
EasyChair Preprint
№ 6505

Fashion image generation using Conditional Deep
Convolutional Generative Adversarial Network
based on text input

Mosarrat Rumman, Abu Nayeem Tasneem, Israt Jahan Ritun and
Annajiat Alim Rasel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 31, 2021

Fashion image generation using Conditional Deep
Convolutional Generative Adversarial Network

based on text input

Abstract—Generative Adversarial Network (GAN) is increas-
ingly becoming a popular research area for generating highly
realistic data. However one of the pitfalls of GAN is that it cannot
be controlled what a conventional GAN will generate. Therefore
we extended a Deep Convolutional Generative Adversarial Net-
work (DCGAN) and added conditioning to it, to generate targeted
images according to the user input. We used the fashion MNIST
dataset to train our generative model. The text given by the user
is matched with predefined fashion categories using fuzzy string
matching and the model will generate absolutely new fashion
images in accordance with the matched fashion category. The
inception score of the generated images are analyzed to evaluate
the performance of the model.

Index Terms—DNN, Deep Convolutional Network, Generative
Adversarial Network

I. INTRODUCTION

Image generation or image synthesis is one of the most
common research areas in Machine Learning. Image genera-
tion refers to the generation of new images from an existing
dataset. During research, limited availability and quality of
training data often act as a bottleneck. No matter how powerful
a model is or how many computational resources are available
to train it, the model’s final performance will suffer if the
training data does not accurately represent the data distribution
that the model is expected to cover [1]. This is why generative
models are becoming increasingly popular in the research field.

To generate any kind of data such as images, text or video
with machine learning, we need to use a generative algorithm.
Using a model to generate new examples that are plausible
to derive from an existing distribution of samples, such as
generating new images that are comparable but distinct from
a dataset of existing photographs, is referred to as generative
modeling. Currently, Generative Adversarial Networks (or
GANs) are the most promising generative algorithms for image
generation.

Generative Adversarial Networks (or GANs) are introduced
in 2014 by the famous AI researcher, then a Ph.D. fellow at
the University of Montreal, Ian J. Goodfellow and co-author,
giving machines the gift of imagination. GAN is an unsu-
pervised machine learning (ML) model in which two neural
networks compete to improve their prediction accuracy [2].
They’ve obtained outstanding results in generating examples
for Image Datasets, generating realistic photographs, image-
to-image synthesis, text-to-image synthesis, and image super-
resolution, among other challenges [3].

Despite the fact that GAN models may produce new random
believable instances for a given dataset, there is no method
to regulate the types of images that are generated other than
attempting to grasp the intricate relationship between the latent
space input to the generator and the generated images. The
conditional generative adversarial network, or cGAN for short,
is a GAN that uses a generator model to conditionally generate
images. If a class label is available, image generation can
be conditional on it, allowing for the targeted generation of
images of a specific type [4]. Many strides have been made in
the design and training of GAN models, the most notable of
which is the deep convolutional GAN, or DCGAN for short,
which specifies the model configuration and training processes
that consistently result in the stable training of GAN models
for a number of contexts [5].

Generative Adversarial Networks (or GANs) and it’s appli-
cation field is vast. Within a very short time, It has already
brought revolution in the most possible Machine Learning
fields. Using GANs to produce new probable instances for
the MNIST handwritten digit dataset, the CIFAR-10 small
object photograph dataset, and the Toronto Face Database
was the application described in the original paper by Ian
Goodfellow, et al. in the 2014 paper “Generative Adversarial
Networks” [2]. Phillip Isola et al. demonstrate GANs, specif-
ically their pix2pix technique, for numerous image-to-image
translation tasks in their 2016 publication ”Image-to-Image
Translation using Conditional Adversarial Networks” [6]. Jun-
Yan Zhu presents their famous CycleGAN and a set of highly
remarkable image-to-image translation examples in their 2017
publication titled ”Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks” [7].

In Text to Image generation field, Han Zhang et al. il-
lustrate the use of GANs, specifically their StackGAN, to
generate realistic looking photographs from textual documents
of simple objects like birds and flowers in their 2016 paper
“StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks” [8]. Moreover, In
their 2016 study ”Learning What and Where to Draw,” Scott
Reed et al. extend on this capability by using GANs to both
generate images from text and use bounding boxes and key
points as recommendations for where to draw a described
object, such as a bird [9]. In their 2016 study “Pixel-Level
Domain Transfer,” Donggeun Yoo et al. illustrate the use of
GANs to generate photos of fashion that may be found in
a catalog or online store, based on photographs of models

Fig. 1. Overview of the proposed model

wearing the item [10].
In this paper we used a conditional Deep Convolutional

Generative Adversarial Network (DCGAN) to generate fashion
images based on user input. The contribution of this paper are
as follows:
• Match user text input with cloth category using Leven-

shtein Distance
• Generate absolutely new cloth image that is visually

acceptable according to the text category using DCGAN
• Targeted Image Generation.
• Generation of pre-trained model that can be reused.

II. DATASET

In this paper, we used the Fashion MNIST dataset
(https://github.com/zalandoresearch/fashion-mnist) which con-
tains a training set of 60,000 and a test set of 10,000 fashion
images. Each image is 784 pixels with a height of 28 pixels
and a width of 28 pixels. Both the training and test sets have
785 columns along with a label column. The cloth categories
are labelled as: T-shirt/top - 0 , Trouser - 1, Pullover - 2, Dress
- 3,Coat - 4, Sandal- 5, Shirt - 6,Sneaker - 7,Bag - 8,Ankle
boot - 9. The images are black and white so an additional
channel dimension is added so that it is compatible with the
convolutional layers of the proposed model. Then the pixel
values are scaled between -1 to 1 as the generator will output
in this range. In this paper, we used the Fashion MNIST dataset
(https://github.com/zalandoresearch/fashion-mnist) which con-
tains a training set of 60,000 and a test set of 10,000 fashion
images. Each image is 784 pixels with a height of 28 pixels
and a width of 28 pixels. Both the training and test sets have
785 columns along with a label column. The cloth categories
are labelled as: T-shirt/top - 0 , Trouser - 1, Pullover - 2, Dress
- 3,Coat - 4, Sandal- 5, Shirt - 6,Sneaker - 7,Bag - 8,Ankle
boot - 9. The images are black and white so an additional
channel dimension is added so that it is compatible with the
convolutional layers of the proposed model. Then the pixel
values are scaled between -1 to 1 as the generator will output
in this range.

III. METHODOLOGY

A. Input text processing

The user input text is matched with the pre-defined fashion
categories using fuzzy string matching. This will allow slightly
differently spelled words to be recognised and matched. We

Fig. 2. Architecture of conditional GAN

used Levenshtein Distance [11] to find the similarity ratio
between two sequences. Lavenshtein distance is a measure of
the number of edit operations needed to change one sequence
to another.

levx,y(i, j) =

max(i, j)

min

lev x,y(i− 1, j) + 1

lev x,y(i, j − 1) + 1

lev x,y(i− 1, j − 1) + 1(xi 6=yj)

(1)
The above formula (1) is used to measure the Lavenshtein

distance between the user input x and predefined cloth cate-
gory y. The 3 functions correspond to deletion, insertion and
substitution function orderly. The Levenshtein similarity ratio
can be calculated using formula (2).

(|x|+ |y|)− levx,y(i, j)

|x|+ |y|
(2)

Where |x| and |y| are lengths of the texts. In our paper we
used a cutoff value of 70%and the category with the highest
similarity ratio is selected.

B. DCGAN architecture

In this section the whole architecture of the conditional DC-
GAN will be described. We built a DCGAN similar to [5] but
added condition to it. It has two components- the generator (G)
and the discriminator (D). The generator takes input from the
latent space [12], i.e, some random variables using Gaussian
Distribution and the label of cloth category. G produces some
images i according to the label. The discriminator, which is
trained with real images along with their labels, classifies the
i as real or fake. The classification error of D is then used to
update both D and G. The overall process is shown in figure
[2]

For building the discriminator model D, a convolutional
neural network was modelled with LeakyRelu as activation
function. The input to the model are 28x28 gray scale images
and an integer representing the label of image (cloth category).
The label is passed to the D through an embedding layer and
reshaped into 28x28 and concatenated with the input images.

This creates a two channel input image to be passed on to the
convolutional layers. We used 2 by 2 stride for downsampling
and stochastic gradient descent with a learning rate of 0.0002
and a momentum of 0.5 for optimizing.

The generator model G is also a deep convolutional neural
network. For input it takes a random variable from the latent
space generated by Gaussian Distribution, as well as the
label, passed through an embedding layer in a similar way as
described for D. G uses LeakyRelu as activation in the fully
connected layers and a hyperbolic tangent as activation in the
output layer. The output is a 28x28 image generated based on
the label.

Both G and D are combined to form the condition DCGAN,
and then trained. We used a sequential model with an adam
optimizer and binary cross entropy for calculating the loss.
The training occurs in two phase:
• Phase 1: G creates some images from noise in latent space

which are forwarded to D.D is trained on real images. D
learns to classify real and fake images. The loss is back
propagated and the the weights of D are updated The
generator is not updated or trained in this phase.

• Phase 2: G produces a batch of images which are fed to
D.D does not have the real images this time. D classifies
as real or fake.The loss of D is back propagated to G. The
weights of G are updated.But the discriminator weight
remains unchanged.

The model is trained with 150 epochs with a batch size
of 192. These parameters were selected due to better image
generation after trying training the model several times with
different hyperparameter tuning.. We used google colab GPU
and it took approximately 2.5 hours to train the model. After
training we saved the model as a pre-trained model.

C. Loss of condition DCGAN

In the conditional DCGAN model, the generator tries to
minimize the loss function in equation (3) and the discrimi-
nator tries to maximize it [13].

min
G

max
D

V (D,G) = Ex[logD(x | y)]+Ez[log(1−D(G(z | y)))]
(3)

Here, y is the label. D(x|y) is the discriminator output for
real data x and D(G(z|y))] is the discriminator output for
generated fake data by G. Ex is the expected value over real
images and Ez is the expected value over all generated fake
images G(z|y).

IV. RESULTS

The original images are shown in Figure 3 and the generated
images are shown in Figure 4. These images below shows the
visual difference of the generated images with the original
images, to human eye.

From the given example it can be said that the generated
images closely resemble the original image. Even though the
images bear close resemblance to the original images, quali-
tative analysis gives better insight on how the model actually

Fig. 3. Original Fashion MNIST images

Fig. 4. Generated Fashion images

performed. For qualitative analysis of our generated images we
used inception score. This was proposed by Salimans, et al.
[13] [14] in 2016. It is a popular metric for evaluating images
generated by generative models. Inception score is a measure
of how realistic the output of a generated model is. As we are
generating images of multiple classes, we used the inception
model to predict which class the generated image belongs to.
The formula for calculating inception score is mentioned in
equation (4)

I = exp (ExKL(p(y | x)‖p(y))) (4)

Here x denotes the generated sample and y the label
predicted by the Inception model. KL is Kullback-Leibler
divergence which is basically the conditional probability mul-
tiplied by the log of the conditional probability minus the log
of the marginal probability.

A pre-trained model was used for the purpose of classifi-
cation. The model was trained on the training set, to detect
the 10 classes of fashion images. Afterwards softmax was
used to determine the probability distribution of the predicted
classes. 100 images of each class were produced, then the pre-

trained model was used to calculate the confidence score of
which class the image belongs to. Inception score evaluates
the diversity and resemblance of the images to the images the
model was trained on.If both of these characteristics are true,
then the score will be high.

Fig. 5. Inception score for all class labels

From the above bar chart we can see that images of most
generated classes scored above 1 in a scale of 2. Which
indicates overall acceptable quality of the generated images.

V. FINDINGS

One of the issues we faced with inception score is that
it performs well with colored images only. As the images
generated by our model are greyscale, the score had high
confidence for multiple items, in case of fashion items that
look similar to each other. Also for grayscale image output
we couldn’t use the Inception V3 as it works only on colored
images.

Fig. 6. Probability distribution given that, generated image is Ankle Boot

Above image is the probability distribution for the “Ankle
boot” class. We can see, the score of “Ankle boot” class is
the highest. Also, similar looking shoe items also had high
scores compared to other fashion items. This shows that the
classification algorithm found ankle boot is similar to other
shoe items, which is a result of poor discriminatory factors.

VI. CONCLUSION

Generative models require very high computation power
and a huge amount of time to produce satisfying results. For
lack of computing power we had to use grey scale images
and images of very small resolution. Even though our model
produced acceptable results, it can be improved in various

ways. With more computing power and time, it is possible
to train a model which is able to generate better looking
and higher resolution images. We only used syntactic analysis
of Language to detect the desired class of item to generate.
Also, in future, complex language understanding can be used
to do contextual analysis and make a model which is able
to understand inputs like “Red T-Shirt with long sleeve” and
produce respective output. Extensive hyper-parameter tuning
can improve the quality of generated images. Finally yet
importantly, more complex generative architectures, such as,
CYCLE-GAN, ATTENTION-GAN [13], etc can be used to
improve the model even further.

REFERENCES

Please number citations consecutively within brackets [1].
The sentence punctuation follows the bracket [2]. Refer simply
to the reference number, as in [3]—do not use “Ref. [3]”
or “reference [3]” except at the beginning of a sentence:
“Reference [3] was the first . . .”

Number footnotes separately in superscripts. Place the ac-
tual footnote at the bottom of the column in which it was
cited. Do not put footnotes in the abstract or reference list.
Use letters for table footnotes.

Unless there are six authors or more give all authors’ names;
do not use “et al.”. Papers that have not been published,
even if they have been submitted for publication, should be
cited as “unpublished” [4]. Papers that have been accepted for
publication should be cited as “in press” [5]. Capitalize only
the first word in a paper title, except for proper nouns and
element symbols.

For papers published in translation journals, please give the
English citation first, followed by the original foreign-language
citation [6].

REFERENCES

[1] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B.
and Bharath, A.A., 2018. Generative adversarial networks: An overview.
IEEE Signal Processing Magazine, 35(1), pp.53-65.

[2] I. J. Goodfellow et al., “Generative Adversarial Networks,” arXiv.org,
2014. https://arxiv.org/abs/1406.2661.

[3] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-Attention
Generative Adversarial Networks,” arXiv:1805.08318 [cs, stat], Jun.
2019, [Online]. Available: https://arxiv.org/abs/1805.08318.

[4] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,”
arXiv.org, 2014. https://arxiv.org/abs/1411.1784.

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
arXiv.org, 2015. https://arxiv.org/abs/1511.06434.

[6] P. Isola, J.-Y. Zhu, T. Zhou, and Efros, Alexei A, “Image-to-Image
Translation with Conditional Adversarial Networks,” arXiv.org, 2016.
https://arxiv.org/abs/1611.07004.

[7] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks,” arXiv.org,
2017. https://arxiv.org/abs/1703.10593.

[8] H. Zhang et al., “StackGAN: Text to Photo-realistic Image Synthe-
sis with Stacked Generative Adversarial Networks,” arXiv.org, 2016.
https://arxiv.org/abs/1612.03242.

[9] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee,
“Learning What and Where to Draw,” arXiv:1610.02454 [cs], Oct. 2016,
[Online]. Available: https://arxiv.org/abs/1610.02454.

[10] D. Yoo, N. Kim, S. Park, A. S. Paek, and I. S. Kweon, “Pixel-Level
Domain Transfer,” arXiv:1603.07442 [cs], Nov. 2016, Accessed: Aug.
31, 2021. [Online]. Available: https://arxiv.org/abs/1603.07442.

[11] S. Rani and J. Singh, “Enhancing Levenshtein’s Edit Distance Algorithm
for Evaluating Document Similarity,” Communications in Computer and
Information Science, pp. 72–80, 2018, doi: 10.1007/978-981-13-0755-
36.

[12] T. P. Van et al., “Interpreting the Latent Space of Generative Adversarial
Networks using Supervised Learning,” 2020 International Conference
on Advanced Computing and Applications (ACOMP), pp. 49–54, Nov.
2020, doi: 10.1109/ACOMP50827.2020.00015.

[13] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training GANs,” arXiv.org, 2016.
https://arxiv.org/abs/1606.03498.

[14] K. Shmelkov, C. Schmid, and K. Alahari, “How good is my GAN?,”
arXiv:1807.09499 [cs], Jul. 2018, Accessed: Aug. 31, 2021. [Online].
Available: https://arxiv.org/abs/1807.09499.

[15] X. Chen, C. Xu, X. Yang, and D. Tao, “Attention-GAN for Object Trans-
figuration in Wild Images,” arXiv:1803.06798 [cs], Mar. 2018, Accessed:
Aug. 31, 2021. [Online]. Available: https://arxiv.org/abs/1803.06798.

