2

. Many consider it to be the most important
unsolved problem in pure mathematics. It is one of the seven Millennium

Prize Problems selected by the Clay Mathematics Institute to carry a US

1,000,000 prize for the first correct solution. The Robin’s inequality consists
in σ(n) < eγ × n × ln lnn where σ(n) is the sum-of-divisors function and

γ ≈ 0.57721 is the Euler-Mascheroni constant. The Robin’s inequality is true

for every natural number n > 5040 if and only if the Riemann Hypothesis
is true. We prove the Robin’s inequality is true for every natural number

n > 5040. In this way, we demonstrate the Riemann Hypothesis is true.

1. Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta
function has its zeros only at the negative even integers and complex numbers with
real part 1

2 . Many consider it to be the most important unsolved problem in pure
mathematics [2]. It is of great interest in number theory because it implies results
about the distribution of prime numbers [2]. It was proposed by Bernhard Riemann
(1859), after whom it is named [2]. It is one of the seven Millennium Prize Problems
selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the
first correct solution [2].

The sum-of-divisors function σ(n) for a natural number n is defined as the sum
of the powers of the divisors of n

σ(n) =
∑
k|n

k

where k | n means that the natural number k divides n [7]. In 1915, Ramanujan
proved that under the assumption of the Riemann Hypothesis, the inequality

σ(n) < eγ × n× ln lnn

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler-Mascheroni constant
[4]. The largest known value that violates the inequality is n = 5040. In 1984, Guy
Robin proved that the inequality is true for all n > 5040 if and only if the Riemann
Hypothesis is true [4]. Using this inequality, we show the Riemann Hypothesis is
true.

2010 Mathematics Subject Classification. Primary 11M26; Secondary 11A41.
Key words and phrases. number theory, inequality, sum-of-divisors function, prime.

1



2 FRANK VEGA

2. Results

Theorem 2.1. Given a natural number

n = qa11 × q
a2
2 × · · · × qamm

such that q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am are natural numbers,
then we obtain the following inequality

σ(n)

n
<
π2

6
×

m∏
i=1

qi + 1

qi
.

Proof. From the article reference [1], we know

(2.1)
σ(n)

n
<

m∏
i=1

qi
qi − 1

.

We can easily prove

m∏
i=1

qi
qi − 1

=

m∏
i=1

1

1− q−2i
×

m∏
i=1

qi + 1

qi
.

However, we know
m∏
i=1

1

1− q−2i
<

∞∏
j=1

1

1− q−2j
where qj is the jth prime number and

∞∏
j=1

1

1− q−2j
=
π2

6

as a consequence of the result in the Basel problem [7]. Consequently, we obtain

m∏
i=1

qi
qi − 1

<
π2

6
×

m∏
i=1

qi + 1

qi

and thus,

σ(n)

n
<
π2

6
×

m∏
i=1

qi + 1

qi
.

�

Theorem 2.2. For x ≥ 11, we have∑
q≤x

1

q
< ln lnx+ γ − 0.12

where q ≤ x means all the primes lesser than or equal to x.

Proof. For x > 1, we have ∑
q≤x

1

q
< ln lnx+B +

1

ln2 x

where

B = 0.2614972128 · · ·
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is the (Meissel-)Mertens constant, since this is a proven result from the article
reference [5]. This is the same as∑

q≤x

1

q
< ln lnx+ γ − (C − 1

ln2 x
)

where γ − B = C > 0.31, because of γ > B. If we analyze (C − 1
ln2 x

), then this
complies with

(C − 1

ln2 x
) > (0.31− 1

ln2 11
) > 0.12

for x ≥ 11 and thus, we finally prove∑
q≤x

1

q
< ln lnx+ γ − (C − 1

ln2 x
) < ln lnx+ γ − 0.12.

�

Definition 2.3. We recall that an integer n is said to be squarefree if for every
prime divisor q of n we have q2 - n, where q2 - n means that q2 does not divide n
[1].

Theorem 2.4. Given a squarefree number

n = q1 × · · · × qm
such that q1, q2, · · · , qm are odd prime numbers, the greatest prime divisor of n is
greater than 7 and 3 - n, then we obtain the following inequality

π2

6
× 3

2
× σ(n) ≤ eγ × n× ln ln(219 × n).

Proof. This proof is very similar with the demonstration in Theorem 1.1 from the
article reference [1]. By induction with respect to ω(n), that is the number of
distinct prime factors of n [1]. Put ω(n) = m [1]. We need to prove the assertion
for those integers with m = 1. From a squarefree number n, we obtain

(2.2) σ(n) = (q1 + 1)× (q2 + 1)× · · · × (qm + 1)

when n = q1 × q2 × · · · × qm [1]. In this way, for every prime number qi ≥ 11, then
we need to prove

(2.3)
π2

6
× 3

2
× (1 +

1

qi
) ≤ eγ × ln ln(219 × qi).

For qi = 11, we have

π2

6
× 3

2
× (1 +

1

11
) ≤ eγ × ln ln(219 × 11)

is actually true. For another prime number qi > 11, we have

(1 +
1

qi
) < (1 +

1

11
)

and
ln ln(219 × 11) < ln ln(219 × qi)

which clearly implies that the inequality (2.3) is true for every prime number qi ≥
11. Now, suppose it is true for m− 1, with m ≥ 2 and let us consider the assertion
for those squarefree n with ω(n) = m [1]. So let n = q1 × · · · × qm be a squarefree
number and assume that q1 < · · · < qm for qm ≥ 11.
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Case 1: qm ≥ ln(219 × q1 × · · · × qm−1 × qm) = ln(219 × n).
By the induction hypothesis we have

π2

6
× 3

2
×(q1+1)×· · ·×(qm−1+1) ≤ eγ×q1×· · ·×qm−1×ln ln(219×q1×· · ·×qm−1)

and hence
π2

6
× 3

2
× (q1 + 1)× · · · × (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × · · · × qm−1 × (qm + 1)× ln ln(219 × q1 × · · · × qm−1)

when we multiply the both sides of the inequality by (qm + 1). We want to show

eγ × q1 × · · · × qm−1 × (qm + 1)× ln ln(219 × q1 × · · · × qm−1) ≤

eγ×q1×· · ·×qm−1×qm× ln ln(219×q1×· · ·×qm−1×qm) = eγ×n× ln ln(219×n).

Indeed the previous inequality is equivalent with

qm × ln ln(219 × q1 × · · · × qm−1 × qm) ≥ (qm + 1)× ln ln(219 × q1 × · · · × qm−1)

or alternatively

qm × (ln ln(219 × q1 × · · · × qm−1 × qm)− ln ln(219 × q1 × · · · × qm−1))

ln qm
≥

ln ln(219 × q1 × · · · × qm−1)

ln qm
.

From the reference [1], we have if 0 < a < b, then

(2.4)
ln b− ln a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
.

We can apply the inequality (2.4) to the previous one just using b = ln(219 × q1 ×
· · · × qm−1 × qm) and a = ln(219 × q1 × · · · × qm−1). Certainly, we have

ln(219 × q1 × · · · × qm−1 × qm)− ln(219 × q1 × · · · × qm−1) =

ln
219 × q1 × · · · × qm−1 × qm

219 × q1 × · · · × qm−1
= ln qm.

In this way, we obtain

qm × (ln ln(219 × q1 × · · · × qm−1 × qm)− ln ln(219 × q1 × · · · × qm−1))

ln qm
>

qm
ln(219 × q1 × · · · × qm)

.

Using this result we infer that the original inequality is certainly satisfied if the
next inequality is satisfied

qm
ln(219 × q1 × · · · × qm)

≥ ln ln(219 × q1 × · · · × qm−1)

ln qm

which is trivially true for qm ≥ ln(219 × q1 × · · · × qm−1 × qm) [1].
Case 2: qm < ln(219 × q1 × · · · × qm−1 × qm) = ln(219 × n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × ln ln(219 × n).
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We know 3
2 < 1.503 < 4

2.66 . Nevertheless, we could have

3

2
× σ(n)

n
× π2

6
<

4× σ(n)

3× n
× π2

2× 2.66

and therefore, we only need to prove

σ(3× n)

3× n
× π2

5.32
≤ eγ × ln ln(219 × n)

where this is possible because of 3 - n. If we apply the logarithm to the both sides
of the inequality, then we obtain

ln(
π2

5.32
) + (ln(3 + 1)− ln 3) +

m∑
i=1

(ln(qi + 1)− ln qi) ≤ γ + ln ln ln(219 × n).

From the reference [1], we note

ln(q1 + 1)− ln q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In addition, note ln( π2

5.32 ) < 1
2 + 0.12. However, we know

γ + ln ln qm < γ + ln ln ln(219 × n)

since qm < ln(219 × n) and therefore, it is enough to prove

0.12 +
1

2
+

1

3
+

1

q1
+ · · ·+ 1

qm
≤ 0.12 +

∑
q≤qm

1

q
≤ γ + ln ln qm

where qm ≥ 11. In this way, we only need to prove∑
q≤qm

1

q
≤ γ + ln ln qm − 0.12

which is true according to the Theorem 2.2 when qm ≥ 11. In this way, we finally
show the Theorem is indeed satisfied. �

Theorem 2.5. Given a natural number

n = 2a1 × 3a2 × 5a3 × 7a4 > 5040

such that a1, a2, a3, a4 ≥ 0 are integers, then the Robin’s inequality is true for n.

Proof. Given a natural number n = qa11 × qa22 × · · · × qamm > 5040 such that
q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am are natural numbers, we need
to prove

σ(n)

n
< eγ × ln lnn

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × ln lnn

according to the inequality (2.1). Given a natural number n = 2a1×3a2×5a3 > 5040
such that a1, a2, a3 ≥ 0 are integers, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × ln ln(5040) ≈ 3.81.
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However, we know for n > 5040

eγ × ln ln(5040) < eγ × ln lnn

and therefore, the proof is completed for that case. Hence, we only need to prove the
Robin’s inequality is true for every natural number n = 2a1×3a2×5a3×7a4 > 5040
such that a1, a2, a3 ≥ 0 and a4 ≥ 1 are integers. In addition, we know the Robin’s
inequality is true for every natural number n > 5040 such that 7k | n and 77 - n for
some integer 1 ≤ k ≤ 6 [3]. Therefore, we need to prove this case for those natural
numbers n > 5040 such that 77 | n. In this way, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5× 7

1× 2× 4× 6
= 4.375 < eγ × ln ln(77) ≈ 4.65.

However, we know for n > 5040 and 77 | n such that

eγ × ln ln(77) ≤ eγ × ln lnn

and as a consequence, the proof is completed. �

Theorem 2.6. The Robin’s inequality is true for every natural number n > 5040
when 3 - n. More precisely: every possible counterexample n > 5040 of the Robin’s
inequality must comply with (220 × 313) | n.

Proof. We will check the Robin’s inequality is true for every natural number n =
qa11 ×q

a2
2 ×· · ·×qamm > 5040 such that q1, q2, · · · , qm are prime numbers, a1, a2, · · · , am

are natural numbers and 3 - n. We know this is true when the greatest prime divisor
of n > 5040 is lesser than or equal to 7 according to the Theorem 2.5. Therefore,
the remaining case is when the greatest prime divisor of n > 5040 is greater than
7. We need to prove

σ(n)

n
< eγ × ln lnn

that is true when
π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × ln lnn

according to the Theorem 2.1. Using the equation (2.2), we obtain that will be
equivalent to

π2

6
× σ(n′)

n′
≤ eγ × ln lnn

where n′ = q1 × · · · × qm is the squarefree kernel of n [1]. However, the Robin’s
inequality has been proved for all integers n not divisible by 2 (which are bigger than
10) [1]. Hence, we only need to prove the Robin’s inequality is true when 2 | n′. In
addition, we know the Robin’s inequality is true for every natural number n > 5040
such that 2k | n and 220 - n for some integer 1 ≤ k ≤ 19 [3]. Consequently, we only
need to prove the Robin’s inequality is true for all n > 5040 such that 220 | n and
thus,

eγ × n′ × ln ln(219 × n′

2
) < eγ × n′ × ln lnn

because of 219 × n′

2 < n when 220 | n and 2 | n′. In this way, we only need to prove

π2

6
× σ(n′) ≤ eγ × n′ × ln ln(219 × n′

2
).
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According to the equation (2.2) and 2 | n′, we have

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× ln ln(219 × n′

2
)

which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× ln ln(219 × n′

2
)

that is true according to the Theorem 2.4 when 3 - n
′

2 . In addition, we know the

Robin’s inequality is true for every natural number n > 5040 such that 3k | n and
313 - n for some integer 1 ≤ k ≤ 12 [3]. Consequently, we only need to prove the
Robin’s inequality is true for all n > 5040 such that 220 | n and 313 | n. To sum
up, the proof is completed. �

Theorem 2.7. The Robin’s inequality is true for every natural number n > 5040
when n is not divisible by 5.

Proof. Let’s define s(n) = σ(n)
n [6]. Hence, we need to prove

s(n) < eγ × ln lnn

when (220 × 313) | n. Suppose that n = 2a × 3b ×m, where a ≥ 20, b ≥ 13, 2 - m,
3 - m and 5 - m. Therefore, we need to prove

s(2a × 3b ×m) < eγ × ln ln(2a × 3b ×m).

We know

s(2a × 3b ×m) = s(3b)× s(2a ×m)

since s is multiplicative [6]. In addition, we know s(3b) < 3
2 for every natural

number b [6]. In this way, we have

s(3b)× s(2a ×m) <
3

2
× s(2a ×m).

Now, consider

3

2
× s(2a ×m) =

9

8
× s(3)× s(2a ×m) =

9

8
× s(2a × 3×m)

where s(3) = 4
3 since s is multiplicative [6]. Nevertheless, we have

9

8
× s(2a × 3×m) < s(5)× s(2a × 3×m) = s(2a × 3× 5×m)

where 5 - m and s(5) = 6
5 . However, we know the Robin’s inequality is true for

2a × 3× 5×m when a ≥ 20, since this is true for every natural number n > 5040
such that 3k | n and 313 - n for some integer 1 ≤ k ≤ 12 [3]. Hence, we would have

s(2a × 3× 5×m) < eγ × ln ln(2a × 3× 5×m) < eγ × ln ln(2a × 3b ×m)

when b ≥ 13. �

Theorem 2.8. The Robin’s inequality is true for every natural number n > 5040
when n is not divisible by any prime number qm ≤ 5.

Proof. This is a compendium of the results from the Theorems 2.6 and 2.7. �

Theorem 2.9. The Robin’s inequality is true for every natural number n > 5040

when (lnn′)
π2

6 ≤ lnn such that n′ is the squarefree kernel of n.
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Proof. We will check the Robin’s inequality for every natural number n = qa11 ×
qa22 ×· · ·×qamm > 5040 such that q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am
are natural numbers. We need to prove

σ(n)

n
< eγ × ln lnn

that is true when
π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × ln lnn

according to the Theorem 2.1. Using the equation (2.2), we obtain that will be
equivalent to

π2

6
× σ(n′)

n′
≤ eγ × ln lnn

where n′ = q1 × · · · × qm is the squarefree kernel of n [1]. However, the Robin’s
inequality has been proved for all the squarefree integers n′ /∈ {2, 3, 5, 6, 10, 30} [1].
In addition, due to the Theorem 2.5, the Robin’s inequality is true for every natural
number n > 5040 when n′ ∈ {2, 3, 5, 6, 10, 30}, where n′ is the squarefree kernel of
n. In this way, we have

σ(n′)

n′
< eγ × ln lnn′

and therefore, it is enough to prove

π2

6
× eγ × ln lnn′ ≤ eγ × ln lnn

which is the same as
π2

6
× ln lnn′ ≤ ln lnn

and

ln(lnn′)
π2

6 ≤ ln lnn

that is true when

(lnn′)
π2

6 ≤ lnn

and thus, the proof is completed. �

Theorem 2.10. The Robin’s inequality is true for every natural number n > 5040
when the greatest prime divisor qm of n complies with qm ≥ 5.

Proof. We are going to prove this Theorem for every natural number n > 5040
using the following two possible cases under the assumption that the greatest prime
divisor qm of n complies with qm ≥ 5.

Case 1: qe
γ

m < lnn.
According to the Theorem 2.9, we know the Robin’s inequality is true for every

natural number n > 5040 when (lnn′)
π2

6 ≤ lnn such that n′ is the squarefree
kernel of n. In this way, we need to prove for the remaining case, that is when

(lnn′)
π2

6 > lnn, qm ≥ 5 and qe
γ

m < lnn. That would equivalent to

(lnn′)
π2

6 > qe
γ

m

which is the same as

lnn′ > q
6×eγ

π2
m .
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We denote by ϑ(x) the logarithm of the product of all primes lesser than or equal
to x [5]. We know ϑ(qm) ≥ lnn′ and thus, we would have

ϑ(qm) > q
6×eγ

π2
m .

From the article reference [5], we have for x > 0

ϑ(x) < 1.01624× x.

In this way, we obtain

1.01624× qm > q
6×eγ

π2
m

and since we know 6×eγ
π2 > 1, then we only need to prove

1.01624 > q
6×eγ

π2 −1
m .

However, we know

1.01624 < 5
6×eγ

π2 −1 ≤ q
6×eγ

π2 −1
m

and consequently, we obtain a contradiction just assuming that (lnn′)
π2

6 > lnn

when qm ≥ 5 and qe
γ

m < lnn. Hence, this implies that necessarily (lnn′)
π2

6 ≤ lnn
when qm ≥ 5 and qe

γ

m < lnn and therefore, the Robin’s inequality is true for this
case when the greatest prime divisor qm of n complies with qm ≥ 5.

Case 2: qe
γ

m ≥ lnn.
We need to prove

σ(n)

n
< eγ × ln lnn

that is true when
π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × ln lnn

according to the Theorem 2.1. Under the assumption of this case, we obtain

π2

6
×

m∏
i=1

qi + 1

qi
≤ e2×γ × ln qm.

If we apply the logarithm to the both sides of the inequality, then we obtain

ln(
π2

6
) +

m∑
i=1

(ln(qi + 1)− ln qi) ≤ 2× γ + ln ln qm.

From the reference [1], we note

ln(q1 + 1)− ln q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In addition, note γ − ln(π
2

6 ) > 0. Therefore, it is enough to prove

1

q1
+ · · ·+ 1

qm
≤

∑
q≤qm

1

q
≤ γ + ln ln qm

where qm ≥ 5. In this way, we only need to prove∑
q≤qm

1

q
≤ γ + ln ln qm
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which is true when qm ≥ 5 due to the Lemma 2.1 from the article reference [1]. In
conclusion, we show the Theorem is indeed satisfied. �

Theorem 2.11. The Robin’s inequality is true for every natural number n > 5040.

Proof. The Robin’s inequality is true for every natural number n > 5040 when n
is not divisible by any prime number less than or equal to 5 because of Theorem
2.8. Moreover, the Robin’s inequality is true for every natural number n > 5040
when n is divisible by all the prime numbers between 2 and 5 due to the Theorem
2.10, since in this case the greatest prime divisor qm of n complies with qm ≥ 5.
These two cases cover the Robin’s inequality for all the natural numbers greater
than 5040. Certainly, this result is a consequence of the Theorems 2.8 and 2.10. �

Theorem 2.12. The Riemann Hypothesis is true.

Proof. If the Robin’s inequality is true for every natural number n > 5040, then the
Riemann Hypothesis is true [4]. As result, this is true according to the Theorem
2.11. �

3. Conclusions

The practical uses of the Riemann Hypothesis include many propositions which
are known true under the Riemann Hypothesis, and some of them can be shown
equivalent to the Riemann Hypothesis [2]. Certainly, the Riemann Hypothesis
is close related to various mathematical topics such as the distribution of prime
numbers, the growth of arithmetic functions, the Lindelöf Hypothesis, the large
prime gap conjecture, etc [2]. In this way, this proof of the Riemann Hypothesis
could spur considerable advances in many mathematical areas, such as the number
theory and pure mathematics [2].
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