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Abstract 

This paper investigates a proportional-integral Luenberger-like state estimation for continous linear 

systems under disturbed inputs or false data inhection attacks on inputs and model mismatch. A general 

design algorithm is proposed to estimate the states of a linear system in the presence of model mismatch, 

external disturbance, and disturbed inputs / false data injection. In reality, the absence of the conditions is 

very rare, therefore it is required to develop a method for designing robust observers in presence of 

uncertainties, external disturbances, and disturbed inputs.  Lyapunov method and LMI theory have been 

used to obtain the gains of the Proportional-Integral Observer (PIO). The stability of the proposed PI 

observer is proved and with a numerical example, its efficiencies have been shown under different cases 

including model mismatch, disturbances, and attacks. The results illustrate that the proposed algorithm can 

estimate the state of a system according to defined conditions.   

 

Keywords: Luenberger-like observer, Linear Matrix Inequality (LMI), Lyapunov Stability Theory, Model 

Mismatch, False Data Injection. 

 

1 Introduction 

Modern physical systems are autonomous engineering systems embedding physical components, 

communications, and computational capabilities/control logic [1]. Recent advances in modern engineering 

i.e., power grids [2-3] lead many researchers to consider various problems in this field such as stability 

analysis [4], fault detection [5], and security problems [6]. Tight coupling of information technology and 

physical component made modern systems vulnerable to malicious attacks and disturbing signals [7]. 

Therefore, it is crucial to enhance the security of systems by novel methods such as analysis of false-data 

injection attacks(FDI) on inputs and outputs [8], secure control [9], observer-based state identification under 

attacks or disturbed signals [10], and state estimation under attacks or disturbed signals[11-12]. 

State estimation is the problem of estimating the state when the mathematical model contains some 

uncertain elements. These uncertainties might be due to additive unknown noises, attack, false data 

injection, environmental influences, nonlinearities such as hysteresis or friction, poor plant knowledge, 

reduced-order models, uncertain or slowly varying parameters. In this regard, there are different strategies 
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for state estimation including filter-based model [13], observer-based models [14-15], and gradient descent 

algorithms [16]. 

In modern systems, the sensors, actuators, and controllers should communicate with each other, however, 

in addition to sensors, actuators may be disturbed which would affect the performance of physical systems. 

Some discussions on disturbed actuators and actuator attacks have been presented in Fawzi et al [17]. 

However, the sufficient conditions for estimating under the actuator attacks have not been considered. 

Shoukry and Tabuada [18] developed a static optimization problem based on the Luenberger observer to 

estimates the state of a dynamical system in the presence of disturbing actuators and some event-triggering 

conditions. A secure Luenberger-like observer under spars actuators and sensors attacks presented by Yang 

Lu and Hong Yang [19]. The least-square technique and a new projection operator are used to reconstruct 

the state of systems. Sufficient conditions for the existence of observer are proposed in the terms of linear 

matrix inequalities (LMI). Yabin Gao et al [20] proposed a practical state estimation based on Luenberger 

in the delta operator framework by considering disturbance and actuator attacks. The constraints are based 

on linear matrix inequalities. Although the Implementation of a Luenberger observer is relatively simple; 

however it strongly depends on the precision of parameters and measurements [21]. All the presented 

studies are based on linear systems without model mismatch and disturbances. Therefore a robust observer 

design approach is required to guarantee the stability and accuracy of this observer in the presence of model 

mismatch, disturbances, and also the actuators of systems are disturbed by false data injection. In the present 

paper, a general method is introduced which is used for designing PI Luenberger observers in the continous 

linear systems with model mismatches, external disturbances, and disturbed input as false data injection. 

The proposed method is applicable in a wide range of problems with uncertain and nonlinear terms and also 

needs much less information about the system. Due to the use of Lyapunov and LMI theories, the method 

guarantees the stability and performance robustness of the observer. 

Notation. For a matrix 𝑀 ∈ 𝑅𝑝×𝑞, 𝑀𝑇 defines  transpose, 𝑀 > 0(𝑀 < 0) defines positive(negative) 

definiteness, 𝜆𝑚(𝑀) defines its smallest eigenvalue. Given a vector 𝑣 ∈ 𝑅𝑛, ‖𝑣‖ is its Euclidean norm. 𝑅 

denotes the set of reals. ⋆̂ shows the estimation of ⋆. 0 𝑎𝑛𝑑 𝐼 are zero and unit matrix with appropriate 

dimensions, respectively. 

 
 

2 Problem Description 

    Let consider a MIMO  LTI  system which its states and output matrices contain time varying 

uncertainties under input false data injection as following: 

 

�̇�(𝑡) = (𝐴 + Δ𝐴(𝑡))𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑎𝑢(𝑡)) 

𝑦(𝑡) = (𝐶 + Δ𝐶(𝑡))𝑥(𝑡) + 𝐷𝑤 
(1) 

where
pmqn RwRuRyRx  ,,,

 are the state, output, input and noise disturbance vectors, respectively.

pqnqmnnn RDRCRBRA   ,,,
, are known matrices. 

nqnn RtCRtA   )(,)(
, and 𝑎𝑢(𝑡)  are 

unknown uncertainties in state and output matrices and  disturbed input as a false data injection, 

respectiveley .  

Defining z  as integral of output vector: 
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𝑧 = ∫ 𝑦(𝜏)𝑑𝜏
𝑡

0

 
(2)  

 

 

Then system (1) can be rewritten in the following form: 

�̇�(𝑡) = (𝐴 + Δ𝐴(𝑡))𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑎𝑢(𝑡)) 

�̇�(𝑡) = (𝐶 + Δ𝐶(𝑡))𝑥(𝑡) + 𝐷𝑤 (3) 
 

 

The matrix form of equations (3) is: 

�̇� = (𝐴1 + Δ𝐴1)𝑋 + 𝐶1𝐵(𝑢(𝑡) + 𝑎𝑢(𝑡)) + 𝐶2𝐷𝑤 

𝑌1 = (𝐶 + Δ𝐶)𝐶1
𝑇𝑋 + 𝐷𝑤 

𝑌2 = 𝑧 = 𝐶2
𝑇𝑋 (4) 

Where 𝑋 ∈ 𝑅𝑛+𝑞 , 𝑌1, 𝑌2 ∈ 𝑅𝑞 are augmented state, output and output integral vectors respectively. Other 

matrices are defined as: 
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3  Luenberger-like State Estimation Design 

To cancel the unwanted effects of model mismatch and disturbance, it has been proposed to use an integral 

action in the Luenberger observer; so called PI observer, in the following way: 

)ˆ()ˆ(ˆˆ
221111 XCYKXCCYKBuCXAX T

I
T

P 


            (6) 

With this observer, one can obtain the estimation error dynamics as:  
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             (7) 

 

In the following steps, we will introduce a method to design PK
and IK

which guarantees the bounded 

stability of estimation error dynamics. This method considers four assumptions and is based on one 

theorem, which are coming in the next paragraphs. 

Assumption 1. Magnitude of disturbance signal w  is bounded  
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1ww   
(8) 

Where 1w  is a positive scalar. 

Assumption 2. XA .1 is bounded and  XA .1 . Here 
  1 qnR is a known vector of this bound. 

Assumption 3. XCC T

1  is bounded and  XCC T

1  which 
1 qR  is a known vector of this bound. 

Assumption 4. 𝐶1𝐵𝑢𝑎(𝑡) is bounded and 𝐶1𝐵𝑎𝑢(𝑡)  ≤ 𝛼 which 𝛼 ∈ 𝑅(𝑛+𝑞)×1 is a known vector of this 

bound. 

Theorem 1.  Consider that assumptions 1 to 4 hold. If there exist positive definite matrices QP , and 

positive scalars 
 ,

,
 ,

, matrices PK  and IK
such that the following equality holds: 
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(9) 

Then the estimation error dynamics of equation (7) is uniformly ultimately bounded stable and the bound 

of estimation error is, 
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Where 
 Qm  represents the minimum eigenvalue of positive definite matrix Q . To prove theorem (1), 

the following lemmas have to be introduced: 

Lemma 1. [22] Let H, F and G be real matrices of appropriate dimensions, then for any scalar 0  and 

the matrix F satisfying 
IFF T 

, we have 

GGHHHFGGFH TTTTT 1   (11) 

Lemma 2. [23] The Linear Matrix Inequality 

0








RS

SH T

 is equivalent to 0R  and 
01   SRSH T

 

where 
TT RRHH  ,

 and S  is a matrix with appropriate dimension.  

Proof of Theorem 1. 

Define the following Lyapunov function 
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PEEV T  (12) 

Such that P is a symmetric positive definite matrix (
TPP  , 0P ). Using error dynamics equation (6), 

the first derivative of V  with respect to time can be obtained as: 
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Using Lemma 1, the last term of this equation satisfied the following inequality: 
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From Lemma 1 and assumption (2) we may conclude that: 
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Also, from Lemma 1 and assumption (3) we reach to the following inequality: 
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At last, from Lemma 1 and assumption (4) we reach to  
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 Substituting inequalities (14) to (17) in equation (13) and using equation (9), it can be easily concluded 

that ,  
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a. If the right side of inequality (18) is less than zero: 

  0
2

  wwQEV T

m
  

(19) 

 
Then  

 
 

21
2

1













 


Q

w
tE

m

                                                                                                                         (20) 

This shows that   
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define a hyper sphere  which out of that (showed by equation (21), stability condition 0V  holds. 

b.  If the right side of inequality (19) is equal to zero, then on the hyper sphere of equation (21) 0V  

holds. 0V  Shows the existence of a limit cycle [24-25] and 0V  shows the stability of estimation 

error dynamics. 

c. If the right side of inequality (19) is greater than zero, then 
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It shows that inside the hyper sphere of equation (21), V  is less than or equal to a positive value. Therefore 

further comments could not be given on the stability of estimation error dynamics inside the mentioned 

border. 

From three situations of a, b and c we conclude that equation (21) is an attractor for estimation error 

dynamics (7) and the system is at least uniformly ultimately bounded stable.  

Equation (9) can be rewritten in LMI notation as follows: 
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 Where  

PCKCCKACKCCKAPG T
I

T
P

T
I

T
P )()( 211211                        (24) 

Using LMI tool box in MATLAB, we can easily find the solution of  andKKP IP ,,,,,,  . 

4 State Estimation Design Procedure 

The overall design procedure can be summarized as follows 

Data: Uncertain system including actuator attack (Eq. 1)  

Goal: Design an observer based on inputs of the plant and output measurements. 

I. Obtain 11 ,CA  and 2C  in equation (3). 

II. Determine the upper bounds of )(, 11 tBaCXA u and XCC T
1 such that  XA .1 , )(1 tBaC u  

and  XCC T
1  in assumptions 2 and 3. 

III. Construct LMI rules (24) with variables PKPHP 1,,,,,   and IKPH 2  . 

IV.  Using LMI tool box in MATLAB, find PK  and IK . 

V. Calculate 1
1HPKP
 and 2

1HPKI
  

VI. Construct the PI-Observer of equation (8). 

Remark 1.  For some systems which Δ𝐴(𝑡). 𝑥(𝑡) = 𝑓(𝑥, 𝑡), Δ𝐶(𝑡). 𝑥(𝑡) = 𝑔(𝑥, 𝑡)  and two funtion 

𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are bounded the proposed method can be used for designing a stable and error-free 

observer in nonlinear systems of following form: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑥, 𝑡) + 𝐵(𝑢(𝑡) + 𝑎𝑢(𝑡)) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑔(𝑥, 𝑡) + 𝐷𝑤 (25) 

Remark 2. Luenberger observer for system in matrix form (Eq. 3) can be written as following: 

)ˆ(ˆˆ
1111 XCCYKBuCXAX T

P 


       (26) 

the equation of error dynamics is obtained as: 

�̇� = (𝐴1 − 𝐾𝑃𝐶𝐶1
𝑇)𝐸 + Δ𝐴1𝑋 − 𝐾𝑃Δ𝐶𝐶1

𝑇𝑋 + (𝐶2 − 𝐾𝑃)𝐷𝑤 + 𝐶1𝐵𝑎𝑢(𝑡) 
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(27) 
 

It can be seen that if the desired eigenvalue of (𝐴1 − 𝐾𝑃𝐶𝐶1
𝑇) are chosen in the neighberhood of the orgin, 

the integral behavior of the error dynamics is increased, but it degrade the performance of the observer 

greatly. On the other hand, if the eignevalues are set far from the origin, it increases the system performance 

but it increases the unwanted effects of model mismatch term, diturbamce term, and attack term, too. 

 

Remark 3. As is seen in equation (7), due to the presence of model mismatches Δ𝐴 and Δ𝐶 ,  disturbance 

𝑤, and false data injection 𝑎𝑢(𝑡), the state estimation error does not always converge to zero. 

 
Remark 4. For presented system in (1), the term 𝐵𝑎𝑢(𝑡) is false data injection (FDI) attack on input or 

diturbed input. Furthermore, the term 𝐷𝑤 can be behaviored as false data injection on output. The proposed 

algorithm can estimate the states of system accurately if the assumption.1 is valid. 

5 Numerical Example 

  To show the ease of implementation and robust performance of the introduced method, a numerical 

example is studied in this section. It should be noted that the present example is a physical example to verify 

the robustness of the presented algorithms regardless of its application in cyber-physical systems since the 

proposed approach can be implemented for a different range of systems. Considering a nonlinear pneumatic 

artificial muscle (PAM)  presented in [26]. The system is a nonlinear system and the PAM force depends 

on the air pressure, dimensions, and properties of the muscle materials. It is assumed that the input signal 

would be disturbed as false data injection by two different signals: random and sinusoidal. It should be 

noted that the presented model has a model mismatch; however, a model mismatch is assumed on output. 

The schematic of the system is shown in figure 1. The equation of motion of the system by non-dimensional 

parameters can be written as follows. 

 

Figure 1- the schematic model of pneumatic artificial muscle 

�̈� + 2𝜀𝜑�̇� + 𝑥 + 𝜀(𝑝1 sin Ω𝜏 + 𝑝2 cos 2Ω𝜏 )𝑥 + 𝜀𝜃𝑥3 = 𝜀(𝑓1 + 𝑓2 sin Ω𝜏) (28) 
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Where; 

𝑃 = 𝑃𝑚 + 𝑃0𝑠𝑖𝑛�̅�𝜏,  𝜔0 =
√

[𝑐1 + 𝑐2𝑃𝑚 + 𝑐3(𝑃𝑚
2 +

𝑃0
2

2
)]

𝑚𝑙𝑚𝑎𝑥
, 𝛺 =

�̅�

𝜔0
,   

𝜑 =
𝑐

2𝜀𝑚𝜔0
, 𝜃 =

𝑟2𝐾

𝜀𝑚𝜔0
2 , 𝑝1 =

𝑐2𝑃0 + 2𝑐3𝑃0𝑃𝑚

𝜀𝑚𝜔0
2𝑙𝑚𝑎𝑥

, 𝑝2 = −
𝑐3𝑃0

2

2𝜀𝑚𝜔0
2𝑙𝑚𝑎𝑥

 

𝑓1 =
𝑑2𝑃𝑚 + 𝑑1 − 𝑚𝑔

𝜀𝑚𝑟𝜔0
2 , 𝑓2 =

𝑑2𝑃0

𝜀𝑚𝑟𝜔0
2 

The defined parameters and their values are listed in Table 1. 

Table 1-List of parameters 

 

According to presentend nonlinear state space, the system can be transformed to its form of equation (1), 

then the system matrice can be easily obtained as: 

𝐴 = [
0 1

−1 −2𝜀𝜑
] , 𝐵 = [

0
1

] , 𝐶 = [1 0]   

Here we assumed that the nonlinear part of PAM is a model mismatch, so Δ𝐴. 𝑋 = −𝜀(𝑝1𝑠𝑖𝑛𝛺𝜏 +

 𝑝2𝑐𝑜𝑠2𝛺𝜏)𝑧1 −  𝜀𝛼𝑧1
3. Refer to equation (5), matrices 𝐴1, 𝐶1 and 𝐶2 can be obtained as: 

No. Parameter Description Units Value 

1 m Mass of load on muscle kg 6 

2 𝑙𝑚𝑎𝑥   Maximum length of muscle m 0.074 

3 𝑐1 Force-Displacement Constant  N -234.25 

4 𝑐2 Force-Displacement Constant  N/pa 0.00196 

5 𝑐3 Force-Displacement Constant  N/pa2 -3.00E-09 

6 𝑑1 Force-Displacement Constant  N -100 

7 𝑑2 Force-Displacement Constant  N/pa 0.001 

8 𝐾 Force-Displacement Constant N/m3 16490 

9 𝑐 Damping coefficient N.s/m 0.08 

10 �̅� Frenquency of input pressure 1/s 13.509 

11 𝑃𝑚 Mean value of input pressure pa 300000 

12 𝑃0 Amplitude of input pressure pa 40000 

13 𝑟 Scaling factor 1/m 1 

14 𝜀 Non-dimensional Parameter - 0.1 

15 𝜔0 Fundamental natural frequency of PAM 1/s 13.536 

16 𝛺 Frequency ratio - 0.998 

17 𝜑 Non-dimensional Parameter - 0.00493 

18 𝜃 Non-dimensional Parameter - 150 

19 𝑝1 Non-dimensional Parameter - 0.787 

20 𝑝2 Non-dimensional Parameter - 0.295 

21 𝑓1 Non-dimensional Parameter - 1.2844 

22 𝑓2 Non-dimensional Parameter - 0.364 
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𝐴1 = [
0 1 0

−1 −2𝜀𝜑 0
1 0 0

] , 𝐶1 = [
1 0
0 1
0 0

] , 𝐶2 = [
0
0
1

],   

In this system, we can assume that Δ𝐴1. 𝑋  is a nonlinear term which is a bounded term, Δ𝐴1. 𝑋 ≤

[2.123, 2.123, 2.123]𝑇. The efficiency of the proposed PI-observer is evaluated for different conditions, as 

follows: 

Case I:  𝑎𝑢 = 0, Δ𝐶 = 0, 𝐷 = 0 

   The assumed conditions means the simulation of presented model in [24] without output mismatch (Δ𝐶 =

0), actuator attack (𝑎𝑢 = 0), and disturbance (𝐷 = 0). The gain matrices of PI-observer 𝐾𝑃 and 𝐾𝐼 may 

easily obtain the following results using the MATLAB-LMI toolbox:  

𝐾𝑃 = [
3.2103
2.4233
2.5640

]   and   𝐾𝐼 = [
13.1451
12.0252
12.5935

] 

Figure 2 and 3 show the states of the system and their estimation. The figure shows that the estimation 

error quickly converge to zero. 

 

Figure 2- 𝑋1 and its Estimation 
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Figure 3- 𝑋2 and its Estimation 

Case II:  𝑎𝑢 = 0, Δ𝐶 ≠ 0, 𝐷 ≠ 0 

Suppose that there are some model mismatches on output as, Δ𝐶 = [0.05 sin(𝜏)    0.05 cos(𝜏)], and a 

sinusoidal disturbance signal as 𝑤 = cos(𝜋𝑡) with 𝐷 = 0.4. In this condition we can obtain that that 

Δ𝐶𝐶1
𝑇𝑋 ≤ 0.0673. The gain matrices of PI-observer 𝐾𝑃 and 𝐾𝐼 may obtain the following results: 

𝐾𝑃 = [
3.7648
2.9889
3.1747

]   and   𝐾𝐼 = [
12.5184
11.4417
12.0307

] 

Figure 4 and 5, illustrates the states of the system and their estimation. According to the figure, the error 

dose not converge to zero (Remark 3), however the average, maximum and minimum value of error are 

0.0021, 0.00504, and 0.0546 respectively and|𝑥(𝑡) − 𝑥(𝑡)| ≤ 𝜖, that means the error signal is bonded. 
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Figure 4- 𝑋1 and its Estimation 

 

Figure 5- 𝑋2 and its Estimation 

 

Case III:  𝑎𝑢 ≠ 0, Δ𝐶 ≠ 0, 𝐷 ≠ 0 

 Suppose that an attack signal is added to Case II on input as, 𝑎𝑢 = 0.1 sin(𝜋𝜏). In this situation, we can 

obtain that 𝐶1𝐵𝑎𝑢(𝑡)  ≤ 0.1648. The gain matrices of PI-observer 𝐾𝑃 and 𝐾𝐼 may obtain the following 

results: 

𝐾𝑃 = [
3.783

3.0063
3.193

]   and   𝐾𝐼 = [
12.5868
11.5101
12.0991

] 

Figure 5 and 6, illustrates the states of the system and their estimation. According to the figure, the error 

dose not converge to zero (Remark 3); however the average, maximum and minimum value of error are 

0.266, 0.00467, and 0.5276 respectively and|𝑥(𝑡) − 𝑥(𝑡)| ≤ 𝜖, that means the error signal is bonded. As 

seen, although the attack on input signal increases the error of estimation, it is bonded and has acceptable 

range regarding the assumptions of proposed algorithm. 
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Figure 6- 𝑋1 and its Estimation 

 

Figure 7- 𝑋2 and its Estimation 
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Case IV: random, 𝑤(𝑡), 𝑢𝑎(𝑡)  and Δ𝐶 ≠ 0  

Suppose that the attack and disturbance signals are generated randomly according to Gaussian distributions 

with zero mean and covariance 10. The gain matrices of PI-observer 𝐾𝑃 and 𝐾𝐼 may obtain the following 

results: 

𝐾𝑃 = [
3.7725
3.1231
3.2911

]   and   𝐾𝐼 = [
12.476

11.6132
12.1712

] 

Figure 7 and 8, illustrates the states of the system and their estimation. According to the figures, the error 

dose not converge to zero (Remark 3), however the average, maximum and minimum value of error are 

0.0474, 0.0768, and 0.0181 respectively for 50 experiments and|𝑥(𝑡) − 𝑥(𝑡)| ≤ 𝜖, that means the error 

signal is bonded. As seen, although the attack on input signal increases the error of estimation, it is bonded 

and has acceptable range regarding the assumptions of proposed algorithm. 

 

Figure 8- 𝑋1 and its Estimation 



15 
 

 

Figure 9- 𝑋2 and its Estimation 

6 Conclusion 

In the present study, a general design algorithm for PI observers has been proposed for a MIMO LTI system 

under disturbance, model mismatch, and false data injection on the input signal. First, it is necessary to 

show the stability of the method. Thus, the  Lyapunov theory using LMI approach is used to prove the 

stability of the proposed method. This design method guarantees the stability of the observer when the 

energy of disturbance signal and upper bound of model mismatch and actuator attack are limited. Then, the 

procedure of the observer designed is introduced to obtain the gain of the observer. Finally, a nonlinear 

pneumatic artificial muscle example has been given to illustrate the effectiveness of the observer under 

different conditions and types of false data injection. For future works, the proposed method can be 

extended for tolerant control, attack on the measurement, and model mismatch on input. 
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