
EasyChair Preprint
№ 5833

Comparative Analysis of Semantic Similarity
Word Embedding Techniques for Paraphrase
Detection

Shrutika Chawla, Preeti Aggarwal and Ravreet Kaur

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 16, 2021

Comparative analysis of semantic similarity word

embedding techniques for paraphrase detection

Shrutika Chawla1, Preeti Aggarwal1, Ravreet Kaur1

1. UIET, CSE Department, Panjab University, Chandigarh

 shrutikachawla.96@gmail.com

Abstract

Most of the state of art plagiarism detection tools focus on verbatim reproduc-

tion of a document for plagiarism identification (PI) not keeping into account its

semantic properties. Recently, deep learning models have shown considerable

performance in identifying paraphrases using word-embedding approach. This

paper gives an overview and comparison of the performances of five word em-

bedding based deep learning models in the field of semantic similarity detection,

such as TF-IDF, Word2Vec, Doc2Vec, FastText and BERT on two publicly

available corpora: Quora Question Pairs (QQP) and Plagiarized Short Answers

(PSA). After extensive literature review and experiments, the most appropriate

text pre-processing approaches, distance measures, and the thresholds have been

settled on for detecting semantic similarity/paraphrasing. The paper concludes on

FastText being the most efficient model out of the five, both in terms of evalua-

tion metrics i.e., accuracy, precision, recall, F1-score, receiver operating charac-

teristic (ROC) curve and resource consumption. It also compares all the models

with each other based on the above-mentioned metrics.

Keywords: Paraphrasing, Plagiarism, Paraphrase detection, Plagiarism detec-

tion, Paraphrase

1 Introduction

Paraphrasing is the procedure of rewriting a statement to change its form without

changing the meaning of the original text. Many deep learning models have shown a

promising performance in detecting semantic similarity between documents using

word-embedding technique. Word embedding is a representation of document vocabu-

lary which is capable of capturing the semantic context of the document as a whole, or

the individual words in a document. The idea behind word embedding is assigning vec-

tor values to text, as the technique opens doors to various text evaluation and analysis

approaches in the field of Linear Algebra.

The main objective of this paper is to review and compare the performance of vari-

ous word-embedding based models (including some Deep Learning models) for seman-

tic similarity detection which leads to following contributions: (a) Systematic outline

of corpus-based word-embedding models, and (b) Elucidation of the best models,

2

preprocessing techniques and thresholds for plagiarism detection and the kind of corpus

they work well with.

The motivation behind this research is to in-turn develop a framework which uses

machine learning and statistics to measure semantic similarity between given docu-

ments and detect paraphrase plagiarism. The systematic study helps in cherry picking

the mechanisms and hyperparameters best suited for a new framework.

This research compares five models such as Word2Vec [1], Doc2Vec [2], BERT [3],

TF-IDF [4], FastText [5] on two publicly available corpora namely Quora Question

Pairs and Plagiarized Short Answers (PSA) and in turn these models are evaluated in

terms of accuracy, precision, recall and F1 score. Before applying the models, data pre-

processing techniques, distance measures, and a threshold value for each model was set

after careful experimentation on each corpus.

The paper is organized as follows: Section 2 briefly discusses existing work in the

related field as well as specific work in the paraphrase detection area. Section 3 dis-

cusses approach followed in this paper, models implemented and the results derived

from the experiments. Section 4 draws conclusion and discusses future scope.

2 Related Work

The use of computers in the field of Natural Language Processing (NLP) is a chal-

lenge due to the equivocacy of texts and passages. For example, the term ‘mango’ can

be referred to as a fruit as well as a clothing brand. Hence, the semantic features of a

text play a major role over and above its linguistic features.

A large number of established researchers have contributed to various plagiarism

detection stages, [6]. For handling plagiarism and paraphrasing cases of higher com-

plexities, [7] suggests that researchers should focus on linguistic, syntactic and most

importantly semantic information of text rather than just on verbatim reproduction.

The following table (Table 1) summarizes various works and approaches in the field

of paraphrase detection.

Table 1. Related work in paraphrase detection field

Re-

search

work

Technique/

Algorithm
Dataset Observations Performance

[8]

Graph sub-

sumption

and isomor-

phism

Recognizing

Textual Entail-

ment (RTE)

Introduces a graph subsumption-

based approach for paraphrase identi-

fication. In this, input sentences are

mapped to corresponding graph struc-

tures and paraphrasing is evaluated

based on graph isomorphism.

Accuracy: 65.90

Precision: 64.70

Recall: 70.00

F1-score: 67.24

[9]
Neural Net-

works (NN)

(Microsoft Re-

search Para-

phrase) MSRP

Lexical features in association with

syntactic, semantic and composite

features are used to train a back

Accuracy: 75 and

above.

3

propagation network, wherein ex-

tracted features are fed as input to the

NN.

[10]

Combination

of deep

neural net-

work with

keywords

MSRP;

Sentences In-

volving Compo-

sitional

Knowledge

(SICK) [16]

Detects paraphrasing based on lexical

and semantic similarity, measured by

combining neural networks and key-

words, and hence identifies the rela-

tion between the inputs in the vector

space.

MSRP-

Accuracy: 80.2

F1-score: 86.4

SICK-

Accuracy: 87.1

[11]
Textual En-

tailment
RTE

Paraphrase detection is viewed as a

bidirectional textual entailment task.

Word Sense Disambiguation is per-

formed and using distant supervised

learning technique, indirect facts are

mined from the predicates

Accuracy: 78.6

F1-score: 86.3

[12]

Logistic Re-

gression

(LR); SVM;

Neural Net-

works

Quora Duplicate

Question set

Compares various machine learning

models after pre-processing and en-

coding the input and concludes Re-

current Neural Network (RNN) to be

the most efficient algorithm for para-

phrase identification task

Accuracies:

LR– 59.9

SVM – 62.5

Siamese NN – 63

Two Layer NN – 74

RNN – 80

[13]

Word Align-

ment Infor-

mation

(WAI)

Quora Question

Pairs (QQP)

Introduces a novel approach leverag-

ing WAI to improve deep PI baseline

model RE2 [17]. Employs two major

schemes to test the performance,

proving ‘pre-training’ the unlabeled

in-domain data majorly improving

performance of baseline model.

Accuracy on vari-

ous schemes:

Embedding – 80.7

Multi-Task – 80.9

Pre-Train – 82.1

Hybrid (Pre-Train +

Multi-Task) – 82.9

[14]
Curriculum

Learning

QQP;

Large-scale Chi-

nese Question

Matching Cor-

pus (LCQMC)

Estimates the effect of label noise on

PI task and introduces an approach

based on curriculum learning where:

(a) a loss-based noise metric is devel-

oped to compute noise complexity of

a sample, and (b) similarity-based

noise metric classifies the paraphrase.

Accuracy:

QQP – 80.29

LCQMC – 80.93

[15]

PIDG

 (Program

Interaction

Dependency

Graph)

12 Undergradu-

ate program-

ming assign-

ments diversi-

fied with the

help of SPPla-

giarise [18]

Introduces a novel behavior-based

Source Code Plagiarism Detection

Tool, BPlag. Each program’s behav-

iour is represented with the help of

PIDG, and source code plagiarism is

detected based on the similarity be-

tween the PID graphs.

Avg. Error Count at

various % transfor-

mations: 4.3

Inspired by the recent successes of Neural Networks (NNs) in the fields of information

retrieval and natural language processing, this paper experiments with various deep

learning models to test semantic similarity detection power of the same and find out

4

various factors affecting their performance. The succeeding section discusses the ap-

proach adopted in this research paper.

3 Proposed Methodology

The goal of this paper is to measure and compare the efficiency of five word embed-

ding models (Word2Vec, Doc2Vec, BERT, TF-IDF and FastText) in the task of pla-

giarism/paraphrase detection, on two publicly available corpora: Quora Question Pairs

and Plagiarized Short Answers.

 Appropriate pre-processing techniques are applied on both the corpora before start-

ing with model testing. The models are then evaluated based on the most appropriate

threshold values and distance measure, and the results are produced based on standard

metrics - accuracy, precision, recall and F1-score. For each model tested against each

corpus, ROC curve is generated for a deeper understanding of its performance.

3.1 Problem Definition

To formulate the task of paraphrase detection, the problem is defined as:

Given two text inputs T1 and T2 such that T1 = {T1
1, T1

2, T1
3,….,T1

n} and T2={T2
1, T2

2,

T2
3,….,T2

n}. The task of paraphrase detection between the given inputs is formalized

as a binary task where L = {0,1} are the target labels such that if T1 and T2 are duplicate

L=1 otherwise L=0 i.e. if not duplicate.

3.2 Corpora

The paper aims at comparing the listed models based on their semantic similarity de-

tection. The following corpora, after taking into consideration their varied natures are

tested on the models:

Quora Question Pairs

. In 2017, Quora Question Pairs1, an international competition by Quora, was re-

leased to identify plagiarism and paraphrasing to be able to group similar/duplicate

questions. The dataset contains genuine examples from the website with over 400,000

records.

Plagiarised Short Answers

. Plagiarised Short Answers 2(2009) is a corpus developed in a typical academic set-

ting for the task of plagiarism identification in which four levels of plagiarism was

committed. Since the input is classified based on a binary approach, four levels of par-

aphrasing are encoded to only two i.e., 0 (non-plagiarized) and 1 (plagiarized). The

1 https://www.kaggle.com/c/quora-question-pairs/
2 https://ir.shef.ac.uk/cloughie/resources/plagiarism_corpus.html

5

dataset contained 95 documents plagiarized at different levels against 5 original docu-

ments sourced from Wikipedia.

The two corpora differ a lot from each other in various aspects which is partially the

reason why they were chosen. (a) While PSA is a clean dataset containing only textual

information, QQP contains mathematical equations, abbreviations, slang, typos, etc. all

of which can be accounted for as noise. (b) PSA is a smaller dataset as compared to

QQP. (c) PSA also differs from QQP in the context that the constituent documents at

question are larger in length in PSA as compared to QQP.

The different natures of both the datasets helped in evaluating and reviewing the

word-embedding models more precisely.

Before experimenting with the models, the datasets need to be transformed into a

standard form to maximize model performance. The following section discusses the

various text preprocessing steps applied to both the datasets to achieve best results.

3.3 Text-Preprocessing

Before feeding the input to the models, the text corpora need to be pre-processed to

eliminate noise and maximize the processing effect. The major pre-processing steps are

briefly discussed below and represented in the flowchart (Fig 1) as well.

1. Each text input was transitioned from sensitive data to non-sensitive data by trans-

lating it to lower case and tokenizing it.

2. Each token obtained was checked against a dictionary of stop-words obtained from

nltk library in python. If the word matched against the dictionary, it was dropped to

avoid unnecessary processing, as stop-words rarely have any role in plagiarism.

3. Three alternatives of number manipulation were tested,

a. Leaving them,

b. Replacing them with <NAN> and

c. Deleting them from the text.

Best results were achieved once they were removed altogether.

4. Stemming [19] was applied to original tokens to reduce them to their word stem or

word root, but the results proved to be better without this step, hence was not carried

forward.

5. Lemmatization [20] was applied by using WordNet Lemmatizer [21]. Lemmatization

helps in retaining the context of text or achieving its base form. For e.g., New and

York are individual tokens which when lemmatized, are treated as a single entity

i.e., New York and hence the context of the text is retained. The results proved to be

slightly better when lemmatization was applied.

6. The tokens were then combined to form original text.

7. The original text was checked for punctuation marks and contractions. Punctuation

marks were straight away eliminated while contractions like can’t, she’ll, I’ve, etc.,

were expanded to their original form – here, cannot, she will, I have respectively.

8. The whole corpus is then searched for duplicate entries which are subsequently re-

moved to avoid overhead. The total number of duplicates were 353 which accounted

for only about 0.9% of the whole dataset and hence didn’t lead to any unbalancing.

6

Fig. 1. Flowchart of text preprocessing steps applied to each corpus

The above steps are applied to each dataset. No additional preprocessing is done on

any particular dataset to draw a fair result when tested with the models.

Following section discusses the various models which are applied on this prepro-

cessed data to test semantic similarity of the documents through word embeddings.

3.4 Models Referred

. Machine Learning and almost all Deep Learning models are incapable of pro-

cessing text in its raw form. One of the first and most popular approach to measure the

semantic similarity between texts was Vector Space Model [22], which introduced

space density computations on text such that each entity (such as characters in words,

words in sentences, sentences in documents and documents in dataset) could be

7

represented in an n-dimensional space as a vector. Hence, the proximity of two entities

in the space infer their semantic similarity.

Different models employ different strategies to utilize VSM for word embedding of

input. A brief description of the five models taken on for research is given below:

TF-IDF

. The paper proceeds with the oldest word embedding model i.e., Term Frequency-

Inverse Document Frequency which is a statistical frequency based embedding strategy

developed by [23], and measures the significance of a term among the corpus of docu-

ments. The words in a document are given different weights through the following

equation:

 wij = tfij × log (N/dfi') (1)

where tfij = number of occurrences of term i in document j, dfi’ = number of docu-

ments containing the term i, and N = number of documents.

Word2Vec

. Word2Vec is a deep learning model which is actually a combination of two strate-

gies – Continuous Bag of Words (CBOW) and skip-grams. Both of these techniques

learn weights of each input word which are thus taken as the final word vector repre-

sentations.

The model creates vectors which are distributed numerical representations of word

features such as the context of individual words. With enough data, usage and contexts,

Word2Vec can make accurate guesses about a word’s synonyms based on its previous

appearances (Fig 2)

Fig. 2. Using Word2Vec to extract the most similar value of a given word based on nearest vec-

tor values plotted in n-dimensional space.

Fig 3. depicts the distribution of a small set of computed vectors in an n-dimensional

space.

8

Fig. 3. Distribution of vectors computed by Word2Vec model in an n-dimensional space

BERT

. Sent2Vec is a sentence to vector strategy where distributed representations of sen-

tences are achieved. Rather than extracting the semantic meaning of a word, the whole

sentence is taken into consideration. It can be thought of as an extension of word2vec

to sentences whereby, vectors are the average of source word embeddings.

BERTSimilarity library from pandas is used as sentence embedding technique in this

research which employs forward pass of BERT model to compute vectors for sentences.

Doc2Vec

. Using this strategy, the document can be represented as vectors by using paragraph

vector algorithm introduced by Mikolov, et al. in [2]. The model basically remembers

the context of words encountered and hence the whole document can be plotted as a

vector based on its semantic meaning.

FastText

. FastText is a powerful word embedding model introduced by Facebook where in a

word is assumed to be formed by n-grams of characters, example, rainy can be repre-

sented as [rainy, rain, ainy], [rai, ain, iny]. It is particularly efficient over traditional

approaches in the sense that, it accounts for rarer words and can give vector represen-

tations to even the words absent from the dictionary.

All the above models have something in common: generating vector values for tex-

tual data. Raw textual data is incapable of extensive experimentation as majority of the

existing algorithms work on numerical data. The advantage with extracted vector val-

ues is that it allows putting the data through various concepts of Linear Algebra, which

opens doors to great level of experimentation and findings. The following section dis-

cusses how the generated word embeddings can be used to analyze semantic similarity

between documents.

9

3.5 Distance computation between word embeddings to detect

plagiarism

After generating word embedding for the corpora based on various models mentioned

above, a distance measure was chosen to calculate the actual distance between vectors

in the n-dimensional space. This paper compares the vectors using the cosine distance

measure which can be obtained from cosine similarity. The cosine similarity between

two entities T1 and T2 can be calculated as:

 similarity (T1, T2) = cos(ϴ) = (T1 ∙ T2) / (||T1|| × ||T2||) (2)

The cosine distance can be calculated from similarity such that,

 distance (T1, T2) = 1- similarity (T1, T2) = 1- cos(ϴ) (3)

The distance between the two entities is checked against a threshold value. If the score

is greater than or equal to threshold, the entities are reported as plagiarized.

Since cosine distance is used as a metric, it is a given that the result of comparison

will always be in the range [0,1]. Thus, the threshold always lies in the range [0,1].

The threshold value chosen varies according to the model into consideration and

context of the given dataset. Hence, it is not a given that the same threshold value will

produce the most accurate result for a model over any corpus and should be carefully

chosen after experimentation.

The different threshold values which produced the most efficient results for chosen

datasets are presented in the table below (Table 2).

Table 2. Threshold values to classify plagiarized records in each model corresponding to the

corpus

 Quora Question Pairs Plagiarized Short Answers

TF-IDF 0.52 0.54

Word2Vec 0.90 0.98

BERT 0.89 0.96

Doc2Vec 0.94 0.93

FastText 0.92 0.92

3.6 Evaluation and Results

Standard measures are used in this paper to calculate the performance of each model.

The measures include accuracy, precision, recall, and F1-score and can be calculated

with the help of sklearn library in python. The library gives the scores under two major

categories: macro-avg and weighted-avg. We have considered weighted-avg in our

evaluation to accommodate the size positive and negative samples.

The following table (Table 3) summarizes the values obtained of mentioned metrics

against each model and corpus.

10

Table 3. Performance of models at their best thresholds

 Accuracy Precision Recall F1-Score

 QQP PSA QQP PSA QQP PSA QQP PSA

TF-IDF 0.64 0.79 0.65 0.86 0.64 0.79 0.64 0.80

Word2Vec 0.64 0.73 0.63 0.74 0.64 0.74 0.64 0.73

BERT 0.66 0.77 0.66 0.83 0.66 0.77 0.66 0.77

Doc2Vec 0.65 0.74 0.66 0.72 0.65 0.79 0.65 0.753

FastText 0.69 0.93 0.70 0.92 0.69 0.92 0.69 0.92

Table 2 reveals that the threshold values for both the corpora against a particular model

vary diversely. Table 3 gives the performance summary of all the tested models. The

behaviour is dramatically different when the evaluation metrics for both the corpora are

compared against each other for all the models.

Both QQP and PSA datasets were made to undergo the same pre-processing steps

for a fair comparison but QQP is a much larger dataset compared to PSA. Hence, it is

lead to believe that the noise factor (like unaccounted abbreviations, orthographical er-

rors, etc.) plays a major role in the performance of a model for a particular corpus. The

derivation comes from the following two reasons:

• Deep Learning models should ideally perform better when the size of dataset is large

to train their neural network. Therefore, QQP should have worked well with all the

models because of its size. But the performance of models, in contrast to the expec-

tation has greatly worsened in QQP dataset, accounting that noise has a role to play.

• Since FastText is noise tolerant to some extent as explained in Section 3.4, it should

be able to account for some faults in the dataset. The evaluation metrics prove this

point, as FastText performs significantly better on both corpora.

Another probable but indefinite reason for the poor performance of DL models on

QQP dataset can be the presence of label noise. Label noise is extensively noticed in

paraphrase identification datasets due to automatic labeling or non-expert labeling and

it can severely impact the outcome of deep learning models as mentioned in [45]. QQP

has undergone human labeling to classify a pair of questions as paraphrased or non-

paraphrased.

The presence of label noise however, could not be confirmed in datasets due to short-

age of time during implementation.

The ROC curves for various models on each dataset are depicted in Fig 4 and Fig 5 to

help assess the performance of the models further. As mentioned in [24], a perfect di-

agnostic test would constitute an ROC curve that is almost vertical from (0,0) to (0,1)

and then horizontal to (1,1).

It is evident that FastText exhibits the best performance among all the listed models,

with reference to Table 3 and Fig 5.

Even though BERT performs slightly better than Word2Vec it has considerably

higher hardware and processing requirements i.e. consumes more resources and time.

11

Fig. 4. ROC Curves for various models on QQP dataset (left to right, top to bottom: Word2Vec,

TF-IDF, Doc2Vec, BERT, FastText)

12

Fig. 5. ROC Curves for various models on PSA dataset (left to right, top to bottom: Word2Vec,

TF-IDF, Doc2Vec, BERT, FastText)

13

Doc2Vec has better performance over BERT as well as Word2Vec, both in terms of

evaluation metrics and resource consumption. Contrary to expectations, TF-IDF per-

forms at par with Doc2Vec, Word2Vec and BERT.

4 Conclusion and Future Scope

This paper proposes comparison of various corpus based deep learning as well as sta-

tistical word embedding models, specifically TF-IDF, Word2Vec, Doc2Vec, BERT

and FastText. The models are tested on two publicly available corpora namely – Quora

Question Pairs and Plagiarized Short Answers. This research work helps in understand-

ing the performance of various word-embedding techniques on the mentioned corpora

and effect of variations of various parameters like threshold, hyperparameters, distance

measures, preprocessing steps, on the evaluation metrics.

It is concluded that FastText produces the most accurate and efficient results and

BERT is the most resource demanding model. Based on experimental results, it can

also be deduced that standalone Deep Learning models are not quite sufficient for pla-

giarism detection, and can be improved using additional mechanisms, for instance, neg-

ative sampling, dissimilarity measures, label noise elimination etc. The paper also

proves that TF-IDF has shown unexpected performance and hence, probably holds the

capability to produce even better results, either in combination with another well-suited

DL model or with modifications to account for variations, like negative sampling.

In future, this research can be extended on other state of art models like GloVe,

ELMO, USE, etc. LSI can be considered as well for comparison of traditional models

with state-of-the-art models. Another gap in this research is lack of testing on a corpus

which is mid-way between PSA and QQP i.e., a dataset that is significantly larger as

compared to PSA but has significantly lower noise when compared to QQP.

Another possible variation of the dataset can consider the length of constituent docu-

ments to measure the trade-off between evaluation metrics and length. In addition to

this, the results show great strength in TF-IDF model and the said can be improved.

References

1. T. Mikolov, et al., “Distributed representations ofwords and phrases and their compositional-

ity,” Adv. Neural Inf. Process. Syst., pp. 1–9, 2013.

2. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” 31st Int.

Conf. Mach. Learn. ICML 2014, vol. 4, pp. 2931–2939, 2014.

3. Devlin, Jacob, et al., “BERT: Pre-training of deep bidirectional transformers for language un-

derstanding,” NAACL HLT 2019 vol. 1, pp. 4171–4186, 2019.

4. J. Ramos, “Using TF-IDF to Determine Word Relevance in Document Queries,” Proc. first

Instr. Conf. Mach. Learn., vol. 242, no. 1, pp. 29–48, 2003.

5. A. Joulin, E. Grave, et al., “Bag of tricks for efficient text classification,” 15th Conf. Eur. Chap-

ter Assoc. Comput. Linguist. EACL 2017 - Proc. Conf., vol. 2, pp. 427–431, 2017

6. Alzahrani, N. Salim, et al., “Understanding plagiarism linguistic patterns, textual features, and

detection methods,” IEEE Trans. Syst. Man Cybern., vol. 42, no. 2, pp. 133–149, 2012.

14

7. V. M.K and K. K, “A Survey on Similarity Measures in Text Mining,” Mach. Learn. Appl. An

Int. J., vol. 3, no. 1, pp. 19–28, 2016.

8. V. Rus, P. M. Mccarthy, M. C. Lintean, D. S. Mcnamara, and A. C. Graesser, “Paraphrase

Identification with Lexico-Syntactic Graph Subsumption,” pp. 201–206, 2008.

9. Rajkumar, “Paraphrase Recognition using Neural Network Classification,” 1. 29. 43–48, 2010.

10. X. Wang and B. Xu, “Paraphrase Recognition via Combination of Neural Classifier and Key-

words,” 2018.

11. S. Seethamol and K. Manju, “Paraphrase identification using textual entailment recognition,”

ICICICT 2017, vol. 2018-Janua, pp. 1071–1074, 2018.

12. E. Hunt, R. Janamsetty, et al., “Machine Learning Models for Paraphrase Identification and its

Applications on Plagiarism Detection,” 2019 IEEE Int. Conf. Big Knowl., pp. 97–104, 2019.

13. Wang, B. & Wang, L., “Enhancing Deep Paraphrase Identification via Leveraging Word

Alignment Information”, CNCERT/CC. pp: 7843–7847, 2021

14. B. Li, T. Liu, B. Wang, et al., "Label Noise Robust Curriculum for Deep Paraphrase Identifica-

tion," 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2020

15. H. Cheers, Y. Lin and S. P. Smith, "Academic Source Code Plagiarism Detection by Measuring

Program Behavioral Similarity," in IEEE Access, vol. 9, pp. 50391-50412, 2021.

16. M. Marelli, et al., “A SICK cure for the evaluation of compositional distributional semantic

models,” Proc. 9th Int. Conf. Lang. Resour. Eval. Lr. 2014, no. May, pp. 216–223, 2014.

17. Runqi Yang, et al., “Simple and effective text matching with richer alignment features,” in

Proceedings of the 57th Annual Meeting of the ACL, pp. 4699–4709, 2019

18. H. Cheers, Y. Lin, and S. P. Smith, “Spplagiarise: A tool for generating simulated semantics-

preserving plagiarism of java source code,” in 2019 IEEE 10th ICSESS, 2019, pp. 617–622.

19. M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137, 1980.

20. C. Callison-burch, “Syntactic Constraints on Paraphrases Extracted from Parallel Corpora,” no.

October, pp. 196–205, 2008.

21. Fellbaum, Christiane. "WordNet." In Theory and applications of ontology: computer applica-

tions, pp. 231-243. Springer, Dordrecht, 2010.

22. G. Salton, A. Wong, and C. S. Yang, “A Vector Space Model for Automatic Indexing,” Com-

mun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

23. Salton, Gerard, and Christopher Buckley. "Term-weighting approaches in automatic text re-

trieval." Information processing & management 24, no. 5, pp: 513-523, 1988.

24. NCSS statistical software, “Comparing Two ROC Curves - paired design,” pp. 1–14, 1997.

25. Anjali, A. Tripathi, S. Gupta and S. Singh Yadav, "Plagiarism Detector using Long Term Com-

mon Tracking," 2021 ICACITE, pp. 184-189, 2021.

26. S. Zouaoui and K. Rezeg, “Multi-Agents Indexing System (MAIS) for Plagiarism Detection,”

J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020.

27. S. Xu, S. E, and Y. Xiang, “Enhanced attentive convolutional neural networks for sentence pair

modeling,” Expert Syst. Appl., vol. 151, p. 113384, 2020.

28. J. Zhan and B. Dahal, “Using deep learning for short text understanding,” Journal of Big Data,

vol. 4, no. 34, pp. 1–15, 2017.

29. D. Sakamoto and K. Tsuda, “A detection method for plagiarism reports of students,” Procedia

Comput. Sci., vol. 159, pp. 1329–1338, 2019.

30. Ruder, Sebastian, Ivan Vulić, and Anders Søgaard. "A survey of cross-lingual word embedding

models." Journal of Artificial Intelligence Research 65, pp: 569-631, 2019.

31. I., Mohamed & Gomaa, Wael. Exploring the Recent Trends of Paraphrase Detection. Interna-

tional Journal of Computer Applications. 182. 1-5. 2019.

32. J. Zhan and B. Dahal, “Using deep learning for short text understanding,” J. Big Data, vol. 4,

no. 1, 2017.

