
EasyChair Preprint
№ 9624

FERPModels: a Certification Framework for
Expansion-Based QBF Solving

Vedad Hadžić, Roderick Bloem, Ankit Shukla and Martina Seidl

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 27, 2023



FERPModels: A Certification Framework for
Expansion-Based QBF Solving

Vedad Hadzic, Roderick Bloem
Technical University Graz

Graz, Austria
{vedad.hadzic, roderick.bloem}@iaik.tugraz.at

Ankit Shukla, Martina Seidl
Johannes Kepler University Linz

Linz, Austria
{ankit.shukla, martina.seidl}@jku.at

Abstract—Modern expansion-based solvers for quantified
Boolean formulas (QBFs) are successful in many applications.
However, no such solver supports the generation of proofs needed
to independently validate the correctness of the solving result and
for the extraction of winning strategies which encode concrete
solutions to the application problems.

In this paper, we present a complete tool chain for proof
generation, result validation, and for universal winning strategy
extraction in the context of expansion-based solving. In particular,
we introduce a proof format for the ∀Exp-Res calculus on which
expansion-based solving is founded, implement proof generation
in a recent QBF solver, provide a checker for these proofs, and
develop a new strategy extraction algorithm.

Index Terms—QBFs, ∀Exp-Res, proof generation, strategy
extraction

I. INTRODUCTION

Quantified Boolean Formulas (QBF) provide an attractive
framework for encoding and solving reasoning problems
ranging from symbolic reasoning in artificial intelligence [14]
to formal verification [9] and automatic synthesis of computing
systems [7], [8] (see [18] for a survey). By translating such
application problems into QBF decision problems, QBF solvers
can be employed as black-boxes for solving these problems.
Ideally, QBF solvers give not only a true/false answer but they
also generate an efficiently checkable proof to independently
verify the correctness of the result. Furthermore, users also need
winning strategies from the QBF solver to get concrete solutions
for the original problems. Winning strategies, for example, can
encode the error trace in verification, the synthesized program
in synthesis, a feasible plan in planning, or a witness that there
is none.

In recent years, expansion-based QBF solving, combined
with counter-example guided abstraction refinement [10], was
shown to be extremely powerful [13], [16]. The theoretical
foundation of this approach is the ∀Exp-Res [11] proof
system. While this proof system is theoretically well understood,
no recent expansion-based solver supports the generation of
efficiently checkable proofs and the extraction of winning
strategies so far. In contrast, solvers based on other solving
paradigms support the generation of such proofs and provide
winning strategies [15], [17].
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This paper presents the framework FERPModels for
generating, checking, and extracting winning strategies from
∀Exp-Res-refutation proofs (proofs of falsity). As there is
no proof format for ∀Exp-Res proofs, we first propose a
proof format called FERP. Second, we extend the expansion-
based QBF solver Ijtihad [6] to generate FERP proofs.
Third, we implement a proof checker for FERP proofs. Finally,
we develop a new symbolic algorithm for the extraction of
universal winning strategies from FERP proofs. We evaluate our
framework FERPModels on several benchmarks and compare
it to other certification frameworks.

II. PRELIMINARIES

We consider QBFs Q1x1 . . . Qnxn.φ in prenex conjunctive
normal form (PCNF) where Qi ∈ {∀,∃} and φ is a proposi-
tional formula in conjunctive normal form (CNF) over variables
xi. A formula in CNF is a conjunction of clauses and a clause
is a disjunction of literals. A literal is a variable or a negated
variable. A QBF ∀x1Π.φ is false iff Π.φ[x1/>] or Π.φ[x1/⊥]
is false where φ[x/t] denotes the CNF obtained by setting x
to truth value t. As a running example we consider the false
QBF Φ = ∃x∀a∃y.((x ∨ a ∨ y) ∧ (¬x ∨ ¬a ∨ y) ∧ (¬y)).

In expansion-based QBF solving, one kind of variable
(either the existential or the universals) is eliminated according
to the quantifier semantics. To preserve the dependencies
imposed by the quantifiers, new copies of the variables that
occur to the right of the expanded variables have to be
introduced. If we expand a in QBF Φ, we obtain the PCNF
Φ[a/⊥, y/yā]∧Φ[a/>, y/ya] which contains only existentially
quantified variables. Hence it can be solved by a SAT solver.
Obviously, careless expansion leads to exponential space
consumption. Only in combination with powerful abstraction
and pruning techniques does expansion-based solving work
well in practice. Expansion-based solving is based on the ∀Exp-
Res calculus [11] that provides two kinds of rules: (1) the
axiom rule for expanding universal variables and introducing
the necessary copies of the existential variables and (2) the
propositional resolution rule. The correctness of ∀Exp-Res
proofs is checkable in polynomial time.

III. THE CERTIFICATION FRAMEWORK AT A GLANCE

We provide a complete framework to certify and validate
the results of the expansion-based QBF solver Ijtihad [6].
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Figure 1: The FERPModels framework. The gray components are new or modified.

The overall certification workflow of FERPModels is shown
in Figure 1. FERPModels is publicly available at

https://github.com/SFMV/ferp-models

To install all necessary third-party tools like SAT solvers and
to build our tools, the script requirements.py is provided.
The full tool chain is called via pipeline.py <qbf> <f>
where <qbf> is the input QBF in QDIMACS format and <f>
is the name of the file in which the generated winning strategy
is stored. In the following we describe different components
of FERPModels.

a) Proof Generation: Given a QBF Φ in QDIMACS
format, the expansion-based QBF solver Ijtihad decides
whether Φ is true or false. If Φ is false, Ijtihad dumps
the partial expansion, the unsatisfiable CNF formula ψ, in
DIMACS format. In DIMACS and in QDIMACS variables
are represented as integers. Note that the same integer in the
DIMACS and QDIMACS file usually not refers to the same
variable. The mapping between the variables of ψ and Φ is
stored in comments in the DIMACS file. From this annotated
DIMACS formula, the tool ToFerp generates a ∀Exp-Res
proof in the FERP format. Figure 2 shows an example.

The grammar for the FERP proof format is as follows:

〈trace〉 ::= {〈annotation〉} {〈clause〉}
〈annotation〉 ::= ‘x’ 〈vars〉 〈vars〉 〈literals〉
〈vars〉 ::= {〈idx〉} ‘0’

〈literals〉 ::= {〈lit〉} ‘0’

〈antecedents〉 ::= 〈idx〉 ‘0’ | 〈idx〉 〈idx〉 ‘0’

〈clause〉 ::= 〈idx〉 〈literals〉
〈antecedents〉

〈lit〉 ::= 〈idx〉 | 〈neg〉
〈idx〉 ::= ‘1’ | ‘2’ | . . . | 〈max-idx〉
〈neg〉 ::= ‘-’ 〈idx〉

Symbol 0 is a delimiter. The proof lines starting with x
contain information about the variable mapping. The first
section lists integer names of variables from CNF ψ. The
second section lists the integer names of existential variables

QBF
p cnf 3 3
e 1 0
a 2 0
e 3 0
1 2 3 0
-1 -2 3 0
-3 0

CNF
p cnf 3 4
1 3 0
-1 2 0
-3 0
-2 0

∀Exp-Res proof
c variable mappings
x 1 0 1 0 0
x 2 0 3 0 2 0
x 3 0 3 0 -2 0

c resolution
c line idx bold
1 1 3 0 1 0
2 -1 2 0 2 0
3 -3 0 3 0
4 -2 0 3 0
5 2 3 0 1 2 0
6 2 0 5 3 0
7 0 6 4 0

Figure 2: QBF in QDIMACS from Sec. II and CNF expansion
(left), and ∀Exp-Res proof in FERP format (right).

from QBF Φ. In the last section, there are universal literals
which are to the left of the existential variables in the prefix.
The polarity of the literal indicates the assignment. In our
example, variables x, a, y are represented by integers 1, 2, 3 in
the QDIMACS file. In the CNF file x maps to 1, while ya and
yā map to 2 and 3. The remaining lines provide information
about the clauses of the ∀Exp-Res proof. After a unique line
number, the first section shows the literals of a clause. The
second section contains either one or two numbers. If it contains
one number n, then it says that the clause was obtained by
applying the axiom rule of ∀Exp-Res for the n-th clause of Φ.
For example, the clause with index 1 in Figure 2 is obtained
from clause (x∨a∨y) of Φ, the first clause in the QDIMACS
file. Similarly, two numbers indicate the application of the
resolution rule and refer to the two parent clauses.

b) Proof Checking: The tool FerpCheck checks the
generated FERP proofs by validating the expansion and
resolution steps performed by the Ijtihad. FerpCheck
traverses the FERP proof in the reverse topological order,
starting with an empty constraint and checks the validity of
each step. This way, all parts of the trace irrelevant for deriving
the empty constraint can be omitted. The tool terminates with

https://github.com/SFMV/ferp-models


a negative answer if it finds an invalid step in the proof. If
all the antecedents are visited without any error, the checker
returns OK.

c) Universal Winning Strategy Extraction: FerpCert
extracts a certificate from the FERP proof in terms of a
universal winning strategy. A winning strategy states how to set
universal variables according to given values of the existential
variables such that the formula evaluates to false. To this end,
we developed an algorithm for obtaining symbolic encodings
of winning strategies. It is inspired by the interactive approach
by Beyersdorff et al. [2] which cannot serialize strategies and
for which no implementation exists. The extracted certificate
is represented as a Boolean circuit in Aiger format for And-
Inverter-Graphs (AIG) [5]. To avoid redundancies in the AIG,
we employ structural hashing.

d) Certificate Checking: To ensure that the generated
certificate is indeed a winning strategy for the universal player,
we perform an additional step of certificate validation. We use
the CertCheck [15] tool to replace the universal variables
of the original QBF by their winning strategy functions and
to transform the resulting propositional formula into CNF. If
this propositional formula is unsatisfiable, then the certificate
indeed represents a winning strategy for the universal player.

IV. EVALUATION

We evaluate our certification framework FERPModels and
compare it to two other certification frameworks: CaQE1 [17]
and QBFCert2 [15]. QBFCert is based on Q-resolution
proofs as produced by clause and cube learning approaches
(QCDCL) (see [4]) and realizes a similar tool chain as FERP-
Models. In contrast, CaQE is based on clausal abstraction
and produces winning strategies during the search. It does not
generate proofs, so efficient result validation is possible.

We use the SAT solver Picosat3 (version 965) to obtain
the propositional resolution proof from the CNF generated
by Ijtihad. For plugging the AIG certificates obtained
from FerpCert into the original QBFs, we use the tool
CertCheck of QBFCert. The obtained CNFs are checked
by the SAT solver Kissat.4 This SAT solver is also used
to validate the winning strategies generated by the other
two approaches. The QBF solver CaQE (version 2) directly
generates AIG certificates during solving. The framework
QBFCert uses the QBF solver DepQBF5 [12] (version 4.01)
for generating Q-resolution proofs.

a) Instances: As benchmarks we considered 10 for-
mulas of the QParityn family [3] with parameter n ∈
{10, 20, . . . , 100} as well as 118 false formulas from the
benchmark set of the PCNF track of QBFEval 20. We included
those formulas that could be solved either by Ijtihad, CaQE,
or DepQBF in their standard configuration within 15 minutes.

1http://https://www.react.uni-saarland.de/tools/caqe/
2http://fmv.jku.at/qbfcert
3http://fmv.jku.at/picosat
4http://fmv.jku.at/kissat
5https://lonsing.github.io/depqbf/
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Figure 3: Runtime of FERPModels on QParityn (top) QB-
FEval (bottom) formulas.

The experiments were run on Intel Xeon E5-2620v4 CPUs
with a time limit of 15 minutes and a memory limit of 50GB.

b) Results and Analysis: Table I compares the stages
of the three frameworks w.r.t. number of solved instances
and runtime. While CaQE and DepQBF could only solve
one (n = 10) resp. two (n ∈ {10, 20}) of the QParityn

formulas, Ijtihad could solve all of the 10 formulas. A
detailed analysis of the runtimes of the individual components
of FERPModels is shown in the first plot of Figure 3. The
most time-consuming part of our tool chain is the final SAT
check validating the correctness of the AIG certificates. This
experiment indicates that our certification approach can fully
exploit the power of expansion-based solving.

Out of the 118 formulas from QBFEval 20, Ijtihad solved
92 formulas. About 90% of the proofs could be checked by
FERPModels within the given time limit. In contrast, CaQE
solved 61 formulas. At this point, a comparison was not possible

http://https://www.react.uni-saarland.de/tools/caqe/
http://fmv.jku.at/qbfcert
http://fmv.jku.at/picosat
http://fmv.jku.at/kissat
https://lonsing.github.io/depqbf/


Table I: Comparison of Certification Frameworks.

Instances Average Runtime∗ [s]
stage sv pg ch ex va sv pg ch ex mg va

Parity (10 formulas)
FERPModels 10 10 10 10 10 0.0 0.0 0.0 0.4 0.2 101.4

CaQE 1 – – – 1 0.10 – – – 0.01 0.48
QBFCert 2 – 2 2 1 0.01 – 0.02 0.01 0.00 0.03

QBFEval (118 formulas)

FERPModels 92 86 82 46 38 34.9
(19.8)

81.4
(17.1)

33.0
(3.7)

135.6
(53.0)

54.6
(9.8)

14.1
(14.1)

CaQE 61 – – – 60 93.4
(81.8) – – – 0.6 (0.6) 0.7 (0.7)

QBFCert 49 – 48 47 46 52.3
(21.2) – 13.4

(4.8) 1.8 (0.9) 0.7 (0.7) 9.0 (9.0)

∗ avg runtime of instances that completed the stage (avg runtime of all validated instances)
– . . . not applicable
sv . . . solved formulas pg . . . proof generation ch . . . proof checking
ex . . . strategy extraction mg . . . merging va . . . validation

as CaQE does not produce proofs. The solver DepQBF solved
49 formulas. The results of 48 formulas could be checked.
Hence, we could conisderably increase the number of formulas
with certified results. For almost all formulas solved by CaQE
and DepQBF winning strategies in terms of AIGs could be
generated and validated. With FERPModels winning strategies
could be obtained for 46 formulas. Of those 38 could be
checked by a SAT solver within the time limit. The smaller
amount of extracted winning strategies can be explained by the
fact that the pipeline of FerpCert contains more stages. The
runtimes of proof generation (pg) in Table I and the second
plot of Figure 3 indicate that a considerable amount of time is
need for getting the resolution proof by an extra SAT solver
call. Further, the extraction algorithm of FerpCert is more
expensive than the extraction algorithm of QBFCert which is
linear in the proof size [1]. From a proof-theoretical point of
view this is not surprising [4].

V. CONCLUSION

We presented the first certification framework for expansion-
based solving. The produced certificates in terms of proofs and
universal winning strategies not only increase the trust in the
solving result of an expansion-based solver, but also provide
concrete solutions to application problems. Our experiments
indicated that our framework works very well for formulas
well suited for expansion-based solving. In the future, we also
want to obtain existential strategies. Theoretically, this works
dually, in practice, there are some technical challenges because
the expansion-based solver generates a DNF formula that is
then converted to a CNF formula introducing additional Tseitin
variables. Another interesting line of research is the integration
of preprocessing techniques to FERPModels, which are crucial
for modern QBF solvers.
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