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Abstract—We present the precision predictions for neutral 
gauge boson pair production in the standard model (SM) at 

the future e+e− colliders including the electron hybrid chain 

electroweak correction. The differential cross section of e+e− →
ZZ, γγ by the renormalized electron hybrid chain propagator 

(RHCP) is calculated analytically. Besides, the differential cross 

section between cases of the RHCP and Born level are compared.
The numerical results show that, the relative correction of RHCP 

with respect to tree level for e+e− → ZZ are located in a 

rannge mainly from 2.52% to 3.41% in the range of the center-
of-mass energy from 184GeV to 300GeV, and the radiative 

corrections increases with the increase of incident electron energy 

for e+e− → γγ in the incident energy from 1GeV to 200GeV.

Cross section; Relative correction.

NTRODUCTION

The Standard Model of electroweak interactions is the most
influential phenomenological theory in particle physics. It has
made great success in describing the weak and electromagnetic
interactions, and the new physics predicted by SM have been
confirmed in many experiments, especially the Higgs particle
was founded in July 2012 by both the ATLAS and the CMS
collaborations at LHC[1][2]. Since the standard model has
been proposed by Weinberg and Salam, it has aroused a
serious of related theoretical studiesłand the works involving
the “precision” test of SM the theoretical earned special
academic concern all along[3][4][5][6]. These theoretical s-
tudies have proposed the development of SM. Moreover, using
perturbative quantum field theory to do calculation is the most
important works when we do theoretical calculations.

Theoretical predictions should have an accuracy compared
to or even better than the experimental errors. So we are
forced to take into account high order corrections if we
want to do accurate calculations. Usually some intricate
intermediate states and divergent troubles[7][8][9] will be
mentioned. Therefore, it is necessary to employ the renor-
malization techniques (e.g. often used Feynman integrals[10]
and other realizations[11][12][13][14]) to eliminate the un-
physical divergent quantity whilst to retain the renormal-
ized physical finite quantity. However, these high-order ra-
diative corrections would still be small even if they can be
given by various renormalization schemes. Notwithstanding,
their subtle contributions actually present the significance
for in-depth exploring the physical questions with advanced
precision[15][16][17][18][19]. The contribution of renormal-

ized finite quantity (radiation correction) is very smallbut this
small contribution is very important to the deep study of
related physical problems[20][21][22][23]. If we can acquire
the exact result of this tiny correction effectively, this is
obviously can reflect radiation correction of physical matter
more accurately. Furthermore, the exact results are also helpful
to the study and discussion of physical problems in depth.
Although these high-order calculations are normally quite
difficult and much less applied, still, in some situations, we
can also use certain feasible methods to deal with the high-
order, and even infinite high-order corrections. For example,
the infinite order chain propagator (its structure covers the
one loop diagrams, two loops diagrams ..., until infinite order
diagrams in the manner of chains) proposed by Dyson[24][25]
and later in detail addressed by Lurie[26] and others, could
supply an effective way to contribute finite results of the
corrections.

In this paper, we study the hybrid chain corrections for ZZ
and γγ pair production in the SM at future e+e− colliders,
such as The Circular Electron-Positron Collider (CEPC) and
International Linear Collider (ILC). We calculate the differen-
tial cross section of e+e− → ZZ, γγ by RHCP analytically.
The information about radiative corrections can be obtained
by comparing this chain differential cross section with the
Born level, and the numerical results show that the relative
corrections mainly in a scope from 2.52% to 3.41% for
e+e− → ZZ and 0.14% to 3.14% for e+e− → γγ in typical
parameter range. These outcomes may not only indicate that
the theoretical analysis and the calculations are valid, but also
support that the considering of hybrid chain propagators and
corresponding radiative corrections would be valuable.

The rest of the paper is organized as follows. Section II gives
the results of differential cross sections of e+e− → ZZ, γγ
by huybrid chain propagators. In Section III, the numerical
results of the relative corrections of renormalized hybrid chain
propagators with respect to tree level are carried out. Finally,
we conclude the work in Section IV.

II. HIGH ORDER CORRECTIONS OF e+e− → ZZ, γγ
DIFFERENTIAL CROSS SECTION BY RHCP

The Feynman diagrams of e+e− → ZZ, γγ at tree level and
hybrid chain propagator corrections level are shown in Fig 1.

We discuss the process in the center-of-mass system.
The explicit expressions for the four-momenta are p1,2 =



Fig. 1. The Feynman diagrams of e+e− → ZZ, γγ : (a) tree level; (b)
hybrid chain level.
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In line with the quantum field theory[27], the differential
cross section and scattering amplitude of the scattering process
e+e− → ZZ obey the relationship
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Where, s is the center-of-mass energy, θ is the scattering

angle; 1
4

∑
spin

|M |2 is the squared amplitude, averaged and

summed over spins.
For the scattering process e+e− → ZZ, the tree level and

hybrid chain level scattering amplitude is given by Eq.(3) and
Eq.(4), respectively.
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Where, sc = 1
4sWcW

(1 − 4s2W − γ5), SF (p) = 1
p2−m2

e
(iγ ·

p+me) is the electron tree propagators, S(HC)
F (p1 − k1) and

S
(HC)
F (p1 − k2) are the hybrid chain propagators of electron.

The electron chain propagator also can be expressed as after
introducing four corrective parameters[28]
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Compared to the electron tree propagator SF (p) = ip̂
p2−m2

e
+

me

p2−m2
e

, the ξi=1,2,3,4(p) in formula (7) can be interpreted as
corrective parameters. Table I and Table II give the corrective
parameters ξ1(p), ξ2(p), ξ3(p), ξ4(p) for p2.

TABLE I
CORRECTIVE PARAMETERS ξ1(p), ξ2(p) FOR p2

p2(GeV2) ξ1(p) ξ2(p)
−10002 0.9890− 0.0100i 0.9417− 0.0033i
−1002 0.9924− 0.0101i 0.9531− 0.0032i
−102 0.9952− 0.0102i 0.9636− 0.0030i
−1 0.9978− 0.0102i 0.9741− 0.0029i
1 0.9979− 0.0070i 0.9740− 0.0019i
102 0.9952− 0.0069i 0.9635− 0.0018i
1002 0.9929− 0.0071i 0.9534− 0.0016i
10002 0.9890− 0.0100i 0.9417− 0.0005i

It can be seen from table I that the relative correction of
ξ1(p) and ξ2(p) is not more than 5%, which is accord with
the magnitude of electroweak correction. It also can be seen
from table II that ξ3(p) and ξ4(p) are very small, which means
that although there are two extra terms (ξ3(p) and ξ4(p)) in
electron chain propagator compared to the tree propagator,
their contributions are very small.

TABLE II
CORRECTIVE PARAMETERS ξ3(p), ξ4(p) FOR p2

p2(GeV2) 102 × ξ3(p) 105 × ξ4(p)
−10002 −1.1541+0.4278i 1.8786− 0.4996i
−1002 −1.3518+0.4347i 1.3659− 0.4911i
−102 −1.3821+0.4377i 0.9449− 0.4822i
−1 −1.3897+0.4401i 0.5307− 0.4729i
1 −1.3978+0.5756i 0.5415− 0.2352i
102 −1.3908+0.5721i 0.9555− 0.2399i
1002 −1.4389+0.8304i 1.3403− 0.2501i
10002 −1.1651+0.2606i 1.8776− 0.3968i

After a serious calculation, we have
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We can directly acquire the tree level result by setting ξ1 =
ξ2 = 1 and ξ3 = ξ4 = 0. The analytical result of tree level
can be written as

dσ0
ZZ

d cos θ
=
πα2

2s

1+6c2V + c4V
32s4Wc

4
W

√
1−

4m2
Z

s

(
tu−m2

Zs

t2

+
tu−m2

Zs

u2
+

2m2
Zs+t

2+u2 − s2

tu

) (12)

For the scattering process e+e− → γγ, the tree level and
hybrid chain level scattering amplitude is given by

iM0 = ν̄(p2)ieγµε∗µ(k2)SF (p1 − k1)ieγνε∗ν(k1)u(p1)

+ν̄(p2)ieγνε∗ν(k1)SF (p1 − k2)ieγµε∗µ(k2)u(p1)
(13)
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(14)

Similar to e+e− → ZZ , the differential cross section for
the tree level is given by
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The differential cross section also can be written as Eq.(14)
if we ignore the mass of electron.
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Similarly , the differential cross section for the hybrid chain
level is given by
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We have also neglected the electron mass whenever possible
during the process, so in this case the Mandelstam variables
u = −s(1 + cos θ)/2, and t = −s(1− cos θ)/2. The analyti-
cal result of tree level can also be directly acquired by setting
ξ1 = 1 and ξ3 = 0.

III. RADIATIVE CORRECTIONS CONTRIBUTED BY THE
HIGH-ORDER HYBRID CHAIN PROPAGATORS

Table III and Table IV give the radiative corrections caused
by infinite order RHCPs in the process of e+e− → ZZ and
e+e− → γγ, against the scattering angle and the center of
energy Ecm(GeV) in typical ranges. The value of radiative
correction here is defined as

∣∣∣dσ(HC)

dcosθ −
dσ0

dcosθ

∣∣∣/ dσ0

dcosθ . We can
find noticeable radiative corrections in Table III, and their
values are mainly less than 0.035 (mostly around 2.52% to
3.41%) in a typical range of the incident energy from 184GeV
to 300GeV. It can be also found that the radiative corrections

increases with the increase of incident electron energy for
e+e− → γγ in Table IV. Intuitive representations of the
relationships between the differential cross section and the
scattering angle , with comparisons between cases of the
RHCP and the tree-level propagator, are revealed in Fig.2
and Fig.3, given different values of the incident energy or
scattering angle, and these distinctions shown no doubt reflect
differences between the differential cross sections with RHCPs
and the differential cross sections with only tree propagators.
All these results play some supporting roles to argue that the
considering of the RHCPs would be valuable, and the obtained
high-order radiative corrections are effective for providing
further enhanced precision.

TABLE III
THE RADIATIVE CORRECTIONS CAUSED BY INFINITE ORDER RHCPS IN

THE PROCESS OF e+e− → ZZ, AGAINST THE SCATTERING ANGLE θ AND
THE CENTER OF ENERGY ECM (GeV) IN TYPICAL RANGES

Ecm/θ 0.1π
0.9π

0.2π
0.8π

0.3π
0.7π

0.4π
0.6π

0.5π

184GeV 2.81% 2.82% 2.83% 2.83% 2.84%
190GeV 2.75% 2.79% 2.83% 2.86% 2.86%
200GeV 2.67% 2.76% 2.86% 2.91% 2.94%
220GeV 2.58% 2.77% 2.92% 3.01% 3.03%
240GeV 2.53% 2.80% 3.00% 3.09% 3.11%
250GeV 2.52% 2.82% 3.04% 3.13% 3.41%
300GeV 2.68% 2.99% 3.21% 3.30% 3.29%

TABLE IV
THE RADIATIVE CORRECTIONS CAUSED BY INFINITE ORDER RHCPS IN

THE PROCESS OF e+e− → γγ , AGAINST THE SCATTERING ANGLE θ AND
THE CENTER OF ENERGY ECM (GeV) IN TYPICAL RANGES

Ecm/θ 0.1π
0.9π

0.2π
0.8π

0.3π
0.7π

0.4π
0.6π

0.5π

1GeV 0.14% 0.18% 0.37% 0.51% 0.56%
10GeV 0.92% 1.23% 1.39% 1.54% 1.62%
50GeV 1.69% 2.15% 2.41% 2.59% 2.67%
100GeV 2.15% 2.59% 2.85% 3.03% 3.10%
200GeV 2.53% 2.81% 3.03% 3.12% 3.14%

IV. CONCLUSIONS

In this paper, we analyzed and discussed the construction of
electron propagator and its renormalization in detail via SM,
and obtained the analytical result of it. The renormalization
model of this paper, not only taking into the part infinite high
order situation of perturbation theory, but the renormalized
constants of counter terms into physical parameter reasonably.
By employing the RHCP, through lengthy calculations such as
using the trace technology, the unpolarized differential cross
section of e+e− → ZZ, γγ is worked out. Via comparisons
of unpolarized differential cross sections between cases of the
RHCP and the tree propagator, clear radiative corrections are
presented.

The results acquired in this paper would argue the following
key points: (i) The infinite high-order calculations rather than
the low order treatments can be applied for e+e− → ZZ, γγ
under some particular situation; (ii) The effect of infinite order
radiative correction can be analytically expressed in a finite
and strict manner by use of relevant series summation; (iii) The
radiative corrections obtained here are obvious and located in



Fig. 2. Comparison of unpolarized differential cross section of e+e− → ZZ,
between cases of the infinite order RHCP and the tree propagator, given typical
scattering angles θ.

a range mainly from 2.52% to 3.41% for e+e− → ZZ in a
typical range of the incident energy from 184GeV to 300GeV;
(iv) The radiative corrections increases with the increase of
incident electron energy for e+e− → γγ in the incident

Fig. 3. Comparison of unpolarized DCSs of e+e− → ZZ, between cases
of the infinite order RHCP and the tree propagator, given typical values of
the centre-of-mass energy 190GeV to 300GeV.

energy from 1GeV to 200GeV; (v) The analytical DCS and
radiative corrections achieved in this paper bring us some
cogent affirmation of the meaning and novelty to consider
the RHCPs. The outcomes would increase our understanding
of additional approaches towards some infinite order radiative
corrections. As one of the most challenging and compelling
topics in the particle physics, the high-order corrections and
renormalization schemes never stop moving forward, from
Dyson[25] to some later contributors[29][30][31]. While, most
of existing research works only handle the calculations with
finite orders, because in the context of phenomenological
theory, the high-order procedure still leaves lots of tough prob-
lems unanswered and many avenues of inquiry unexplored.
Whereas, the renormalization method implemented in this
paper based on the RHCP not only takes the infinite order
into consideration, but also suggests an effective approach to



acquire the convergent radiative corrections. Further, except
this specific sort of the RHCP focused here, it does not exclude
other diverse propagators with more complicated structures
and various components (e.g. the photon chain propagators
with renormalized single photon loop).
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