
EasyChair Preprint
№ 2500

Optimizing the Computational Efficiency of 3D
Segmentation Models for Connectomics

Weihao Zhuang, Hascoet Tristan, Ryoichi Takashima,
Tetsuya Takiguchi and Yasuo Ariki

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 30, 2020



Optimizing the Computational Efficiency of 3D
Segmentation Models for Connectomics

Weihao Zhuang, Hascoet Tristan, Ryoichi Takashima, Tetsuya Takiguchi, and
Yasuo Ariki

Graduate School of System Informatics, Kobe University, Japan

Abstract. The field of connectomics aims to map the interconnections
between biological neurons within nervous systems at the scale of single
synapses to gain insights into the structure and functional organization
of biological neural networks. A critical task for the success of the con-
nectomics enterprise is the segmentation of neurites from high precision
electron microscopy (EM) images. This task requires models to be both
accurate and computationally efficient in order to process large volumes
of very high precision microscopy images. In recent years, deep learn-
ing based models have become very accurate at this task, at the cost
of being very computationally intensive. In this paper, we analyse the
computational efficiency of one such successful model and identify sev-
eral computational bottlenecks. We propose different optimizations to
increase the computational efficiency of this model and achieve a 5 times
speed up in computation time while slightly improving on the baseline
model accuracy.

Keywords: Neurite segmentation · 3D CNN · Computational efficiency

1 Introduction

Precise reconstruction of neural connectivity is of great importance to under-
stand the functional organization of biological nervous systems. 3D electron mi-
croscopy (EM) can capture large volume of neuronal tissues within nano-scale
precision, which allows for the identification of even the smallest neuronal ob-
jects like vesicles. With advances in imaging technologies, EM systems can now
produce terabytes of images within hours. Manually annotating each of the neu-
rons within such large EM volumes is simply impractical as it would require
lifetimes of manual labeling from highly skilled experts to segment. Hence, high-
precision segmentation models are needed to automate the reconstruction of
neuronal circuits.

Current state-of-the art models for 3D neurite segmentation proceed in three
steps, as illustrated in Figure 1. First, a CNN is trained to detect boundaries
between neurons in the raw EM images. In a second step, over-segmentation
maps are computed from the boundary map. This is typically done by non-
parametric algorithms like Watershed. Finally, an agglomeration algorithm is



2 Weihao Zhuang et al.

Fig. 1: Illustration of the 3-step segmentation pipeline. This paper focuses solely
on increasing the computational efficiency of the first step.

used to process the over-segmented results typically produced by the Watershed
algorithm.

In this pipeline, the first step is computationally very expensive, both for the
training step of the CNN and for the inference step. The benefits of optimizing
the computational efficiency of the 3D U-Net is two-folds:

First, computationally efficient models would significantly ease the inference
step: As the resolution needed to accurately detect synaptic connections is on
the order of tens of nanometers, only a cubic millimeter of brain tissue at this
resolution represents on the order of PetaBytes. Processing such a large volume
is a considerable computational challenge. Hence optimized computations will
be needed in order to enable the processing of large brain volumes.

However, the most impactful benefit concerns the training step: As train-
ing an unoptimized model to convergence takes up to days on a single GPU
machine, the iterative process needed to fine-tune our models and experiment
with different architectures and loss functions is very slow. Hence, optimizing
the computational efficiency of our model would enable us to more efficiently
explore the space of possible solution, thanks to faster iteration cycles.

In this paper, we thus analyse the computational efficiency of a successful 3D
U-Net segmentation model and identify different factors responsible for slowing
down the computations. We propose several improvements to speed up the base-
line computations and achieve a relative speed of up to 500% without sacrifying
the model accuracy. In fact, through a better parameterization of the baseline
model, we are able to achieve an improvement of 0.5% in accuracy while speeding
up the computations.

In the next section, we start by analysing the baseline model. We present
our proposed optimization in Section 3. Section 4 discusses the results of our
experiments and Section 5 concludes this paper.



Optimizing the Computational Efficiency of 3D Segmentation Models 3

2 Baseline model Analysis

2.1 Baseline model

We chose the 3D U-Net proposed by Lee et al. [4] as our baseline model to
optimize. This model, illustrated in Figure 2, was the first model to surpass
human accuracy on the SNEMI3D challenge. This model builds on the original
U-Net architecture [5] and proposes several improvement:

Fig. 2: Illustration of the baseline model architecture (drawn from [4]). We adapt
this architecture to the specific anisometry of our dataset by replacing the 2D
sampling of lower layers by 3D sampling operations (2× 2× 2).

First, skip connections are made by summation instead of concatenation,
so that the down-sampling and up-sampling pathes have the same number of
channels. Second, operations at each pooling level are standardized as a similar
convolution block made of convolution, activation and batch normalization layers
with skip connections.

As we fine-tune low-level computation kernels for each layer in the network,
the symmetry of this architecture considerably facilitates our optimization task
as computations at each level are standardized.

Finally, pooling operations are adapted so as to match the isometry of the
dataset. We only adapt their architecture to fit the anisotropy of our own dataset
by replacing the 2D pooling operations of the lower layers by 3D pooling oper-
ations.

2.2 Model analysis

We start by analyzing the computational efficiency of our baseline model. Figure
3 shows the processing time spent in each layer of the network. The time t(l) (in
seconds s) required by a given layer l to process an input batch can be decom-
posed into the number of operations (FLOP) O(l) divided by the computational
efficiency (FLOP/s) E(l) of the layer:

t(l) =
0(l)

E(l)



4 Weihao Zhuang et al.

The total processing time T required by the model M to process an input
batch is equal to the sum of the computation time spent in each layer:

T =
∑
l∈M

t(l)

Figure 3 shows the number of operations, the efficiency, and the processing
time spent in each convolution layer of the baseline model in the order of their
processing: the left-most value of each plot represents the input layer, followed by
the next lower layer, up until the output layer represented by the right-most value
of the plot. In reality, batch normalization, ReLU, pooling and skip connections
should be represented on these plots between each convolution. However, as
the computations are dominated by convolution layers, we consider these layers
negligible and only show the analysis of convolutions for readability.

(a) FLOP (b) FLOPs (c) Time

Fig. 3: Baseline model analysis. The x axis, shared by all plots, represents the
different convolution layers of the model in the order of their processing. (a)
Number of operation O(l) of each layer. (b) Computational efficiency E(l) of
each layer. (c) Time t(l) spent in the computation of each layer For each layer,
the computation of the forward pass is shown in blue, backward pass operations
in yellow, while green measurments represent the full (forward + backward)
operations

3 Baseline Model Optimization

We minimize the total processing time T by optimizing individual layers. For a
given layer l, minimizing the processing time t(l) can be achieved in two ways:
We can either reduce the number of operations O(l) of a given layer l, or increase
its efficiency E(l). Reducing the number of operations O(l) is done by modifying
the architecture parameters, which we explain in the following section. Increasing
the computational efficiency is done by optimizing the low-level implementation
of the convolutions, which we explain in Section 3.2.



Optimizing the Computational Efficiency of 3D Segmentation Models 5

(a) ResNet (b) 3D UNet

Fig. 4: FLOP distribution among the layers of two different models: (a) a 2D
ResNet, and (b) the baseline 3D U-Net

3.1 Architectural optimization

Figure 4 compares the distribution of FLOP among each layers of a 2D ResNet [3]
and our baseline 3D UNet.

The 2D-ResNet computations are evenly distributed among its layers, while
the 3D UNet computations concentrate on the first and last three layers of the
network, which consume over 85% of the total computational cost. Intuitively,
this seems misguided as there is no rational for the low level feature processing
to be that much more computationally expensive than the higher level feature
processing. The 2D ResNet has been carefully parameterized so as to main-
tain a constant computational for convolutional layers across the full model: In
ResNets, the number of channels is doubled after each pooling layers, while pool-
ing reduce each spatial dimension by a factor of 2. The computational complexity
(FLOP) of a convolution operation with stride 1 at layer l is given by:

O(l) = h× w × c2 × bs× kh× kw

Where h,w represents the input image dimensions, the input and output
channels c are considered equal, and kh, kw represent the spatial dimensions of
the kernel.

Hence, the computational complexity is quadratic in both the input spatial
dimension (h×w), and the channel dimension (c2). Denoting by l′ an upstream
layer of l after pooling, the computational complexity in ResNet parameteriza-
tion is given by:

O(l′) = h′ × w′ × c′2 × bs′ × kh′ × kw′ (1a)

O(l′) = (h/2)× (w/2)× (c× 2)2 × bs× kh× kw (1b)

O(l′) = h× w × c2 × bs× kh× kw (1c)

O(l′) = O(l) (1d)



6 Weihao Zhuang et al.

Hence, by doubling the number of channels after each pooling operations,
ResNet maintains a computational cost constant with depth. To maintain a
constant computational cost with depth, 3D CNNs should thus scale the chan-
nel dimension by a factor of

√
23 =

√
8 after each pooling operation, which is far

more than the scaling factor used by the original baseline model. This explains
why the computational cost is concentrated in the first layers as it is exponen-
tially decreased with depth. We thus increase the channel scaling factor so as to
maintain a constant computational cost in the first three pooling levels.

To further reduce the computational cost of the first and last layer, we draw
inspiration from efficient ResNet implementations and replace the first and last
layer of our model by strided and fractionally strided convolutions respectively.
This allows us to minimize the amount of computation performed at full resolu-
tion.

Fig. 5: FLOP optimization

3.2 Implementation optimization

In this section, we describe the optimization of the computational efficiency E(l)
of the convolution layers of our network. We do this by fine-tuning low-level GPU
kernels tailored to our computational workload using AutoTVM [1]. The result
of our optimization is shown in Figure 6.

We run our model on a Nvidia TITAN X, whose peak computation efficiency
is 10 TFLOPs (illustrated in red in Figure 6) according to the official specifica-
tion. Compared to its theoretical performance, our baseline model implemented
in PyTorch reached a peak performance below 4 TFLOPs, which suggests plenty
of room for optimization.

Pytorch uses cuDNN as a backend for high efficiency GPU implementation
of its operations. cuDNN [2] is a handwritten low-level deep learning implement
acceleration library, provided by NVIDIA for its GPUs. cuDNN kernels are hand-
optimized kernels targetting specialized hardware and computational workloads.



Optimizing the Computational Efficiency of 3D Segmentation Models 7

In contrast, AutoTVM [1] recently proposed a machine learning-based optimiza-
tion of low-level implementations allowing to fine-tune specific kernels to specific
hardware and workloads. We used AutoTVM to fine-tune low-level kernels for
our model. The per-layer efficiency achieved by AutoTVM is shown in Figure 6,
and Table 1 summarizes the total increase in performance achieved by the full
model.

(a) Pytorch (cuDNN kernel function)

(b) TVM (autotuing kernel function)

Fig. 6: Computational efficiency achieved by our model using (a) cudnn kernels
and (b) custom AutoTVM kernels

4 Experiment

In this section, we evaluate the speed and accuracy of the baseline model after
each modification proposed in the previous section. Optimizing for computa-
tional speed involves a trade-off between speed and accuracy. We expect archi-
tectural changes aiming to reduce the number of operations to increase speed at
the expense of accuracy, while implementation optimization should not impact
the accuracy. We start by describing the dataset used in these experiments, and
present the results further below.



8 Weihao Zhuang et al.

4.1 Dataset

We used the SNEMI3D dataset and rescaled it to an anisotropy factor of 2 in
order to match the taget anisotropy allowed by our own imaging equipment. We
split the dataset along its x axis, and use 80% percent of the annotated volume
as training data with the remaining 20% serving as validation set.

4.2 Results

In this section, we report the changes in accuracy and computational efficiency
brought by each of our proposed optimization. These results are presented in
Table 1.

Table 1: Experiment Results

Stride Channel Implement Accuracy GFLOP GFLOPs Time(one iteration)

No 24, 32, 48, 72, 104 Pytorch 92.63% 430.66 607.25 0.71s
Yes 24, 32, 48, 72, 104 Pytorch 92.57% 97.02 599.92 0.16s
Yes 24, 64, 192, 192, 192 Pytorch 93.08% 211.24 983.35 0.21s
Yes 24, 64, 192, 192, 192 TVM 93.08% 211.24 1627.13 0.13s

First, replacing the first convolution layer with a strided convolution sig-
nificantly decreases the computation time as most of the computational cost
of the original baseline was concentrated in the upper layers due to their high
spatial resolution. Surprisingly, this modification barely impacted the accuracy.
Second, we increase the channel dimension after each pooling layer to maintain
a constant computational cost with depth. This proved to increase the accuracy
by 0.5%, while incurring a small computation overhead of 50 ms per iteration.
Finally, replacing the cuDNN kernel with customely fine-tuned kernels further
reduced the computation time from 0.21s per iteration to 0.13s.

Taken together, our optimizations allowed to reduce the computation time
from 0.71s per iteration to 0.13s, while increasing the model accuracy from
92.63% to 93.08%.

4.3 Future Work

We are still far from the optimal computational efficiency, since our experiment
device can reach to 10 TFLOPs instead of 4 TFLOPs which is the peak com-
putational efficiency achieved by our model. In particular, the weight gradient
computations of convolution layers remain too slow in our implementation. We
will continue to tune our scheduling implementations in order to further accel-
erate our model computations. Furthermore, a number of recent advances in
numerics and hardware have pushed the computation power of GPUs beyond



Optimizing the Computational Efficiency of 3D Segmentation Models 9

tens of Teraflops. These include mixed precision training and tensorized oper-
ations as allowed by the Tensor Core technology. We plan to integrate these
advancements to further boost the efficiency of our model in future research.

5 Conclusion

Neuroscience, and the connectomics endeavor in particular, can greatly benefit
from automated neurite segmentation systems. As the imaging resoltion required
to properly analyze brain tissues is very high, analyzing large volume of brain
tissues is computationally intensive task. In this paper, we analyzed the com-
putational efficiency of a baseline neurone segmentation model and proposed
several improvements to accelerate its computations. We manage to achieve a 5
times speed up while simultaneously improving on the baseline model accuracy.
Our analysis suggests that further gains are possible, which we will continue to
investigate in future work.

References

1. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang,
L., Hu, Y., Ceze, L., et al.: {TVM}: An automated end-to-end optimizing compiler
for deep learning. In: 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18). pp. 578–594 (2018)

2. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., Shelhamer, E.: cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

4. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the snemi3d
connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

5. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 234–241. Springer (2015)


