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ABSTRACT 

       In this  research  paper, we  consider  2 x 2  integer  matrices  and  identify  interesting  

binary  quadratic  forms  which  naturally  arise.  Specifically,  we  consider such  symmetric  

integer  matrices  and  derive  compositions  of  pure  binary  quadratic  forms  naturally  arising  

in  association   with  determinant  of  such  matrices.  We  also,  discover  number-theoretic  

results  associated  with  trinary  quadratic  forms  naturally  arising  in  connection  with  2 x  2  

symmetric  integer  matrices.  We  formulate  a  “generalized  Waring  problem”  using  real  

quadratic  algebraic  numbers. We  also  discuss  composition  of  binary quadratic  forms  

naturally  arising  in  other  interesting  structured  2 x  2  integer  matrices. We  explore  

representation  of   integers  using  trinary  as  well  as  binary  quadratic  forms. Also,  an  

arbitrary  ternary  quadratic  form  is  expressed  as   𝑇𝑟𝑎𝑐𝑒 ( �̅�2 )  𝑓𝑜𝑟  𝑎  2 𝑥 2  𝑚𝑎𝑡𝑟𝑖𝑥  �̅�.  

Results  related  to  Ramanujan’s   ternary quadratic  form  are   explored. 

 

1. INTRODUCTION:   

                                Ever  since   the  dawn  of   civilization,  integers  stimulated  the  curiosity  

of  several  mathematicians.  Algebraic  symbolism  helped  defining  negative  numbers   

based  on  the  concept  of  “ZERO”.  Also,  linear  algebraic  equation  in  one  variable  with  

integer  coefficients  enabled  the  introduction  of  rational  numbers.  Similarly,  quadratic  

equations  naturally  led  to  the  proposal  of  novel  class  of  numbers,  called  “complex  

numbers”. 

Diophantus  considered   linear  algebraic  equations  in  two  variables  that  are  

constrained  to  be  integers. The  so  called  simplest  linear  Diophantine  equation  is  of  

the form                 

                                  a x + b y  = c 

was  solved  using  the  Greatest  Common  Divisor  ( GCD  of  the  integers  { a, b } )  

algorithm.  The  book  “Arithmetica”  by  Diophantus  and  some  volumes  of  Euclid’s  

elements  contained  interesting   results  related  to  integers  and  specifically  prime  

numbers, perfect  numbers ( among  other  number-theoretic  results ).  Fermat  acquired  a 

copy  of  Arithmetica  and  contributed  several  interesting  number-theoretic  theorems 

that  survived  passage  of  time.  For  instance, Fermat  proved  that  a  prime  number  of  

the  form  { 4 l + 1,  l=1,2,… }  ( i.e.  𝑝 ≡ 1 (𝑚𝑜𝑑) 4  )  can be  expressed  uniquely  as  the  

sum  of  squares  of   two  integers. Further, a  prime  of  the  form  { 4 l + 3,  l=1,2,……..  }     ( 

i.e.  𝑝 ≡ 3 (𝑚𝑜𝑑) 4  )  can  never  be  expressed  as  the  sum  of  squares  of  two  integers.  

This  result  was  combined  with  the  following  algebraic  identity 

 

(𝑥1
2 + 𝑥2

2)(𝑦1
2 + 𝑦2

2) =   (𝑥1𝑦1 − 𝑥2𝑦2 )
2 + (𝑥1𝑦2 + 𝑥2𝑦1 )

2

= (𝑥1𝑦1 + 𝑥2𝑦2 )
2 + (𝑥1𝑦2 − 𝑥2𝑦1 )

2 

resulting  in  the  so  called  GENUS  theorem  in  algebraic  number  theory.   

The  author  in  his  research  efforts  became  interested  in  2 x 2  integer  matrices. Several  

interesting  results  were  documented  in  the  technical  report  [3].  The  results  reported  



in  this  research  paper  deal  with  number-theoretic  concepts/ideas  applied  to  2 x  2  

integer  matrices. 

This  research  paper  is  organized  as  follows.  In  Section  2,  composition  of  binary   

quadratic  forms  arising  in  the  case  of  2 x 2  symmetric  integer  matrices  are  discussed.  

In  Section 3, trinary quadratic  forms  naturally  arising  in  association  with  symmetric  2x 2  

integer  matrices  are  identified  and  interesting  results  are  derived.  In  Section  4,  

arbitrary  ternary  quadratic  form  is   expressed  as   𝑇𝑟𝑎𝑐𝑒 ( �̅�2 )  𝑓𝑜𝑟  𝑎 2 𝑥  2  𝑚𝑎𝑡𝑟𝑖𝑥 �̅�   

𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑠𝑢𝑟𝑑𝑠. In  Section  5, composition  of   binary  quadratic  

forms  naturally  arising  in  association  with  certain  structured  quadratic  forms  arising  in  

structured  2 x 2  matrices  is   discussed.  The  research   paper   concludes  in  Section  6. 

 

2. 2 x 2  Symmetric  Integer  Matrices:  Sums  of  Squares  of  Two  Integers:  Compositions: 

 

Consider  a  symmetric   2 x 2  integer  matrix  of  the  form   𝑋 = [
𝑎 𝑏
𝑏 𝑐

]   

𝑤ℎ𝑒𝑟𝑒  {  𝑎, 𝑏, 𝑐 } 𝑎𝑟𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.  It  readily  follows  that 

𝑋2 = [ 
 𝑎2 + 𝑏2 𝑏(𝑎 + 𝑐) 

𝑏(𝑎 + 𝑐) 𝑏2 + 𝑐2 
].   Thus,  we  have  

 

𝐷𝑒𝑡(𝑋2) =  ( Det(X) )2 =  (𝑎2 + 𝑏2)(𝑏2 + 𝑐2) − 𝑏2(𝑎 + 𝑐 )2. 

Using  the  fact  that  Trace ( X ) = a + c ,  we   have  that 

 

( Det(X) )2 =  (𝑎2 + 𝑏2)(𝑏2 + 𝑐2) − 𝑏2( 𝑇𝑟𝑎𝑐𝑒(𝑋)  )2. 

 

Hence, 

( Det (X) )2 + ( 𝑏 ( 𝑇𝑟𝑎𝑐𝑒(𝑋) ))2 = (𝑎2 + 𝑏2)(𝑏2 + 𝑐2). 

Using  the  standard  identity  on  product  of  sum  of  squares  of  two  integers,  we  have  

thata 

 (𝑎2 + 𝑏2)(𝑏2 + 𝑐2) = ( 𝑎𝑏 + 𝑏𝑐 )2 + ( 𝑎𝑐 − 𝑏2)2 = ( 𝑎𝑏 − 𝑏𝑐 )2 + ( 𝑎𝑐 + 𝑏2)2. 

                      Thus,  genus  theorem  from  algebraic  number  theory  readily  applies.  Let  𝑋1, 𝑋2  be   

                       two  symmetric  integer  matrices  with  elements  { 𝑎1, 𝑏1, 𝑐1 } ; { 𝑎2, 𝑏2, 𝑐2 }  

                       respectively.  Using  the  above  discussion,  we  have  that 

                                          (𝐷𝑒𝑡(𝑋1))
2 + ( 𝑏1(𝑇𝑟𝑎𝑐𝑒(𝑋1))

2 =   (𝑎1
2 + 𝑏1

2)(𝑏1
2 + 𝑐1

2) 

(𝐷𝑒𝑡(𝑋2))
2 + ( 𝑏2(𝑇𝑟𝑎𝑐𝑒(𝑋2))

2 =    (𝑎2
2 + 𝑏2

2)(𝑏2
2 + 𝑐2

2) 

                        Since  the  LHS  as  well  as  RHS  of  the  above  two  expressions  are    binary  quadratic   

                      Forms,  genus  theorem  can  be  readily  invoked.  The  binary  quadratic  form  associated   

                       with  the  symmetric  matrix, X  is  based  on  the  quantity    

                                                  ( Det (X) )2 + ( 𝑏 ( 𝑇𝑟𝑎𝑐𝑒(𝑋) ))2  =   ( 𝜇1𝜇2)
2 + 𝑏2(𝜇1 + 𝜇2)

2,  where  

𝜇1, 𝜇2   𝑎𝑟𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓   𝑋.    



3. 2 x 2  Symmetric   Integer  Matrices:  Sum  of  Squares  of   3   integers  ( Trinary  Quadratic  

Form ): Equivalence  of   Trinary  and  Binary  Quadratic  Forms: 

 

We  now  consider   another  interesting  quantity  associated  with  a  2 x  2  symmetric  

integer  matrix: 𝑋 =  [
𝑎 𝑏
𝑏 𝑐

]  .  We   readily  have  that 

𝑋2 = [ 
 𝑎2 + 𝑏2 𝑏(𝑎 + 𝑐) 

𝑏(𝑎 + 𝑐) 𝑏2 + 𝑐2 
]. 

 

                     𝑇ℎ𝑢𝑠, 𝑇𝑟𝑎𝑐𝑒(𝑋2) =   𝑎2 + 2 𝑏2 + 𝑐2 =   𝜇1
2 + 𝜇2

2 ,     where            

                   𝜇1, 𝜇2   𝑎𝑟𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓   𝑋, 𝑤ℎ𝑖𝑐ℎ  𝑎𝑟𝑒  𝑖𝑛  𝑔𝑒𝑛𝑒𝑟𝑎𝑙  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐  𝑛𝑢𝑚𝑏𝑒𝑟𝑠.  

 It   readily  follows  that   all   the  8  possible   combinations  of  components  of  𝑋 i.e. 

                  { ∓𝑎,∓𝑏,∓𝑐 }  will  all  lead  to  the  same  value  of  𝑇𝑟𝑎𝑐𝑒(𝑋2). 

 The   eigenvalues  are  “complimentary”  quadratic  surds  in  the  sense  that  if   

𝜇1 = 𝛿 + √𝜃 , then   𝜇2 = 𝛿 − √𝜃   with   𝜇1 + 𝜇2 = 𝑇𝑟𝑎𝑐𝑒  (𝑋).                  

                   Note:  We  thus  have  a  trinary  quadratic  form  in  integers   equal  to  the  binary  quadratic    

                  form  in  eigenvalues  of  symmetric  2 x  2  integer  matrix.  Since  X  is  symmetric,  its   

                  eigenvalues  are  real  numbers.  We  now  determine  the  nature  of  eigenvalues  under   

                  some  conditions  on   the   integers   a, b, c. 

                   CASE  I :  Eigenvalues   are  rational  numbers/integers: 

                                     𝜇1 + 𝜇2 =  𝑎 + 𝑐   and    𝜇1𝜇2  =   𝑎𝑐 − 𝑏2.   

                                  Also,  (𝜇1 − 𝜇2)
2 = (𝑎 − 𝑐)2 +   ( 2 𝑏 )2 = ∆2 

                   Hence, we  have  that        𝜇1,   𝜇2   =    
(𝑎+𝑐) ∓   √(𝑎−𝑐)2+   ( 2 𝑏 )2

2    
  .  Ir  readily  follows  that  the   

                   eigenvalues   depend  on { a, c }  through  { a+c, a-c }  only.   

                    Thus,  if  { (a-c), (2b), ∆ }  form  a  Pythagorean  triple, the  eigenvalues  of  X   are  rational 

                    Numbers   i.e.  𝜇1,   𝜇2   =    
(𝑎+𝑐) ∓   ∆

2    
   .   If  { (a+c),  ∆ }  are  even  integers,  then  the 

                   both  the   eigenvalues  are  integers. 

                   Note: { (a+c), (a-c)  }  are  both  even/odd  integers.  Hence,  if  { a, c }  are  both  even/odd,   

                    the  eigenvalues  will  be  integers. 

                  CASE (ii):  (𝑎 − 𝑐)2 +   ( 2 𝑏 )2 = p,  a  prime  number.   

                                     By  Fermat’s  Theorem,  𝑝 ≡ 1(𝑚𝑜𝑑) 4. 

                  For  any  given  p,  (a-c)= k   is  unique   by  Fermat’s  Theorem. 



                   In  such  case,  a+c = k + 2 c.  Thus,  𝜇1,   𝜇2   =    
(𝑘+2𝑐) ∓   √𝑝  

2    
. 

                   Hence,  in   this  case,  𝜇1,   𝜇2    are  real  algebraic  numbers. 

                   Note:  A  related  case  is  the  one,  where(𝑎 − 𝑐)2 +   ( 2 𝑏 )2 = 𝑞, an  integer  which  is  not   

                   a  perfect   square  ( even  or  odd  number ).  Even  in  this  case  the  eigenvalues  are  

                   algebraic  numbers. 

 INTERESTING   TRINARY  QUADRATIC  FORM:  

We  now  focus  on  the  following  equation  from  the  above  discussion: 

, 𝑇𝑟𝑎𝑐𝑒(𝑋2) =   𝑎2 + 2 𝑏2 + 𝑐2 =   𝜇1
2 + 𝜇2

2 

 

We  reduce  the  above  equality  of   trinary  and  binary  quadratic  forms (  with 

𝜇1,   𝜇2   being  real  algebraic  numbers  )  to  the  case  of  equality  between  two  

binary  quadratic  forms  under  some  conditions: 

 

(I) { a, c, d }  form  a  Pythagorean  triple 

  𝑇𝑟𝑎𝑐𝑒(𝑋2) =   𝑎2 + 2 𝑏2 + 𝑐2 = 𝑑2 + 2 𝑏2 = 𝜇1
2 + 𝜇2

2. 

                                 If  the  eigenvalues  { 𝜇1,   𝜇2 }   are  integers,  then  the  genus  Theorem  associated   

                      With  binary  quadratic  forms  can  be  invoked.  Also, letting  𝑋1, 𝑋2  be  two  such  2 x  2   

                      Symmetric   integer  matrices,  we  have 

𝑇𝑟(𝑋1
2) =   𝑑1

2 + 2𝑏1
2   ;    𝑇𝑟(𝑋2

2) =  𝑑2
2 + 2𝑏2

2 . 

                   We  can  readily  invoke  Brahmagupta’s  identity  for  the  composition  of  such   

                    quadratic   forms  

 Bramhagupta’s  Identity: 

                                             For  a  given  n,  the  product  of  two  numbers  of   the  form 

𝑎2 + 𝑛𝑏2  is  itself  a  number  of   that  form i.e. 

(𝑎2 + 𝑛𝑏2)(𝑐2 + 𝑛𝑑2)  =   (𝑎𝑐 − 𝑛𝑏𝑑)2 + 𝑛(𝑎𝑑 + 𝑏𝑐)2

= (𝑎𝑐 + 𝑛𝑏𝑑)2 + 𝑛(𝑎𝑑 − 𝑏𝑐)2 

                                The  identity  holds  in  any  commutative  ring. 

                       We  now  invoke  the   Brahmagupta’s  identity: 

               

𝑇𝑟(𝑋1
2)  𝑇𝑟(𝑋2

2) = ( 𝑑1
2 + 2𝑏1

2 )(𝑑2
2 + 2𝑏2

2 ) = (𝑑1𝑑2 − 2𝑏1𝑏2)
2 + 2 (𝑑1𝑏2 + 𝑑2𝑏1)

2

= (𝑑1𝑑2 + 2𝑏1𝑏2)
2 + 2 (𝑑1𝑏2 − 𝑑2𝑏1)

2 

Note:  The  other  interesting  cases  which  lead  to  composition  of  binary  quadratic  forms  are 

             𝑎2 + 2𝑏2 = 𝑒2  𝑜𝑟  𝑐2 + 2𝑏2 = 𝑓2,   𝑓𝑜𝑟  𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  { 𝑒, 𝑓 }. 

 From  linear  algebra,  we  readily  have  that 



𝑇𝑟(𝑋2𝑚) =   𝜇1
2𝑚 + 𝜇2

2𝑚   𝑓𝑜𝑟  𝑚 ≥ 1. 

                                   As  in  the  case  of  m=1,  the  above  expression  reduces  to  interesting  polynomial                            

in { a, b, c } 

 Fermat’s  Theorem  on  Sum  of  Squares   of  Two  Integers:  Pell’s  Equation: 

Connections: 

The  following   Fermat’s  theorem  is  well  known. 

Fermat’s  Theorem:  Given  a  prime,p  of  the  form,  𝑝 ≡ 1 (𝑚𝑜𝑑) 4,  it  can  be  uniquely  expressed  as  

sum  of  squares  of  two  positive  integers  i.e   𝑝 = 𝑎2 + 𝑐2  𝑓𝑜𝑟   𝑢𝑛𝑖𝑞𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  { 𝑎, 𝑐 }. 

Furthermore,  a   prime  𝑞 ≡ 3 (𝑚𝑜𝑑) 4  can  never  be  expressed  as  sum  of  squares  of  two  positive  

integers. 

The  author  observed  that  for  some  such  primes, p  i.e  𝑝 = 𝑎2 + 𝑐2,  a + c  is  also  a  prime,  q.  But 

‘q’ can be  such  that  𝑞 ≡ 1 (𝑚𝑜𝑑) 4  𝑜𝑟  𝑞 ≡ 3 (𝑚𝑜𝑑) 4.  Some  examples  are   

12 + 22 = 5   𝑤𝑖𝑡ℎ  1 + 2 = 3  ;    22 + 52 = 29   𝑤𝑖𝑡ℎ  2 + 5 = 7 ≡ 3 (𝑚𝑜𝑑) 4  

Also,  42 + 52 = 41 𝑤𝑖𝑡ℎ  4 + 5 = 9  .   It  can  be  confirmed  by  numerical  evidence. 

We  interpret  the   observation  from  the  viewpoint  of   2 x 2  symmetric  integer  matrices.  Let  𝜇1, 𝜇2  

be  the  eigenvalues  of  symmetric  2 x  2  integer  matrix, �̅�  such  that 

𝜇1 + 𝜇2 = 𝑇𝑟𝑎𝑐𝑒(�̅�) = 𝑞, 𝑎  𝑝𝑟𝑖𝑚𝑒  𝑛𝑢𝑚𝑏𝑒𝑟   𝑎𝑛𝑑 

                                           𝜇1
2 + 𝜇2

2 = 𝑇𝑟𝑎𝑐𝑒(�̅�2) = 𝑝, 𝑎     𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.   Also  let 

                                            𝜇1𝜇2 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 (�̅�) = 𝑟. 

It   readily   follows   that  𝑞2 =  𝑝 +   2  𝑟.  𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑟′ ′ 𝑖𝑠  𝑎  𝑝𝑒𝑟𝑓𝑒𝑐𝑡  𝑠𝑞𝑢𝑎𝑟𝑒  𝑜𝑓  𝑎𝑛  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖. 𝑒. 

𝑟 = 𝑏2.   𝑊𝑒  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  ℎ𝑎𝑣𝑒  𝑎  𝐷𝑖𝑜𝑝ℎ𝑎𝑛𝑡𝑖𝑛𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛   𝑞2 − 2  𝑏2 =   𝑝  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠  𝑎   

𝑃𝑒𝑙𝑙 − 𝑡𝑦𝑝𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛.  

In  view  of   the  above  discussion,  we  want  to  synthesize  a  2 x  2  symmetric  integer  matrix,   

𝑋 = [
𝑎 𝑏
𝑏 𝑐

]    𝑤𝑖𝑡ℎ  𝑎 + 𝑐 = 𝑞  𝑎𝑛𝑑  𝑎2 + 𝑐2 = 𝑝.  𝐼𝑓  �̅� 𝑖𝑠  𝑎  𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑚𝑎𝑡𝑟𝑖𝑥, 𝑡ℎ𝑒𝑛 {𝑎, 𝑐} 𝑎𝑟𝑒 

the  eigenvalues  and   Fermat’s  theorem  with  the  above  observation  applies. 

Now,  suppose �̅�  is   not  a  diagonal  matrix , but  it  is   a  singular   matrix  i.e.  𝑎 𝑐 =   𝑏2.  We  readily  

have  that               (𝑎 + 𝑐)2 = 𝑞2 =  𝑎2 + 𝑐2 + 2 𝑏2 = 𝑝 + 2 𝑏2.   Thus,  in  this  case  Pell-type  

Diophantine  equation  naturally  follows.  We  now  provide  some  examples: 

𝑋 = [
𝑎 𝑏
𝑏 𝑐

] = [
1 2
2 4

]   𝑤𝑖𝑡ℎ  𝑎 + 𝑐 = 5 ,  𝑎2 + 𝑐2 = 17  𝑎𝑛𝑑  𝑏 = 2.  𝐼𝑛  𝑡ℎ𝑒 𝑠𝑎𝑚𝑒  𝑠𝑝𝑖𝑟𝑖𝑡, 𝑤𝑒 ℎ𝑎𝑣𝑒 

[
1 6
6 36

]   𝑎𝑛𝑑  [
9 6
6 4

] .  𝐼𝑛  𝑎𝑙𝑙  𝑡ℎ𝑒  𝑡ℎ𝑟𝑒𝑒  𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 



𝑎 = (�̃�)2, 𝑐 = (�̃�)2   𝑎𝑛𝑑   𝑏 =  �̃� 𝑐.̃  𝐻𝑒𝑛𝑐𝑒 𝐿1 − 𝑛𝑜𝑟𝑚 ( �̅� ) = 𝑎 + 𝑐 + 2𝑏 = ( �̃� + �̃�)2. 

Hence,  in  these  three  examples  

𝑎 + 𝑐 = (�̃�)2 + (�̃�)2 𝑖𝑠  𝑎  𝑝𝑟𝑖𝑚𝑒  𝑎𝑛𝑑  𝑎2 + 𝑐2 = (�̃�)4 + (�̃�)4 𝑖𝑠  𝑎𝑙𝑠𝑜  𝑎  𝑝𝑟𝑖𝑚𝑒. 

The  above  examples   motivate  the  theme  of  investigating  the  nature  of   primes, p   expressible  as 

(�̃�)4 + (�̃�)4 = 𝑝. 

In  view  of  the  connection  between  Fermat’s  Theorem  and  Pell’s  equation,  we  introduce  an  

interesting  class  of  Diophantine  equations: 

Primal  Diophantine  Equation:  An  algebraic  equation  in  which  the  variables  are  constrained  to  be  

primes   is  called  a  PRIMAL DIOPHANTINE  EQUATION  i.e.  integer  solutions in a  Diophantine  

equation  are  constrained  to  be  PRIMES. 

We   now   reason  that  the  Pell-type  Diophantine  equation  that  we  derived  above  i.e. 

𝑞2 − 2  𝑠 =   𝑝 = 𝑞2 − 2  𝑎 𝑐 =   𝑝     is  never  a  PRIMAL  Diophantine  equation 

(  𝑖. 𝑒.  𝑝  𝑎𝑛𝑑  𝑞  𝑎𝑛𝑑  𝑠  𝑎𝑟𝑒  𝑎𝑙𝑙  𝑛𝑒𝑣𝑒𝑟  𝑝𝑟𝑖𝑚𝑒𝑠 )  if  the  eigenvalues  of  the  associated  symmetric   

matrix  𝑋 = [
𝑎 𝑏
𝑏 𝑐

] ,   𝑎𝑟𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.  𝑇𝑟𝑖𝑣𝑖𝑎𝑙𝑙𝑦   𝑎 = 1  𝑎𝑛𝑑   c= r,  a  prime  or  a= r  and  c=1.  Since  

a+c   is  constrained   to  be   prime,  r = 2.  It  readily  follows  that  in  such  case  

[
1 1
1 2

]  𝑜𝑟 [
2 1
1 1

]   𝑤𝑖𝑙𝑙  ℎ𝑎𝑣𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑡ℎ𝑎𝑡  𝑎𝑟𝑒  𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑒𝑛𝑡𝑎𝑟𝑦  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑠𝑢𝑟𝑑𝑠. 

Thus,  such  a  matrix  is  the  only  2 x 2  symmetric  integer  matrix  with  the  associated  Pell-type  

Diophantine  equation  being  a  PRIMAL  Diophantine  equation.   

 Now,  we  consider  representation  of  a  prime  number, p  using  the  specific  trinary  

quadratic  form  considered  above. 

𝑇𝑟𝑎𝑐𝑒(𝑋2) =   𝑎2 + 2 𝑏2 + 𝑐2 = 𝑝 = 𝜇1
2 + 𝜇2

2. 

We  provide  some examples  which  illustrate  the  fact  that  𝑝 ≡ 1(𝑚𝑜𝑑)4  𝑜𝑟   𝑝 ≡ 3 (𝑚𝑜𝑑)4.  It 

readily  follows  (  from  Fermat’s  Theorem ) that,  if   𝑇𝑟𝑎𝑐𝑒(𝑋2) = 𝑞, 𝑎  𝑝𝑟𝑖𝑚𝑒  𝑤𝑖𝑡ℎ  𝑞 ≡ 3 (𝑚𝑜𝑑) 4,  

then, {  𝜇1, 𝜇2 } 𝑎𝑟𝑒  𝑟𝑒𝑎𝑙  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐  𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ( 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑠𝑢𝑟𝑑𝑠 ) 𝑎𝑛𝑑  𝑛𝑜𝑡  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 

Example  1:  �̅� = [
1 2
2 2

].    We  have  that   𝑇𝑟𝑎𝑐𝑒(𝑋2) = 13 ≡ 1 (𝑚𝑜𝑑) 4.  𝐴𝑙𝑠𝑜   

𝑇𝑟𝑎𝑐𝑒(𝑋) = 𝜇1 + 𝜇2  = 3   𝑎𝑛𝑑  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 ( 𝑋 ) = 𝜇1𝜇2 = −2.   

𝜇1 =
3 + √17

2
, 𝜇2 = 

3 − √17

2
  

i.e.  eigenvalues   are  quadratic  surds 

    Example  2:  �̅� = [
1 3
3 2

].    We  have  that   𝑇𝑟𝑎𝑐𝑒(𝑋2) = 23 ≡ 3(𝑚𝑜𝑑) 4.  𝐴𝑙𝑠𝑜   

𝑇𝑟𝑎𝑐𝑒(𝑋) = 𝜇1 + 𝜇2  = 3   𝑎𝑛𝑑  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 ( 𝑋 ) = 𝜇1𝜇2 = −7.   



𝜇1 =
3 + √37

2
, 𝜇2 = 

3 − √37

2
  

Note:   In  both  the  examples,  the  eigenvalues  are  NOT  integers. 

 Suppose  the  2 x 2  symmetric  integer  matrix,  �̅�  is  singular ( i.e. 𝑏2 = 𝑎𝑐).  In   this  

case, we  have  that  Det(�̅�)  =   𝜇1𝜇2 0.               𝐹𝑢𝑟𝑡ℎ𝑒𝑟𝑚𝑜𝑟𝑒,             

 𝑇𝑟𝑎𝑐𝑒(𝑋2) =   𝑎2 + 2 𝑏2 + 𝑐2 = 𝜇2. 

𝑁𝑜𝑡𝑒:  We  can  call  such 4  integers  { a,b,c, 𝜇 |  as  Pythagorean  Quadruples.   

Note:  If  𝑇𝑟𝑎𝑐𝑒( �̅�2 ) = 𝑝, 𝑎  𝑝𝑟𝑖𝑚𝑒  𝑛𝑢𝑚𝑏𝑒𝑟,  then �̅�  cannot  be  singular. 

In  the  above  two   examples,  we  realized  that  if  𝑇𝑟𝑎𝑐𝑒( �̅�2 ) is  a  prime, p ,  it  can  be  such  that   

𝑝 ≡ 1 ( 𝑚𝑜𝑑  ) 4  𝑜𝑟  𝑝 ≡ 3 (𝑚𝑜𝑑) 4, 𝑤ℎ𝑒𝑛  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑎𝑟𝑒  𝑟𝑒𝑎𝑙  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐  

numbers.  The  following  Lemma  is  in  the  spirit  of  Fermat’s  theorem  which  states  that  if 

𝐽2 + 𝐾2 =   𝑞, 

then 𝑞 ≡ 1( 𝑚𝑜𝑑 ) 4   and  given  ‘q’;   { J, K }   are  unique. 

Lemma :    Given  �̅�  is  a  2 x 2  symmetric   integer  matrix with  given  trace value  and 

  𝑇𝑟𝑎𝑐𝑒(𝑋2) =   𝑎2 + 2 𝑏2 + 𝑐2 =  𝜇1
2 + 𝜇2  

2 = 𝑔, 𝑤𝑖𝑡ℎ  𝑔  𝑏𝑒𝑖𝑛𝑔  𝑎  𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑  𝜇1, 𝜇2  being  the  

eigenvalues  of  �̅�  that   are    “complimentary”  quadratic  surds  ( but  not  integers ),  {  𝜇1, 𝜇2  }  are  

unique. 

Proof:   The  Lemma   follows   from   the  fact   that  𝑇𝑟𝑎𝑐𝑒(�̅�)  and 𝑇𝑟𝑎𝑐𝑒(𝑋2)   uniquely  determine  

the  pair  of   eigenvalues  {  𝜇1, 𝜇2  }  . Q. E.D. 

Note:  The  2 x  2  matrices  [
𝑎 𝑏
𝑏 𝑐

]  and   [
𝑐 𝑏
𝑏 𝑎

]   have  the  same  set  of  eigenvalues.  Hence,  given  

prime  g,  the  associated  2 x  2   matrix   is  not  unique.  In  fact,   based  on  the  sign,  there  are  8 

associated  2 x 2  symmetric  matrices  ( i.e.with   ±𝑎,±𝑏,±𝑐   )  which  lead  to  the  same  value  of  g, 

a prime  number.  It  is   possible,  to  determine  the   conditions  under  which  two  2 x 2  symmetri 

integer  matrices  have  the  same  value  of  𝑇𝑟𝑎𝑐𝑒( �̅�2 ). 

The  following  Theorem  deals  with  {  𝑇𝑟𝑎𝑐𝑒( �̅�𝑠 )  𝑓𝑜𝑟  𝑠 ≥ 2  }. 

THEOREM:  Let  �̅� = [
𝑎 𝑏
𝑏 𝑐

]  be  a    2 x  2  symmetric  integer  non-singular,  non-diagonal matrix  ( i.e. 

𝑏2 ≠ 𝑎𝑐   𝑎𝑛𝑑  𝑏 ≠ 0  )   and  let  { a, c }  are  both  even  or  both are  odd.  Also,  let  { (a-c), 2 b, K }  

form a  Pythagorean  triple  i.e.  (𝑎 − 𝑐)2 +   ( 2 𝑏 )2=𝑘2. Let  𝑇𝑟𝑎𝑐𝑒( �̅�𝑠 )  =

  𝑓𝑠( 𝑎, 𝑏, 𝑐 ) 𝑏𝑒  𝑎  𝑡𝑟𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑖𝑛  { 𝑎, 𝑏, 𝑐 } . 

Under  these  conditions,  

(i) we  have  that  𝑇𝑟𝑎𝑐𝑒( �̅�𝑠 ) ≠ 𝜇𝑠  𝑓𝑜𝑟  𝑎𝑛𝑦  𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑠 ≥ 2. 

(ii) Also,  𝐷𝑒𝑡 ( �̅�𝑠 ) = 𝛽𝑠  =   ( 𝐷𝑒𝑡(𝑋 ̅)𝑠 =  ( 𝑎𝑐 − 𝑏2)  for  all  s. 



(iii) If  �̅�  is  singular, then 𝑇𝑟𝑎𝑐𝑒( �̅�𝑠 ) =  𝛿𝑠 𝑓𝑜𝑟  𝑎𝑙𝑙  𝑠  

( 𝑤ℎ𝑒𝑟𝑒  𝛿  𝑖𝑠 𝑡ℎ𝑒  𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑜𝑓  𝑋.̅ 

PROOF:   From  the  conditions  in the  statement of  theorem (  based  on  earlier  discussion)  that   the  

eigenvalues  of  �̅�  𝑎𝑟𝑒   𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  𝑎𝑛𝑑   𝑇𝑟𝑎𝑐𝑒(�̅�𝑠) =   𝜇1
𝑠 + 𝜇2  

𝑠  𝑓𝑜𝑟  𝑎𝑙𝑙   𝑠 ≥ 1.   

From  Fermat’s  Last  Number  Theorem,  we   have  that   

𝑇𝑟𝑎𝑐𝑒( �̅�𝑠 ) ≠ 𝜇𝑠   𝑓𝑜𝑟  𝑎𝑛𝑦  𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑠 ≥ 3. 

Now,  let  us   consider  the  case  of   s=2.   It  readily  follows  that  ( for  �̅�  non-singular ) 

𝜇1
2 + 𝜇2  

2 =   
(𝑎 + 𝑐)2 + 𝑘2

2
 . 

The   RHS  in  the  above  equation  cannot  be  an  even  or  odd   integer  (  based  on  properties  of   

even/odd   integers ).  Thus,  the  result  in  (i)  follows.                        

The   claims  in  (ii), (iii)  follow  from  basic  linear  algebra  results                Q. E. D. 

Note:  From  the  above  Lemma  it  follows   that  on  the  manifold/hypersurface  𝑓𝑝(𝑎, 𝑏, 𝑐) − 𝜇𝑝,  

there  are   no  integral/rational  points  (  i.e.  a,b,c,𝜇’s  )   for  𝑝 ≥ 2.  But   for  p=1,  there  are  infinitely  

many  rational/integral  points  on  the  associated  plane ( a+c-𝜇 ) 

Note:      𝑓2( 𝑎, 𝑏, 𝑐 )  =  𝑎2 + 2 𝑏2 + 𝑐2,   𝑓3( 𝑎, 𝑏, 𝑐 ) =   𝑎3 +  3 𝑎 𝑏2 + 3𝑏2𝑐 + 𝑐3   and 

𝑓4(𝑎, 𝑏, 𝑐) =   ( 𝑎2 + 𝑏2)2 + 2 ( 𝑏 (𝑎 + 𝑐) )2 + ( 𝑐2 + 𝑏2)2   i.e. 𝑓4(𝑎, 𝑏, 𝑐)  is  of   the  same  form  as 

𝑓2(𝑎, 𝑏, 𝑐)  𝑖. 𝑒.  𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝑠𝑢𝑚 𝑜𝑓  𝑡ℎ𝑟𝑒𝑒  𝑠𝑞𝑢𝑎𝑟𝑒𝑠  𝑜𝑓  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.  Further,  It  can  be  readily  

reasoned  that   𝑓𝑚(𝑎, 𝑏, 𝑐)  𝑖𝑠  𝑎  𝑠𝑢𝑚  𝑜𝑓  𝑠𝑞𝑢𝑎𝑟𝑒𝑠  𝑜𝑓  3  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  𝑓𝑜𝑟    𝑎𝑛𝑦  𝑒𝑣𝑒𝑛 𝑚′ . 

Note:  By the  conditions in  the  above  theorem,  we  have  that  the  associated  4-manifolds  

𝑓𝑚(𝑎, 𝑏, 𝑐) − 𝜇𝑚  have  no  rational/integral   points  on  them  for  𝑚 ≥ 2.   

Note:  In  the  spirit  of  known  theme  in  number  theory,  we  are  interested  in  2 x  2  symmetric  

integer  matrices  for  which  𝑓2( 𝑎, 𝑏, 𝑐 )  =  𝑎2 + 2 𝑏2 + 𝑐2  is  a  prime  number.  Also,  we  are  

interested  in  the  case  where   :      𝑓𝑚( 𝑎, 𝑏, 𝑐 )  =  𝛼2 + 2 𝛽2 + 𝛾2  𝑖𝑠  𝑎  𝑝𝑟𝑖𝑚𝑒  𝑛𝑢𝑚𝑏𝑒𝑟   

 ( 𝑤𝑖𝑡ℎ 𝑚′ ′ 𝑏𝑒𝑖𝑛𝑔  𝑎𝑛  𝑒𝑣𝑒𝑛  𝑛𝑢𝑚𝑏𝑒𝑟 ).  Thus  the  functional  form  of  𝑇𝑟𝑎𝑐𝑒(�̅�2𝑚 )  for  m, an  

integer   is  the  above  sum  of  squares  of   three  integers. 

 Suppose  the  conditions  of  the  above  Theorem  are  violated  i.e.  the  eigenvalue  

are  not  integers  but  are  “complimentary  quadratic  surds”.  Then,  we  provide   an  

example  where  𝜇1
𝑝

+ 𝜇2
𝑝

= 𝜇𝑝  𝑐𝑎𝑛  ℎ𝑎𝑝𝑝𝑒𝑛  𝑓𝑜𝑟  𝑝 = 2. 

Example:  �̅� = [
3 10
10 4

] .  𝑇ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓  �̅�  𝑎𝑟𝑒  𝜇1 =
7+√401

2
, 𝜇2 = 

7−√401 

2
   

𝑤ℎ𝑖𝑐ℎ  𝑎𝑟𝑒  𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑒𝑛𝑡𝑎𝑟𝑦  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  𝑠𝑢𝑟𝑑𝑠.  It  follows  that   𝜇1
2 + 𝜇2

2 = 152.   

𝑇ℎ𝑢𝑠   𝑓2( 𝑎, 𝑏, 𝑐 )  =  𝑎2 + 2 𝑏2 + 𝑐2 = 𝑓2( 𝑎, 𝑏, 𝑐 )  =  32 + 2 (102) + 42. 

𝐵𝑢𝑡    𝑓3( 𝑎, 𝑏, 𝑐 ) = 2191   which  is  not  the  perfect  cube  of  any  integer.    We are led  to  the  

following   conjecture  in  the  spirit  of   Fermat’s  Last  Number  Theorem  based  on  quadratic  surds. 



CONJECTURE:  Given  that  𝜇1, 𝜇2  are  “complimentary”  quadratic  surds   which  are  the  eigenvalues  

of  a  non-singular,  2 x  2  symmetric  integer  matrix.   For  any 𝑝 ≥ 3, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

  𝜇1
𝑝

+ 𝜇2
𝑝

≠ 𝜇𝑝  𝑓𝑜𝑟  𝑎𝑛   𝑖𝑛𝑡𝑒𝑔𝑒𝑟   𝜇. 

We  provide  the  following  facts  related  to  the  above  conjecture. Let  the  eigenvalues  of  �̅�  be 

the  “complimentary”  quadratic  surds   i.e.  𝜇1 =
𝛿+√𝛾

2
, 𝜇2 = 

𝛿−√𝛾 

2
.  It   readily  follows  that  

 𝜇1
𝑝

+ 𝜇2
𝑝

= ( 
𝛿+√𝛾

2
 )𝑝+ + ( 

𝛿−√𝛾

2
 )𝑝  =  𝜇𝑝 =  

1

2𝑝 [
∑ (

𝑝
𝑗)

𝑝
𝑗 𝛿𝑝−𝑗 √𝛾

𝑗
 

𝑗 = 0  𝑎𝑛𝑑 𝑗 𝑒𝑣𝑒𝑛
] =   𝜇𝑝  𝑓𝑜𝑟  𝑝 ≥ 2. 

In  the  case of  p = 3, p=4  we  are  led  to  the  following  Diophantine  equations in  𝛿, 𝛾. 

p = 3……………𝛿3 − 4𝜇3 + 3 𝛿 𝛾 = 0. 

p = 4……………𝛿4 + 6 𝛿2𝛾 + 𝛾2 − 8𝜇4 𝛾 = 0. 

The  conjecture  boils  down  to  proving  that  the  above  Diophantine  equations  have no  solutions  

when  the  2 x 2  symmetric integer  matrix   is  non-singular.  

4-Manifolds:  Reduction  to  Lower  Dimensional  Surface:  Parametrization  using  Eigenvalues: 

Let  𝐾𝑝(𝜇1, 𝜇2) = 𝜇1
𝑝

+ 𝜇2
𝑝
.  We  readily  have  that  𝐾𝑝(𝜇1, 𝜇2) − 𝜃𝑝 = 𝑓𝑝(𝑎, 𝑏, 𝑐) − 𝜃𝑝.  Thus,  using  the   

eigenvalues  of  �̅�  as  the  variables  ( parametrization ),  a  4-manifold/hyper surface  is  reduced  to  a  

lower  dimensional  surface 

Note:   We   generalize  the  essential  idea  of   above  Theorem  to  arbitrary  finite  dimensional  

symmetric   square   integer  matrices.  Let   B  be  a  symmetric   N x  N  dimensional  integer  matrix.  Let  

the  real   eigenvalues  of  such  a  matrix  be  𝜇𝑖   𝑓𝑜𝑟  𝑖 = 1  𝑡𝑜  𝑁.  It  readily  follows   that  

                       𝑇𝑟(�̅�𝑝) =   ∑ 𝜇𝑖
𝑝𝑁

𝑖=1 .  Also  𝑇𝑟(�̅�𝑝)  is   a  function  of   𝑀 = 
𝑁(𝑁+1)

2
  variables.  Let 

ℎ𝑝(𝑎1, 𝑎2, … . , 𝑎𝑀) =  𝜇𝑝  is  a   manifold/hypersurface  in  the  variables  𝑎1, 𝑎2, … . , 𝑎𝑀 . 

 Hence,  based  on  the  known  results  in  number  theory,  the  number  of   rational/integral  points  on  

such  a    manifolds/hypersurface  can  be  studied.  It  also  readily  follows  that   

                                                                 ℎ𝑝(𝑎1, 𝑎2, … . , 𝑎𝑀) =  ∑ 𝜇𝑖
𝑝𝑁

𝑖=1 =  𝜇𝑝,  

leads  to  an  associated   manifold  in  the  variables   𝜇𝑖   𝑓𝑜𝑟  𝑖 = 1  𝑡𝑜  𝑁.  We   expect  interesting  

connections   between  number  theory,  group  theory  and   topology  of   manifolds. 

Note:  As  specified  in  the  case  of  2 x  2  matrices,  using  eigenvalues  of  �̅�  as  the  variables  ( by  

parametrization ),  an  M+1  dimensional  hypersurface/manifold  is  reduced  to  an  N+1  ( lower  

dimensional )  dimensional  hypersurface. 

Note: As  stated   earlier,  it  can  readily  be  reasoned  that ( in  the  case  of  2 x 2  symmetric  integer  

matrices )   𝑓𝑝(𝑎, 𝑏, 𝑐) 𝑖𝑠  𝑎𝑙𝑤𝑎𝑦𝑠  𝑎  𝑠𝑢𝑚  𝑜𝑓  𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓  𝑡ℎ𝑟𝑒𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  𝑖𝑓 𝑝′ ′ 𝑖𝑠  𝑎𝑛  

 𝑒𝑣𝑒𝑛  𝑛𝑢𝑚𝑏𝑒𝑟. 𝑇ℎ𝑖𝑠  𝑓𝑎𝑐𝑡  𝑤𝑖𝑙𝑙  𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑒𝑛𝑡  𝑡ℎ𝑒  𝑐𝑙𝑎𝑖𝑚𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑎𝑏𝑜𝑣𝑒  𝑇ℎ𝑜𝑒𝑟𝑒𝑚.                                                                                                                              



In   view  of   the  above  results,  we   formulate  an  interesting  generalization  of  Waring  problem. 

GENERALIZED  WARING   PROBLEM:  

 In  the  simplest  case,  determine  the  number  of  ways  in  which  an  integer, f  (  

from  natural  numbers )  can  be  expressed  as  sum  of  squares  of   two  real  

quadratic  algebraic  numbers,  𝜇1, 𝜇2  (  quadratic  surds )    i.e 

 

𝜇1
2 + 𝜇2

2 = 𝑓 .  

More   generally,  we   are   interested  in  number of  representations  of  the  following  form:, 

𝜇1
2 + 𝜇2

2 + ⋯ .+ 𝜇𝑀
2 = 𝑓 .  

𝑤𝑖𝑡ℎ  𝜇𝑖
′s  being   quadratic  algebraic  numbers.  

In   the   spirit  of   above  generalization,  we   can  consider  weighted  sum  of  squares.  Most  

generally, we   consider  number  of  representations  of   an   integer  as  a  general  multi-variate  

polynomial  ( could  be  homogeneous  )  in  quadratic  algebraic  numbers.  Generalizations  in  the  spirit  

of  Hilbert’s  10th  problem  are   possible   (  with  the  variables  being  quadratic  surds  instead  of  

integers   from  the  natural   numbers ). 

4. Quadratic  Surd  Element  based  2 x 2  Symmetric  Matrices:  Ternary  Quadratic  Forms: 

Ramanujan’s  Ternary  Quadratic  Form: 

We  now  reason  that  a  most  general  arbitrary  ternary  quadratic  form  can  be  e+ xpressed in the  

form 𝑇𝑟𝑎𝑐𝑒 ( �̅�2 ), 𝑤ℎ𝑒𝑟𝑒  𝑋  𝑖𝑠  𝑎  2 𝑥 2   𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑚𝑎𝑡𝑟𝑖𝑥  𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐   

𝑠𝑢𝑟𝑑𝑠.   

Consider  a  2 x  2  symmetric  integer  matrices  of   the   form: 

�̅� =

[
 
 
 √𝛼 𝑎 √

𝛽

2
𝑏

√
𝛽

2
𝑏 √𝛾𝑐

]
 
 
 

   and  �̅� =

[
 
 
 √𝛼 𝑎 √

𝛾

2
 𝑐

√
𝛾

2
 𝑐 √𝛽 𝑏

]
 
 
 

 .    It  readily  follows   that   

𝑇𝑟𝑎𝑐𝑒 ( �̅�2 ) =   𝛼 𝑎2 +  𝛽 𝑏2 + 𝛾 𝑐2. 

Thus,  all  the  results  of  section 3,  can  easily  be  generalized  to  this  most  general  ternary  quadratic  

form. For  instance,  the  conditions  for  the  eigenvalues  to  be   integers  can   be  readily  derived. 

Details  are   avoided  for  brevity. In  view  of  the  results  of  section  3  and  the  above  expression  for  

an  arbitrary  ternary  quadratic  form,  the  themes  investigated  in   number theory ( such  as   

expression  of  an  integer  by  ternary  quadratic  form )  can  be  addressed  based  on  the  associated  

linear  algebraic  results. 

Ramanujan’s  ternary  quadratic  form  is  of  the  following  form 

𝑎2 + 10 𝑐2 + 𝑏2 

It   can  be  readily  expressed  as  𝑇𝑟𝑎𝑐𝑒 ( �̅�2 )  of  the  following  matrices  i.e.�̅�′𝑠 



�̅� = [ 𝑎 √5 𝑐

√5 𝑐 𝑏
]    𝑎𝑛𝑑    �̅� =

[
 
 
 
 𝑎

𝑏

√2
𝑏

√2
√10𝑐

]
 
 
 
 

 

From   the  above  2 x  2  symmetric  matrices  (  not  integer  matrices ),  the  condition  for  their  

determinant  to  be  zero  can  be  readily  derived. The   results  based  on  the  Theorem  in  section  3,  

are  readily  generalizable  to  the  above  2  x 2  matrices.  Specifically,  the  condition  for    

𝑇𝑟𝑎𝑐𝑒 ( �̅�2 ) ≠ 𝛿2  𝑓𝑜𝑟  𝑎𝑛𝑦  𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝛿  𝑖𝑠  𝑟𝑒𝑎𝑑𝑖𝑙𝑦  𝑑𝑒𝑟𝑖𝑣𝑒𝑑.   Further,  expression  for the  

eigenvalues  of   the above  2 x  2  matrices   can  be  readily   derived  in  terms  of  the  elements  of  the  

matrices. Detailed  expressions  are   avoided   for  brevity. 

5.  Structured  2 x 2   Integer  Matrices:  Composition  of  Binary  Quadratic  Forms: 

                                                We  now  consider  structured  2 x 2  integer  matrices.  First   we  consider  a  

2 x 2  integer  matrix, X  of  the  following  form: 

�̅� = [
𝑎 −𝛼 𝑏
𝑏 𝑎

]  , 𝑤ℎ𝑒𝑟𝑒  𝛼  𝑖𝑠  𝑎𝑛  𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

Such  class  of  matrices  reduce  to  the  2 x  2  matrices  representing  complex  numbers  when 𝛼 = 1. 

It  readily  follows   that  the  determinant of  such  a  structured  matrix  is  an  interesting  binary  

quadratic  form: 

                                                            𝐷𝑒𝑡(�̅�) =    𝑎 + 𝛼 𝑏2. 

Given   two  such  integer  matrices  { �̅�1, �̅�2  } , it  readily  follows  that 

𝐷𝑒𝑡( �̅�1�̅�2) = 𝐷𝑒𝑡(�̅�1) 𝐷𝑒𝑡(�̅�2 ). 

Thus,  the  RHS  in  the  above  equation  can  be  expressed  as  the  interesting  binary  quadratic  form  

using  the  Bramhagupta’s  identity.   Details  are  avoided  for   brevity. 

Now,  we  consider  a  structured   2 x 2  integer  matrix  of   the   following  form: 

�̅� = [
𝑎  𝑏
𝑏 −𝑎

] .  It   readily  follows   that  �̅�2 =  [𝑎
2 + 𝑏2 0

0 𝑎2 + 𝑏2]  =   (𝑎2 + 𝑏2) 𝐼 . 

It   readily  follows  that  compositions  of   binary  quadratic  forms  can  be  readily  invoked  in  

association  with  two  diagonal  matrices �̅�2, �̅�2  (  associated  with  structured  matrices  �̅�, �̅� ). 

Infact   several  number- theoretic  results  (  such  as  MATRIX  PYTHAGOREAN  THEOREM,  MATRIX  

GENUS  THEOREM )  can  be  readily  invoked  in  association  with  such  structured  2 x 2  integer  

matrices.  

5. CONCLUSIONS:   

                                 In  this  research  paper,  several  interesting  results  related  to  composition  of  

binary  quadratic  forms arising  in  connection  with  2 x 2  integer  matrices  are  explored.  It is  

expected  that  these  results  have  interesting  implications  to  algebraic  number  theory  based  on  

quadratic  surds. Theorem  in  Section  3  could  also  lead  to  new  insights  into  topology  of  manifolds. 
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