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MORGAN-STONE LATTICES

ALEXEJ P. PYNKO

Abstract. Morgan-Stone (MS) lattices are axiomatized by the constant-free

identities of those axiomatizing Morgan-Stone (MS) algebras. Applying the
technique of characteristic functions of prime filters as homomorphisms from

lattices onto the two-element chain one and their products, we prove that the

variety of MS lattices is the abstract hereditary multiplicative class generated
by a six-element one with an equational disjunctive system expanding the

direct product of the three- and two-element chain distributive lattices, in
which case subdirectly-irreducible MS lattices are exactly isomorphic copies

of nine non-one-element subalgebras of the six-element generating MS lattice,

and so we get a 29-element non-chain distributive lattice of varieties of MS
lattices subsuming the four-/three-element chain one of “De Morgan”/Stone

lattices/algebras (viz., constant-free versions of De Morgan algebras)/(more

precisely, their term-wise definitionally equivalent constant-free versions, called
Stone lattices). Among other things, we provide an REDPC scheme for MS

lattices. Laying a special emphasis onto the [quasi-]equational join (viz., the

[quasi-]variety generated by the union) of De Morgan and Stone lattices, we
find a fifteen-element non-chain distributive lattice of its sub-quasi-varieties

subsuming the eight-element one of those of the variety of De Morgan lattices

found earlier, each of the rest being the quasi-equational join of its intersection
with the variety of De Morgan lattices and the variety of Stone lattices. In

this connection, we also prove that any relatively simple relatively subdirectly-
representable abstract hereditary multiplicative subclass of the equational join

of the varieties of De Morgan lattices/algebras and Stone ones is a sub-variety

of the former.

1. Introduction

The notion of De Morgan lattice, being originally due to [15], has been indepen-
dently explored in [10] under the term distributive i-lattice w.r.t. their subdirectly-
irreducibles and the lattice of varieties. They satisfy so-called De Morgan identities.
On the other hand, these are equally satisfied in Stone algebras (cf., e.g., [7]). This
has inevitably raised the issue of unifying such varieties. Perhaps, a first way of
doing it within the framework of De Morgan algebras (viz., bounded De Morgan
lattices; cf., e.g., [1]) has been due to [2] (cf. [23]) under the term Morgan-Stone
(MS) algebra providing a description of their subdirectly-irreducibles, among which
there are those being neither De Morgan nor Stone algebras. Here, we study un-
bounded MS algebras naturally called Morgan-Stone (MS) lattices. Demonstrating
the usefulness of the technique of the characteristic functions of prime filters and
functional products of former ones as well as disjunctive systems, we briefly dis-
cuss the issues of subdirectly-irreducible Morgan-Stone lattices and their varieties.
Likewise, summarizing construction of REDPC schemes (cf. [6]) for distributive
lattice[ expansion]s originally being due to [8] [and [12, 21]], we provide that for
Morgan-Stone lattices and an enhanced one for the {quasi-}equational join of De
Morgan and Stone lattices. Nevertheless, the main purpose of this study is to find
the lattice of sub-quasi-varieties of the latter upon the basis of that of the variety
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2 A. P. PYNKO

of De Morgan lattices found in [17]. In this connection, we also prove that any rela-
tively simple relatively subdirectly-representable abstract hereditary multiplicative
subclass of the equational join of the varieties of De Morgan lattices/algebras and
Stone ones is a sub-variety of the former.

The rest of the work is as follows. Section 2 is a concise summary of basic
set-theoretical and algebraic issues underlying the work. Then, in Section 3 we
briefly summarize general issues concerning REDPC in the sense of [6] as well as
equational implicative/disjunctive systems in the sense of [20]/[19] in connection
with simplicity/“subdirect irreducibility”. Next, Section 4 is devoted to prelimi-
nary study of Morgan-Stone lattices. Further, Section 5 is a thorough collection of
culminating results on sub-quasi-varieties of the [quasi-]equational join of De Mor-
gan and Stone lattices. Finally, Section 6 is a concise collection of open issues and
necessary statements.

2. General background

2.1. Set-theoretical background. Non-negative integers are identified with the
sets/ordinals of lesser ones, “their set/ordinal”|“the ordinal‖set class” being de-
noted by ω|(∞‖Υ). Unless any confusion is possible, one-element sets are identified
with their elements.

For any sets A, B and D as well as θ ⊆ A2, h : A → B and g : A2 → A, let
℘[K]((B, )A) be the set of all subsets of A (including B) [of cardinality in K ⊆
∞, D ⊆K A standing for D ∈ ℘K(A)], ((∆A|νθ)‖(A/θ)‖χB

A) , ({〈a, a|θ[{a}]〉 |
a ∈ A}‖νθ[A]‖(((A ∩ B) × {1}) ∪ ((A \ B) × {0}))), A∗|+ , (

⋃
m∈(ω\(0|1))A

m),
h∗ : A∗ → B∗ : a 7→ (a ◦ h), g+ : A+ → A, 〈[〈a, b〉, ]c〉 7→ [g]([g+(〈a, b〉), ]c) and
εB : (ΥB)2 → ℘(B), 〈d, e〉 7→ {b ∈ B | πb(d) = πb(e)}, A-tuples {viz., functions with
domain A} being written in the sequence form t̄ with ta, where a ∈ A, standing for
πa(t̄). Then, for any (ā|C) ∈ (A∗|℘(A)), by induction on the length (viz., domain)
of any b̄ = 〈[c̄, d]〉 ∈ A∗, put ((ā ∗ b̄)|(b̄(∩/\)C)) , (([〈]ā[∗c̄, d〉])|(〈[c̄(∩/\)C(, d)]〉))
|[(provided d ∈ / 6∈ C)]. Likewise, given any S ∈ ℘(D)B and f̄ ∈

∏
b∈B S

A
b , let

(
∏
f̄) : A→ (

∏
b∈B Sb), a 7→ 〈fb(a)〉b∈B , in which case

ker(
∏

f̄) = (A2 ∩ (
⋂
b∈B

(ker fb))),(2.1)

∀b ∈ B : fb = ((
∏

f̄) ◦ πb),(2.2)

f0 × f1 standing for (
∏
f̄), whenever B = 2.

A lower/upper cone of a poset P = 〈P,5〉 is any C ⊆ P such that, for all
a ∈ C and b ∈ P , (a = / 5 b) ⇒ (b ∈ C). Then, an a ∈ S ⊆ P is said to be
minimal/maximal in S, if {a} is a lower/upper cone of S, their set being denoted
by (min /max)P|5(S), in case of the equality of which to S, this being called an
anti-chain of P.

An X ∈ Y ⊆ ℘(A) is said to be [K-]meet-irreducible in Y , [where K ⊆ ∞], if
∀Z ∈ ℘[K](Y ) : ((A∩(

⋂
Z)) = X)⇒ (X ∈ Z), their set being denoted by MI[K](Y ),

“finitely-” standing for “ω-” within any related context. Next, a U ⊆ ℘(A) is said
to be upward-directed, if ∀S ∈ ℘ω(U) : ∃T ∈ (U∩℘(

⋃
S, A)), subsets of ℘(A) closed

under unions of upward directed subsets being called inductive. Further, a [finitary]
closure operator over A is any unary operation on ℘(A) such that ∀X ∈ ℘(A),∀Y ∈
℘(X) : (X ∪C(C(X))∪C(Y )) ⊆ C(X)[= (

⋃
C[℘ω(X)])]. Finally, a closure system

over A is any C ⊆ ℘(A) containing A and closed under intersections of subsets
containing A, any B ⊆ C with C = {A∩(

⋂
S) | S ⊆ B} being called a (closure) basis

of C and determining the closure operator CB , {〈Z,A ∩ (
⋂

(X ∩ ℘(Z,A)))〉 | Z ∈
℘(A)} over A with (imgCB) = C. Conversely, imgC is a closure system over A with
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Cimg C = C, being inductive iff C is finitary, and forming a complete lattice under
the partial ordering by inclusion with meet/join (∆℘(A)/C)(A∩ ((

⋂
/

⋃
)S)) of any

S ⊆ (imgC), C and imgC being called dual to one another. Then, C(X) ∈ (imgC)
is said to be generated by an X ⊆ A, elements of C[℘ω/{n}(A)] /“with n ∈ (ω|{1})”
being said to be finitely/n-generated |principal.

Remark 2.1. Due to Zorn Lemma, according to which any non-empty inductive set
has a maximal element, MI [K](C) is a basis of any inductive closure system C. �

A filter/ideal on A is any F ⊆ ℘(A) such that, for all S ∈ ℘ω(℘(A)), (S ⊆ F)⇔
((A ∩ ((

⋂
/

⋃
)S)) ∈ F) “the set Fi(A) of them being an inductive closure system

over ℘(A) with dual finitary closure operator (of filter generation) FgA such that

(2.3) FgA(T) = ℘(A ∩ (
⋂

T), A),

for all T ∈ ℘ω(℘(A))”/. Then, an ultra-filter on A is any filter U on A such that
℘(A) \ U is an ideal on A.

2.2. Algebraic background. Unless otherwise specified, we deal with a fixed but
arbitrary finitary functional signature Σ, Σ-algebras/“their carriers” being denoted
by same capital Fraktur/Italic letters (with same indices, if any) “with denoting
the class of all [one-element] ones by A

[=1]
Σ ”/. Given any α ∈ (∞ \ 1), let Tmα

Σ

be the carrier of the absolutely-free Σ-algebra Tmα
Σ, freely-generated by the set

Vα , {xβ}β∈α of (first α) variables, and Eqα
Σ , (Tmα

Σ)2, φ ≈ /(/ | ')ψ, where
φ, ψ ∈ Tmα

Σ /“and ∧ ∈ Σ”, meaning 〈φ/(φ ∧ ψ), ψ/(φ|ψ)〉 “and being called a Σ-
equation of rank α”/. /“Likewise, for any Σ-algebra A and a, b ∈ A, (a(6 | >
)Ab)‖[a, b]A stands for ((a|b) = (a ∧A b))‖{c ∈ A | a 6A c 6A b}.” Then, any
〈Γ,Φ〉 ∈ (℘∞/(1[∪ω])(Eqα

Σ)× Eqα
Σ) /“with α ∈ ω” is called a Σ-implication/-[quasi-

]identity of rank α, written as Γ → Φ and identified with Φ, if Γ = ∅, as well as
treated as the universal infinitary/first-order strict Horn sentence ∀β∈αxβ((

∧
Γ)→

Φ), the class/set of those of any /finite rank true in a K ⊆ AΣ being called the
implicational/[quasi-]equational theory of K and denoted by (I/[Q]E)(K).

Subclasses of AΣ “closed under I|S(>1)|P
[SD‖U]”/“containing each Σ-algebra with

finitely-generated subalgebras in them”/“containing no infinite finitely-generated
member” are referred to as “abstract |(non-trivially-)hereditary |[ultra-‖sub-]multip-
licative”/local/locally-finite (cf. [14]). Then, a skeleton {of a(n abstract) K ⊆ AΣ}
is any S ⊆ AΣ without pair-wise distinct isomorphic members {such that S ⊆ K ⊆ IS
(i.e., K = IS)}. Given a K ⊆ AΣ 3 A, set hom[S](A,K) , {h ∈ hom(A,B) |
B ∈ K[, (img h) = B]} and CoK(A) , {θ ∈ Co(A) | (A/θ) ∈ K}, whose elements
are called K-(relative )congruences of A, A � K standing for A ∈ ISK and thus
providing a quasi-ordering on AΣ, in which case, by the Homomorphism Theorem,
we have

(2.4) (ker[homS|(A,K)]{\(∅|{A2})}) = Co(I|(IS{>1}))K(A),

and so “by the Homomorphism Theorem”|, for all B ∈ AΣ and h ∈ homS|(S‖)(B|A,
A|B):

(2.5) ∀θ ∈ (Co[(I|(I‖(IS)))K](B) ∩ ℘((kerh)|∆B , B
2)) :

h
|(−1)
∗ [θ] ∈ (Co[(I|(I‖(IS)))K](A) ∩ ℘(∆A|(kerh), A2)),

h
(−1)|
∗ [h|(−1)

∗ [θ]] = (θ ∩ (B|h[A])2)

“yielding an isomorphism between the posets Co[IK](B)∩℘(kerh,B2) and Co[IK](A)
ordered by inclusion as well as”‖ |“implying:

(2.6) h−1
∗ [CgB

[(I‖(IS))K](h∗[X]) = ‖ ⊇ CgA
[(I‖(IS))K](X ∪ (kerh)),
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for all X ⊆ A2”, while, as, for any set I, B ∈ AI
Σ and f̄ ∈ (

∏
i∈I hom(A,Bi)):

(2.7) (
∏

f̄) ∈ hom(A,
∏
i∈I

Bi),

by (2.1) and (2.2) with I , Co(I|(IS))K(A) for B, B , 〈B/i〉i∈I , D , (
⋃

i∈I Bi) and
f̄ , 〈νi〉i∈I , we get:

(2.8) (A ∈ IPSD([I]‖([I]S))K))⇔ ((A2 ∩ (
⋂

ker[homS‖(A,K)])) = ∆A),

whereas, since, for any I , Θ ⊆ Co〈K〉(A), θ , (A2 ∩ (
⋂

Θ)) ∈ Co(A), B ,

〈A/i〉i∈I ∈ (AΣ〈∩K〉)I as well as, by the Homomorphism Theorem, f̄ , 〈ν−1
θ ◦

νi〉i∈I ∈ (
∏

i∈I hom(A/θ,Bi)), taking (2.1), (2.2) and (2.7) into account, we see that
e , (

∏
f̄) is an embedding of A/θ into C , (

∏
i∈I Bi) such that C�(img e), being

isomorphic to A/θ, is a subdirect product of B 〈 in which case (A/θ) ∈ IPSDK, and
so, providing K is both abstract and sub-multiplicative, θ ∈ CoK(A)〉. In particular,
[providing K is both abstract and sub-multiplicative], Co[K](A) is a closure system
over A2, the dual closure operator being denoted by CgA

[K].

Remark 2.2. By (2.4), the |-right alternative of (2.5) with h = νϑ, where ϑ ∈
CoIPSD([I]‖([I]S))K(A), B = (A/ϑ) and θ = ∆B as well as (2.8), since ϑ = h−1

∗ [θ],
while h−1

∗ preserves intersections, Co(I‖(IS))K(A) is a basis of the closure system
CoIPSD([I]‖([I]S))K(A) over A2. �

According to [22], pre-varieties are abstract hereditary multiplicative subclasses
of AΣ (these are exactly model classes of theories constituted by Σ-implications of
unlimited rank, and so are also called implicative/implicational ; cf., e.g., [3]/[17]),
ISPK = IPSD(I)S[>1]K = Mod(I(K)) being the least one including and so called
generated by a K ⊆ AΣ. Likewise, [quasi-]varieties are [ultra-multiplicative] pre-
varieties closed under H[I][, I] (these are exactly model classes of sets of Σ-
[quasi-]identities of unlimited finite rank, and so are local and also called [quasi-
]equational ; cf., e.g., [14]), H[I]SP[PU]K = Mod([Q]I(K)) being the least one in-
cluding and so called generated by a K ⊆ AΣ. Then, intersections of a K ⊆ AΣ with
[quasi-]varieties are called its relative sub-[quasi-]varieties, in which case, for any
E ⊆ Eqω

Σ,

(2.9) (IPSD(K) ∩Mod(E)) = IPSD(K ∩Mod(E)),

and so S 7→ (S ∩ K) and R 7→ IPSDR are inverse to one another isomorphisms
between the lattices of relative sub-varieties of IPSDK and those of K.

Then, a [pre-]variety P ⊆ AΣ is said to be [(relatively)] congruence-distributive,
if, for each A ∈ P, Co[(P)](A) is distributive.

Remark 2.3. Given a [quasi-equational] pre-variety P ⊆ AΣ and α ∈ (∞\1), by the
|-right alternative of (2.4) with K = P and A = Tmα

Σ, any Σ-implication Γ→ Φ of
rank α is true in P iff Φ ∈ CgA

P (Γ) [in which case, by the Compactness Theorem
for ultra-multiplicative classes of algebras (cf., e.g., [14]), CgA

P is finitary, and so is
CgB

P , for any B ∈ AΣ, in view of the left ‖-alternative of (2.6), when taking α = |B|
and h to extend any bijection from Vα onto B]. �

Furthermore, [given an abstract K ⊆ AΣ] an A ∈ (AΣ[∩K]) is said to be [ K-
{relatively }]simple/(K-)subdirectly-irreducible /(where K ⊆ ∞), if ∆A ∈ (max⊆ /
MI(K))(Co[K](A) \ ({A2}/∅)), in which case |A| 6= 1, the class of 〈those of〉 them
〈which are in a K′ ⊆ (AΣ[∩K])〉 being denoted by (Si /SI(K))[K]〈(K′)〉,1 and so, by

1This is abstract 〈whenever K′ is so〉, in view of (2.5).
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(2.4) and (2.8),

(2.10) (Si |SI)[IPSD(S)K′′](IPSD(S)K′′) ⊆ I(S>1)K
′′,

for any K′′ ⊆ AΣ. Then, a [pre-]variety P is said to be [ {relatively}] (finitely)
semi-simple/subdirectly-representable, if

(SI(ω)
[{P}](P)/P) ⊆ | = (Si[{P}](P)/IPSD(Si /SI(ω))[{P}](P)),

any variety V ⊆ AΣ being well-known, due to Birkgoff’s Theorem, to be subdirectly-
representable. More generally, we have:

Remark 2.4. Given any [quasi-]variety Q ⊆ AΣ and A ∈ ({Q∩}AΣ), by Remarks
2.1, 2.2, 2.3 and the right ‖-alternative of (2.5), MI(ω)(CoQ(A)) = Co

SI
(ω)
Q (Q)

(A) is

a basis of both CoQ(A) and Co
IPSD SI

(ω)
Q (Q)

(A), in which case these are equal {and

so, since ν∆A
∈ homS(A,A/∆A) is injective, A ∈ IPSD SI(ω)

Q (Q)}. In particular, Q
is [relatively] (finitely) subdirectly-representable. �

Recall that, according to [13], a[n implicational] K ⊆ AΣ is congruence-permutab-
le, i.e., for each A ∈ K and all θ, ϑ ∈ Co(A), (θ◦ϑ) ⊆ (ϑ◦θ), if[f] it has a congruence-
permutation term, viz., a π ∈ Tm3

Σ such that K satisfies the Σ-identities in {x1 ≈
(σi(π)) | i ∈ {0, 2}}, where, for every j ∈ 3, σj , [xj/x1;xk/x0]k∈(3\{j}). Likewise,
a minority |majority term for K |{with Σ+ , {∧,∨} ⊆ Σ and the Σ+-reducts of
members of K being lattices} is any µ ∈ Tm3

Σ such that K satisfies the Σ-identities in
{x(1−min(2−i,i))|0 ≈ (σi(µ)) | i ∈ 3} |{µ+ , (∧+〈xi∨(xmax(1−i,0)∧x2+min(i,1−i))〉i∈3)
being so}, in which case it is so “as well as a congruence-permutation term”| for the
variety generated by K, and so this is congruence-distributive [16], while, for any
congruence-permutation term π for K, π[x1/µ] is a majority|minority term for K
“and so µ[x1/µ] is a majority term for K”|. Finally, a (ternary) |dual discriminator
(term) for K is any δ ∈ Tm3

Σ such that, for each A ∈ K, δA = ((π2|0�(∆A ×
A)) ∪ (π0|2�((A2 \ ∆A) × A))), in which case A is simple, because, for every θ ∈
(Co(A)\{∆A}), any 〈a, b〉 ∈ (θ\∆A) 6= ∅ and all c ∈ A, we have (a|c) = δA(a, b, c) θ
δA(a, a, c) = (c|a), so getting θ = A2, while δ is a |dual discriminator for ISPUK as
well as a minority|majority term for K, whereas, for any congruence-permutation
term π for K, π[x1/δ] is a dual| discriminator for K “and so δ[x1/δ] is a dual
discriminator for K”|, {〈quasi-/pre-〉varieties generated by classes of} Σ-algebras
with [dual] discriminator δ being called [dual] δ-discriminator, with denoting the
class of [dual] δ-discriminator members of a C ⊆ AΣ by C

[∂]
δ . Then, [dual] δ-

discriminator quasi-varieties are exactly quasi-equational [dual] δ-discriminator pre-
varieties.

2.2.1. Filtral congruences. Let I be a set, F a{n ultra-}filter on I [P ⊆ AΣ a (quasi-
equational) pre-variety], A ∈ (AΣ[∩P])I and B a subalgebra of its direct product.
Then, by (2.5), for each i ∈ I, (B2 ∩ (kerπi)) = ((πi�B)−1

2 [∆Ai
] ∈ Co[P](B), as

(πi�B) ∈ hom(B,Ai) and ∆Ai ∈ Co[P](Ai), in which case, for all K ⊆ J ⊆ I,
the closure system Co[P](B) on B2 contains θB

J , (B2 ∩ ε−1
I [℘(J, I)]) = (B2 ∩

(
⋂

j∈J kerπj)) ⊆ θB
K , ΘB

F , {θB
L | L ∈ F} being thus upward-directed (and so

Co[P](B), being inductive, in view of Remark 2.3, contains θB
F , (

⋃
ΘB

F ) = (B2 ∩
ε−1

I [F]), called 〈F-〉{ultra-}filtral). Clearly, for any X ⊆ Fi(I) |“with (
⋃

X) ∈ Fi(I)”,

(2.11) θB
℘(I)∩((

⋂
|
⋃

)X) = (B2 ∩ ((
⋂
|
⋃

){θB
F | F ∈ X})).

A [pre-]variety P ⊆ AΣ is said to be [relatively] (subdirectly) 〈finitely/principally〉
filtral, if every 〈finitely-generated/principal〉 [P-]congruence of each member of SP
SI[P](P)(∩PSD SI[P](P)) is filtral (cf. [6] for the equational case).
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2.2.1.1. Filtrality versus semi-simplicity.

Lemma 2.5. Any [relatively] subdirectly principally filtral [pre-]variety P ⊆ AΣ is
[relatively] semi-simple.

Proof. Consider any A ∈ SI[P](P), in which case |A| > 1, and any θ ∈ (Co[P](A) \
{∆A}) as well as any ā ∈ (θ\∆A) 6= ∅, in which case B , A1 ∈ PSD SI[P](P), while
h , (π0�B) ∈ homS(B,A) is injective, whereas B2 3 b̄ , (ā◦h−1) ∈ ϑ , CgB

[P](b̄) =
θB

F , for some F ∈ Fi(1), and so, by (2.5), η , h−1
∗ [θ] ∈ (Co[P](B)∩℘(ϑ,B2)), while

θ = h∗[η], whereas ∅ = ε1(b̄) ∈ F. Then, F = ℘(1), in which case η ⊇ ϑ = B2, and
so θ ⊇ h∗[B2] = A2. Thus, A ∈ Si[P](P), as required. �

2.2.1.2. Filtrality versus congruence-distributivity.

Lemma 2.6 (cf. [9] for the []()-non-optional case). Let Q ⊆ AΣ be a [quasi-]variety,
I a set, A ∈ QI , B ∈ S(

∏
A) and θ ∈ MI(ω)(Co[Q](B)). Suppose Co[Q](B) is

distributive. Then, there is an ultra-filter U on I such that θB
U ⊆ θ.

Proof. By (2.11), S , {F ∈ Fi(I) | θB
F ⊆ θ} 3 {I} is inductive, for Fi(I) is

so, in which case, by Zorn Lemma, it, being non-empty, has a maximal element
U, and so, for any X ∈ ℘ω(℘(I)) such that Y , (

⋃
X) ∈ U, (X ∩ U) 6= ∅, as,

for each Z ∈ X, θB
FZ
∈ Co[Q](B) with U ⊆ FZ , FgI(U ∪ {Z}) ∈ Fi(I), while

U = FgI(U) = FgI(U ∪ {Y }) = (℘(I) ∩ (
⋂
{FZ | Z ∈ X})), in view of (2.3), since

FgI is finitary, whereas, by (2.11), θ = CgB
[Q](θ ∪ θB

U) = CgB
[Q](θ ∪ (B2 ∩ (

⋂
{θB

FZ
|

Z ∈ X}))) = (B2 ∩ (
⋂
{CgB

[Q](θ ∪ θB
FZ

) | Z ∈ X})), that is, for some Z ∈ X,
θ = CgB

[Q](θ ∪ θB
FZ

) ⊇ θB
FZ

, i.e., U ⊆ FZ ∈ S, viz., Z ∈ FZ = U, as required. �

This, by (2.5), Birkgoff’s and the Homomorphism Theorems [as well as [5, Corol-
lary 2.3]/[20, Lemma 2.1]], immediately yields:

Corollary 2.7. Let K be a [finite/] class of [finite/] Σ-algebras (with {dual}
discriminator δ) and P , H〈I〉SPK. Suppose P is a drelativelye congruence-
distributive [/locally-finite] dquasi-evariety. Then,

(P{∂}
δ ⊆ SibdPec(P) ⊆) SIω|∞dPe (P) ⊆ H(‖〈I)‖〉SPUK[⊆ H(‖〈I)‖〉SK](⊆ P

{∂}
δ )

[in which case its members are finite, and so SIωdPe(P) = SIdPe(P)]/. In particu-
lar, {dual} (δ-)discriminator quasi-varieties are exactly [semi-simple] {dual} (δ-
)discriminator varieties.

Corollary 2.8. Let Q ⊆ AΣ be a ([relatively] semi-simple) [quasi-]variety, I ∈ Υ,
A ∈ Si[Q](Q)I , D , (

∏
A), B ∈ S{D} and θ ∈ (Co[Q](B) \ {B2}). Suppose

Si[Q](Q)I is both ultra-multiplicative and non-trivially-hereditary {while Co[Q](B)
is distributive}. Then, θ is maximal in Co[Q](B) \ {B2} if {f } it is ultra-filtral.
{(In particular, all elements of Co[Q](B) are filtral.)}

Proof. First, assume θ = θB
U , for some ultra-filter U on I, in which case C ,

(D/θD
U ) ∈ PU Si[Q](Q) ⊆ Si[Q](Q), while h , (∆B ◦ νθD

U
) ∈ hom(B,C), whereas

(kerh) = (∆B)−1
∗ [θD

U ] = θ, and so by (2.4) and Footnote 1, as θ 6= B2, (B/θ) ∈
IS>1 Si[Q](Q) ⊆ Si[Q](Q). Then, by (2.5), θ ∈ max(Co[Q](B) \ {B2}). {Conversely,
assume θ ∈ max(Co[Q](B) \ {B2}) ⊆ MI(Co[Q](B)), in which case, by Lemma 2.6,
there is some ultra-filter U on I such that, as θ 6= B2, (Co[Q](B) \ {B2}) 3 θB

U ⊆ θ,
and so, by the “if” part, θ = θB

U . (Then, Remarks 2.1, 2.3, 2.4, (2.5) and (2.11)
complete the argument.)} �
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2.2.2. Subdirect products versus subalgebras.

Lemma 2.9 (cf. [11]). Let A ∈ AΣ and B a subalgebra of A. Then, hB
A , {〈ā, b〉 ∈

(Aω × B) | |ω \ εω(ā, ω × {b})| ∈ ω} ⊇ (
⋃
{{〈ω × {b}, b〉} ∪ {〈((ω \ {i}) × {b}) ∪

{〈i, a〉}, b〉 | i ∈ ω, a ∈ A} | b ∈ B}) is a function forming a subalgebra of Aω ×B,
in which case it is a surjective homomorphism from CB

A , (Aω�(domhB
A)) onto B,

and so CB
A is a subdirect product of ω × {A}.

2.2.2.1. Filtrality versus non-trivial hereditarity of simplicity.

Corollary 2.10. Let P ⊆ AΣ be a [relatively] subdirectly principally filtral [pre-
]variety. Then, (SI[P](P) ∪ A=1

Σ )(\A=1
Σ ) is (non-trivially-)hereditary.

Proof. Let A ∈ (SI[P](P)∪A=1
Σ ) and B a non-one-element subalgebra of A, in which

case |A| 6= 1, and so, by Lemma 2.9, h , hB
A is a surjective homomorphism from

the subdirect product C , CB
A of (ω × {A}) ∈ SI[P](P)ω onto B. Consider any

θ ∈ (Co[P](B) \ {∆B}) and take any 〈a, b〉 ∈ (θ \ ∆B) 6= ∅, in which case, by
(2.5), Co[P](C) 3 ϑ , h−1

∗ [θ] 3 〈c̄, d̄〉 , 〈ω × {a}, ω × {b}〉, while h∗[ϑ] = θ, and so
ϑ ⊇ η , CgC

[P](〈c̄, d̄〉) = θC
F , for some F ∈ Fi(ω). Then, ∅ = εω(c̄, d̄) ∈ F, in which

case F = ℘(ω), and so ϑ ⊇ η = C2. Thus, θ ⊇ h∗[C2] = B2, in which case θ = B2,
and so B ∈ Si[P](P), as required. �

2.2.3. Locality versus local finiteness. As an immediate consequence of [20, Lemma
2.1], in its turn, being that of [5, Corollary 2.3], we, first, have the following useful
universal observation:

Corollary 2.11. Any abstract hereditary local subclass of a locally-finite quasi-
variety is ultra-multiplicative.

Aside from quasi-varieties as such, certain representative subclasses of them are
local as well.
2.2.3.1. Local subclasses of local pre-varieties.

Lemma 2.12. Let P ⊆ AΣ be a [local (more specifically, quasi-equational) pre-
]variety. Then, (SIω |Si)[P])(P) ∪ A=1

Σ ) is local.

Proof. Consider any B ∈ (P \ ((SIω |Si)[P])(P) ∪ A=1
Σ )), in which case there are

some ā ∈ (B2 \∆B) 6= ∅, n ∈ (ω|{1}) and θ̄ ∈ (Co[P](B) \ (img ϑ̄B))n, where, for
any C ⊆ B, ϑ̄C , (〈∆C〉|〈∆C , C

2〉), “such that (B2 ∩ (
⋂

(img θ̄))) = ∆B”|, and
so some 〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((θi \ ϑB
j ) ∪ (ϑB

j \ θi))) 6= ∅. Let A be the finitely-
generated subalgebra of B generated by {a0, a1} ∪ {bi,jk | i ∈ n, j ∈ (1|2), k ∈ 2}, in
which case, by (2.5) with h = ∆A, η̄ , 〈θi ∩ A2〉i∈n ∈ (Co[P](A) \ (img ϑ̄A))n, as
〈b̄i,j〉j∈(1|2)

i∈n ∈ (
∏j∈(1|2)

i∈n ((ηi\ϑA
j )∪(ϑA

j \ηi))), so A ∈ (P\((SIω Si)[P])(P)∪A=1
Σ )), for

ā ∈ (A2\∆A) “and (A2∩(
⋂

(img η̄))) = (A2∩(
⋂

(img θ̄))) = (A2∩∆B) = ∆A”|. �

2.2.3.1.1. Finite semi-simplicity versus semi-simplicity and local finiteness. Lemma
2.12 immediately yields:

Corollary 2.13. Any locally-finite [relatively] semi-simple [local (more specifically,
quasi-equational) pre-]variety P ⊆ AΣ with hereditary SIω[P](P) ∪ A=1

Σ is [relatively]
finitely semi-simple.

3. Preliminaries: quaternary equational schemes

A quaternary Σ-(equational )scheme is any f ⊆ Eq4
Σ. This is called an implica-

tion scheme for a K ⊆ AΣ, if this satisfies the Σ-implication:

(3.1) ({x0 ≈ x1} ∪ f)→ (x2 ≈ x3).
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Likewise, it is called an identity |reflexive|symmetric|transitive one, if K satisfies
the Σ-implications of the form (∅|∅|f|(f ∪ (f[x2+i/x3+i]i∈2))) → Ψ, where Ψ ∈
(f([x3/x2]|[x2+i/xi]i∈2|[x3/x2, x2/x3]|[x3/x4])), reflexive symmetric transitive ones
being also called equivalence ones. Then, f is called a congruence one, if it
is an equivalence one, while, for each ς ∈ Σ of arity n ∈ (ω \ 1), K satisfies
the Σ-implications of the form (

⋃
j∈n(f[x2+i/x2+i+(2·j)]i∈2)) → Ψ, where Ψ ∈

(f[x2+i/ς(〈x2+i+(2·j)〉j∈n)]i∈2).] Finally, f [being finite] is called a “restricted
equationally definable principal {relative} congruence (REDP{R}C)”/“(equation-
al) implicative|disjunctive scheme/system for a “{pre-}variety”/ K ⊆ AΣ, if, for
each A ∈ K and all ā ∈ A4, (∀θ ∈ (Co{K}(A)/{∆A}) : (〈a0, a1〉 ∈ | 6∈ θ) ⇒
(〈a3, a3〉 ∈ θ)) ⇔ (A |= (

∧
f)[xi/ai]i∈I [cf. [6]/[20]|[19]] /“and so for IS[PU]K,

〈pre-varieties generated by classes of〉 Σ-algebras with [finite] implicative|disjunctive
system f being called 〈[finitely]〉 f-implicative|-disjunctive with the class of f-
implicative|-disjunctive members of any K′ ⊆ AΣ denoted by K′

f “in which case f,
being an implication scheme for (the pre-variety generated by) K, providing this
is quasi-equational, includes a finite one, by the Compactness Theorem for ultra-
multiplicative classes of algebras [14]”|, and so implicative quasi-varieties, being
thus finitely so, are exactly those in the original sense of [20]. Then, by Remark 2.4
therein, quasi-equational/finitely implicative pre-varieties are finitely disjunctive.

Given any τ ∈ Tm3
Σ, put

f⊃
τ , {τ ≈ (τ [x2/x3])},

f∂⊃
τ , {(τ [x0/x2+k, x1/x3−k, x2/(τ [x2/x2+k])]) ≈ x2+k | k ∈ 2},
f∨

τ , {(τ [x0/τ, x1/(τ [x2/x3])]) ≈ (τ [x0/τ, x1/(τ [x2/x3]), x2/x3])},
in which case f∨

τ is defined by f⊃
τ according to [20, Remark 2.4].

Remark 3.1. Given any [dual] discriminator τ ∈ Tm3
Σ for a K ⊆ AΣ, f([∂]⊃)/∨

τ is a
finite implicative/disjunctive system for K. In particular, any [dual] discriminator
pre-variety is finitely both implicative and disjunctive. �

This enables us to build easily an example of a non-quasi-equational finitely
both implicative and disjunctive pre-variety well-justifying the generic framework
of pre-varieties we follow here:

Example 3.2. Let Σ = {¬,∇, τ}, where ¬ and ∇ are unary, while τ is ternary,
A the Σ-algebra such that A , ω, τ(x0, x1, x2) is a (dual) discriminator for A

and, for all a ∈ A, ∇A(a) , min(a, 1), whereas ¬A(a) , max(0, a − 1). Then,
by Remark 3.1, the pre-variety P generated by A, being (dual) τ -discriminator,
is finitely both implicative and disjunctive. Let us show, by contradiction, that
it is not a quasi-variety. For suppose it is a quasi-variety. By induction on any
n ∈ ω, put ¬0[+n+1]xi , [¬¬n]xi[= ¬n¬xi], where i ∈ 2, and set εn , (∇(¬nx0) ≈
∇(¬nx1)). Then, given any N ⊆ ω, set εN , {εn|n ∈ N}. Note that the Σ-
implication εω → (x0 ≈ x1) is true in A, and so in P. Hence, by Remark 2.3,
there is some N ∈ ℘ω(ω) such that the Σ-quasi-identity εN → (x0 ≈ x1) is true
in P 3 A. However, A |= εN [xi/(i + m + 1)]i∈2, where m , (

⋃
N) ∈ ω, though

(m+ 1) 6= (m+ 2). This contradiction means that P is not a quasi-variety. �

3.1. Implicativity versus REDPRC and relative semi-simplicity.

Lemma 3.3. Let f ⊆ Eq4
Σ be an implication scheme for a [pre-]variety P ⊆ AΣ,

A ∈ P, ā, b̄ ∈ A2 and θ , CgA
[P](ā). Suppose A |= (

∧
f)[xi/ai, x2+i/bi]i∈2. Then,

b̄ ∈ θ.

Proof. As (3.1) is true in P 3 (A/θ) |= (
∧

f)[xi/νθ(ai), x2+i/νθ(bi)]i∈2, while ā ∈
θ = (ker νθ), we get b̄ ∈ θ. �
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Corollary 3.4. Let f ⊆ Eq4
Σ be an implication/REDPC scheme for a [pre-]variety

P ⊆ AΣ. Then, Pf ⊆ / = (Si[P](P) ∪ A=1
Σ ). In particular, any implicative [pre-

]variety is [relatively] both semi-simple and subdirectly representable.

Proof. Consider any non-one-element A ∈ Pf and ϑ ∈ (Co[P](A) \ {∆A}), in
which case there is some ā ∈ (ϑ \ ∆A) 6= ∅, and so, for any b̄ ∈ A2, A |=
(
∧

f)[xi/ai, x2+i/bi]i∈2. Then, “by Lemma 3.3”/ b̄ ∈ ϑ, in which case ϑ = A2,
and so A is [P-]simple. Conversely, for any A ∈ Si[P](P), Co[P](A) = {∆A, A

2}, in
which case, for all ā ∈ A4, as 〈a2, a3〉 ∈ A2, we have (∀θ ∈ Co[P](A) : (a0 θ a1) ⇒
(a2 θ a3))⇔ ((a0 = a1)⇒ (a2 = a3)), and so A is f-implicative, whenever f is an
REDP[R]C scheme for P 3 A. �

Theorem 3.5. Any f ⊆ Eq4
Σ is an identity congruence implication scheme for a[n

equational] pre-variety K ⊆ AΣ if[f ] it is an REDPC one.

Proof. The “if” part is immediate. [Conversely, if f is an identity congruence
implication scheme for K, then, by induction on construction of any ϕ ∈ Tmω

Σ, we
conclude that K satisfies the Σ-identities in f[x2+i/(ϕ[x0/xi])]i∈2, in which case, by
Mal’cev Lemma [13] (cf. [6, Lemma 2.1]), for any A ∈ A, ā ∈ A2 and b̄ ∈ CgA(ā), we
have A |= (

∧
f)[xi/ai, x2+i/bi]i∈2, and so Lemma 3.3 completes the argument]. �

This, by Lemma 3.3 and the Compactness Theorem for ultra-multiplicative
classes of algebras (cf., e.g., [14]), immediately yields:

Corollary 3.6. Any quasi-variety with REDPRC scheme f has a finite one ⊆ f.

Theorem 3.7. Let f ⊆ Eq4
Σ. Then, any [(not necessarily) quasi-equational pre-

]variety P ⊆ AΣ is f-implicative iff it is [relatively (both subdirectly-representable
and)] semi-simple with REDP[R]C scheme f, in which case ((SI |Si)[P](P)∪A=1

Σ ) =
Pf.

Proof. If P is f-implicative, that is, is the pre-variety generated by Pf, then, for any
A ∈ P and ā ∈ A4 such that A 6|= (

∧
f)[xi/ai]i∈4, by (2.8), there are some B ∈ Pf

and h ∈ hom(A,B) such that B 6|= (
∧

f)[xi/h(ai)]i∈4, that is, h(a0|2) = | 6= h(a1|3),
in which case, by (2.4), 〈a0|2, a1|3〉 ∈ | 6∈ (kerh) ∈ Co[P](A), and so Remark 2.4,
Lemma 3.3 and Corollary 3.4 complete the argument. �

3.1.1. Implicativity versus filtrality.

Definition 3.8. Given any n ∈ ω, a f ⊆ Eq2·(n+1)
Σ is called a(n)/an “restricted

equationally definable n-generated [relative] congruence (n-REDG[R]C) scheme”/
“(equational) n-multiple{-premise} implicative system” for a “[pre-]variety”/ K ⊆
PΣ, if for each A ∈ K and every ā ∈ (A2)n+1, (∀θ ∈ (Co[K](A)/{∆A}) : ((ā�n) ∈
θn)⇒ (an ∈ θ))⇔ (A |= (

∧
f)[xi+j/πj(ai)]i∈(n+1),j∈2). �

Theorem 3.9. Any [quasi-]equational/ [pre-]variety P ⊆ AΣ is implicative iff it is
[relatively] /“both subdirectly-representable and” (subdirectly) /“finitely |principally”
filtral.

Proof. First, assume P is {both quasi-equational and} f-implicative, for some
f ⊆ Eq4

Σ, in which case, by Corollary 3.4, P is [relatively] both subdirectly-
representable and semi-simple, while K , Pf ⊇ Si[P](P) is both abstract and hered-
itary, whereas P = ISPK = IPSDSK. Consider any set I, any A ∈ (Si ‖SI)[P](P)I ,
any subalgebra B of

∏
A, any {Y ⊆}X ⊆ω {Z ⊆}B2 and any b̄ ∈ B2. Let

IX , (I ∩ (
⋂
ε−1

I [X])){⊆ IY } ⊆ I, in which case Fi(I) 3 FX , ℘(IX , I){⊇ FY ,
and so GZ , {FW | W ∈ ℘ω(Z)} ⊆ Fi(I) is upward-directed. Then, Fi(I), be-
ing inductive, contains HZ , (

⋃
GZ).} Take any bijection ā from m , |X| ∈ ω
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onto X. By induction on any n ∈ ω, define fn ⊆ Eq2·(n+1)
Σ by f0 , {x0 ≈ x1}

and fn+1 , (
⋃
{f[x2+i/ϕi]i∈2 | ϕ̄ ∈ (fn[xj/xj+2]j∈(2·(n+1)))}), in which case

fn is an n-multiple implicative system for K, and so, by (2.4), (2.8) and Re-
mark 2.2, is an n-REDG[R]C scheme for P. Then, as (img

∏
A) ⊆ Si[P](P) ⊆ K,

(b̄ ∈ CgB
[P](X)) ⇔ (B |= (

∧
fm)[xj+k/πk(aj);x(2·m)+l/bl]j∈m;k,l∈2) ⇔ (∀i ∈ I :

Ai |= (
∧

fm)[xj+k/πi(πk(aj));x(2·m)+l/πi(bl)]j∈m;k,l∈2) ⇔ (∀i ∈ I : (i ∈ IX) ⇒
(i ∈ εI(b̄))) ⇔ (IX ⊆ εI(b̄)) ⇔ (εI(b̄) ∈ FX) ⇔ (b̄ ∈ θB

FX
), in which case

CgB
[P](X) = θB

FX
{and so, by Remark 2.3 and (2.11), CgB

[P](Z) = θB
HZ
}.

Conversely, assume P is [relatively] /“both subdirectly-representable and” sub-
directly principally filtral, in which case, by “Remark 2.4 as well as”/ Footnote
1, Lemma 2.5 and Corollary 2.10, P is [relatively] both subdirectly-representable
and semi-simple with abstract and non-trivially-hereditary K , (Si ‖SI)[P](P).
Let I , {θ ∈ CoK(Tm4

Σ) | (x0 θ x1) ⇒ (x2 θ x3)}, A , 〈A/i〉i∈I ∈ KI ,
D , (

∏
A), h , (

∏
i∈I νi) and ā , 〈h(vj)〉j∈4, in which case, by (2.2) and

(2.7), h ∈ hom(Tm4
Σ,D), while B , (D�(img h)) is a subdirect product of A,

whereas h ∈ homS(Tm4
Σ,B), and so ϑ , CgB

[P](〈a0, a1〉) = θB
F , for some F ∈

Fi(I). Then, 〈a0, a1〉 ∈ ϑ, in which case εI(〈a2, a3〉) ⊇ εI(〈a0, a1〉) ∈ F, and
so εI(〈a2, a3〉) ∈ F, i.e., 〈a2, a3〉 ∈ ϑ. Let f , (kerh) ⊆ Eq4

Σ. Consider any
C ∈ K and g ∈ hom(Tm4

Σ,C). Then, providing f ⊆ η , (ker g) 3 〈x0, x1〉, by
the Homomorphism Theorem, f , (h−1 ◦ g) ∈ hom(B,C), in which case, by (2.5),
〈a0, a1〉 ∈ ζ , (ker f) = f−1

∗ [∆C ] ∈ Co[P](B), and so 〈a2, a3〉 ∈ ϑ ⊆ ζ. In that
case, 〈x2, x3〉 ∈ η. Now, assume (〈x0, x1〉 ∈ η) ⇒ (〈x2, x3〉 ∈ η), in which case
f ⊆ η, i.e., C |= (

∧
f)[g], whenever η = Eq4

Σ. Otherwise, by the {}-optional ver-
sion of the right alternative of (2.4), η ∈ I, in which case, by (2.1), f ⊆ η, i.e.,
C |= (

∧
f)[g], and so f is an implicative system for K. Thus, P, being [relatively]

subdirectly-representable, is f-implicative. �

Corollary 3.10. Any finitely implicative pre-variety is relatively both subdirectly-
representable and filtral.

Proof. Any implicative system f ⊆ω Eq4
Σ for any K ⊆ AΣ is so for PUK, in which

case ISPPUK ⊇ ISPK is f-implicative, and so Theorem 3.9 ends the proof. �

Whether the converse holds remains an open problem.

3.1.2. Generic identity equivalence implication schemes for distributive lattice ex-
pansions. Here, it is supposed that Σ+ ⊆ Σ. Given any A ∈ AΣ, X ⊆ A and
Ω ⊆ Tm1

Σ, we have ΩA
X : A→ ℘(Ω), a 7→ {ϕ ∈ Ω | ϕA(a) ∈ X}.

Given any ϕ̄ ∈ (Tm1
Σ)∗ with x0 ∈ Ξ , (img ϕ̄), ι ∈ Ω ∈ ℘(V1,Ξ), i ∈ 2 and

∆ ∈ ℘(Ξ), let εi,ι
ϕ̄,∆ , ((∧+〈(ϕ̄ ∩∆) ∗ ((ϕ̄ ∩∆) ◦ [x0/x1]), ι(x2+i)〉) / (∨+〈(ϕ̄ \∆) ∗

((ϕ̄ \ ∆) ◦ [x0/x1]), ι(x3−i))) ∈ Eq4
Σ and fϕ̄

Ω , {εi,ι
ϕ̄,∆ | i ∈ 2, ι ∈ Ω,∆ ∈ ℘(Ξ)} ∈

℘ω(Eq4
Σ).

Lemma 3.11. Let A be a Σ-algebra with (distributive) lattice Σ+-reduct, ϕ̄ ∈
(Tm1

Σ)∗ with x0 ∈ Ξ , (img ϕ̄) and Ω ∈ ℘(V1,Ξ). Then, fϕ̄
Ω is an identity reflexive

symmetric (transitive implication) scheme for A.

Proof. Clearly, for all j ∈ 2, ι ∈ Ξ and ∆ ∈ ℘(Ξ), there are some φ, ψ, ξ ∈ Tm3
Σ

such that (εj,ι
ϕ̄,∆[x3/x2]) = ((φ ∧ ξ) / (ψ ∨ ξ)), in which case this is satisfied in

lattice Σ-expansions, and so in A. Likewise, there are then some η̄, ζ̄ ∈ (Tm2
Σ)+

with ((img η̄) ∩ (img ζ̄)) 6= ∅ such that (εj,ι
ϕ̄,∆[x2+i/xi]i∈2) = ((∧+η̄) / (∨+ζ̄)),

in which case this is satisfied in lattice Σ-expansions, and so in A. Furthermore,
(fϕ̄

Ω[x2/x3, x3/x2]) = fϕ̄
Ω. (Next, since the Σ+-quasi-identity {(x0 ∧ x1) / (x2 ∨
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x3), (x0 ∧ x3) / (x2 ∨ x4)} → ((x0 ∧ x1) / (x2 ∨ x4)), being satisfied in distributive
latices, is so in A, so are logical consequences of its substitutional Σ-instances
(fϕ̄

Ω ∪ (fϕ̄
Ω[x2+i/x3+i]i∈2)) → Ψ, where Ψ ∈ (fϕ̄

Ω[x3/x4]). Finally, consider any
a ∈ A and b̄ ∈ (A2 \ ∆A), in which case, by the Prime Ideal Theorem, there
are some k ∈ 2 and some prime filter F of A such that bk ∈ F 63 b1−k, and
so, as ∆ , ΞA

F (a) ∈ ℘(Ξ) and x0 ∈ Ω, A 6|= (
∧

fϕ̄
Ω)[xi/a, x2+i/bi]i∈2, for A 6|=

εk,x0
ϕ̄,∆ [xi/a, x2+i/bi]i∈2.) �

This, by Corollary 3.4, immediately yields:

Corollary 3.12. Let A be a non-one-element Σ-algebra with distributive lattice
Σ+-reduct, ϕ̄ ∈ (Tm1

Σ)∗ with x0 ∈ Ξ , (img ϕ̄) and Ω ∈ ℘(V1,Ξ). Suppose fϕ̄
Ω is

an implicative system for A. Then, A is simple.

3.1.2.1. Equality determinants versus implicativity. Recall that a (logical) Σ-matrix
is any pair A = 〈A, D〉 with a Σ-algebra A and a D ⊆ A, in which case an Ω ⊆ Tm1

Σ

is called an equality/identity determinant for A, if ΩA
D is injective (cf. [19]), and so

one for a class M of Σ-matrices, if it is so for each member of M.

Theorem 3.13. Let M be a class of Σ-matrices and ϕ̄ ∈ (Tm1
Σ)∗ with x0 ∈ Ξ ,

(img ϕ̄). Suppose, for all A ∈ M, π0(A)�Σ+ is a distributive lattice with set of its
prime filters π1[M ∩ π−1

0 [{π0(A)}]]. Then, Ξ is an equality determinant for M iff
fϕ̄

V1
is an implicative system for (IS[>1]{PU})π0[M] ([in which case its members

are simple]).

Proof. Let A = 〈A, D〉 ∈ M, ā ∈ A2 and, for any b̄ ∈ A2, hb̄ , [xi/ai, x2+i/bi]i∈2.
First, assume Ξ is an equality determinant for M. Consider any b̄ ∈ A2. Assume
A 6|= εj,x0

ϕ̄,∆[hb̄], for some j ∈ 2 and ∆ ⊆ Ξ, in which case, by the Prime Ideal
Theorem, ∃B = 〈A, D′〉 ∈ M : ∀k ∈ 2 : ∆ = ΞA

D′(ak), and so a0 = a1. Then,
by Lemma 3.11 with Ω = Ξ, fϕ̄

V1
is an implicative system for A. Conversely,

assume fϕ̄
V1r is an implicative system for A and ∆ , ΞA

D(a0) = ΞA
D(a1). Take any

b̄ ∈ (D × (A \ D)) 6= ∅, in which case, as ∆ ⊆ Ξ 3 x0, A 6|= ε0,x0
ϕ̄,∆ [hb̄], for D is

a prime filter of A�Σ+, and so a0 = a1. (Finally, Corollary 3.12 completes the
argument.) �

3.2. Disjunctivity. Unless otherwise specified, fix any f ⊆ Eq4
Σ.

3.2.1. Disjunctivity versus finite subdirect irreducibility and congruence-distributi-
vity.

Lemma 3.14. Any f-disjunctive /finite non-one-element A ∈ AΣ is finitely/ sub-
directly-irreducible. In particular, any disjunctive pre-variety is (relatively) finitely
subdirectly-representable.

Proof. Consider any θ, ϑ ∈ (Co(A)\{∆A}) and take any (ā|b̄) ∈ ((θ|ϑ)\{∆A}) 6= ∅,
in which case the Σ-identities in f[x1|3/x0|2], being true in A, are so in A/(θ|ϑ) (in
particular, under [x0|2/νθ|ϑ((a|b)0), x(2|0)+i/νθ|ϑ((b|a)i)]i∈2), and so ∆A + {〈φA[xi/

ai, x2+i/bi]i∈2, φ
A[xi/ai, x2+i/bi]i∈2〉 | (φ ≈ ψ) ∈ f} ⊆ (θ∩ϑ). Then, (θ∩ϑ) 6= ∆A.

Thus, induction on the cardinality of finite subsets of Co(A) ends the proof. �

Given any A ∈ AΣ, let fA : ℘(A)2 → ℘(A), 〈X,Y 〉 7→ {〈φA
0 [xi/ai, x2+i/bi]i∈2,

φA
1 [xi/ai, x2+i/bi]i∈2〉 | φ̄ ∈ f, ā ∈ X, b̄ ∈ Y }.

Lemma 3.15. Let P ⊆ AΣ 3 A be a f-disjunctive pre-variety and X,Y, Z ⊆ A2.
Then, CgA

P (fA(X,Y ) ∪ Z) = (CgA
P (X ∪ Z) ∩ CgA

P (Y ∪ Z)).
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Proof. In that case, P is generated by K , Pf = ISK, so, by Remark 2.2 and (2.8),
CoK(A) is a basis of CoP(A). Then, for any θ ∈ CoK(A), A/θ is f-disjunctive, in
which case (fA(X,Y ) ∪ Z) ⊆ θ iff either (X ∪ Z) ⊆ θ or (Y ∪ Z) ⊆ θ, and so, for
any ā ∈ A2, (ā ∈ CgA

P (fA(X,Y ) ∪ Z))⇔ (∀θ ∈ CoK(A) : ((fA(X,Y ) ∪ Z) ⊆ θ)⇒
(ā ∈ θ)) ⇔ ((∀θ ∈ CoK(A) : (X ∪ Z) ⊆ θ) ⇒ (ā ∈ θ))&(∀θ ∈ CoK(A) : ((Y ∪ Z) ⊆
θ)⇒ (ā ∈ θ))⇔ (ā ∈ (CgA

P (X ∪ Z) ∩ CgA
P (Y ∪ Z))), as required. �

Corollary 3.16. Any f-disjunctive [pre-]variety P ⊆ AΣ is [relatively] congruence-
distributive, and so is any [quasi-equational/finitely] implicative one.

Proof. Then, by Lemma 3.15, for any A ∈ P and θ, ϑ, η ∈ CoP(A), we have (CgA
P (θ∪

η)∩CgA
P (ϑ∪ η)) = CgA

P (fA(θ, ϑ)∪ η) = CgA
P (CgA

P (fA(θ, ϑ))∪ η) = CgA
P ((CgA

P (θ)∩
CgA

P (ϑ)) ∪ η) = CgA
P ((θ ∩ ϑ) ∪ η), as required. �

Lemma 3.17. Let P ⊆ AΣ be a f-implicative pre-variety and f′ a disjunctive
system for Pf. Then, every f′-disjunctive member of P is f-implicative.

Proof. In that case, f, being is an identity implication scheme for Pf, is so for
P = ISPPf, while the Σ-identities in

⋃
{f′[x2+i/ϕi]i∈2 | ϕ̄ ∈ f}, being true in Pf,

are so in P, and so f′-disjunctive members of P are f-implicative, as required. �

Corollary 3.18. For any f-disjunctive [pre-]variety P ⊆ AΣ, Pf = (SIω[P](P) ∪
A=1

Σ ). In particular, any [quasi-equational/finitely] implicative [pre-]variety is [rel-
atively] finitely semi-simple.

Proof. Then, any one-element Σ-algebra is f-disjunctive, while, for any A ∈ SIω[P](P)
and ā, b̄ ∈ (A2 \ ∆A), since CgA

[P](ā|b̄) ∈ (Co[P](A) \ {∆A}), whereas, by Lemma
3.15, (CgA

[P](ā) ∩ CgA
[P](b̄)) = CgA

[P](fA(ā|b̄)), we have fA(ā|b̄) 6= ∆A = CgA
[P](∆A),

i.e., A 6|= (
∧

f)[xi/ai, x2+i/bi]i∈2, in which case A is f-disjunctive, because the
Σ-identities in

⋃
j∈2 f[x(2·j)/x(2·j)+1], being true in Pf, are so in ISPPf = P 3 A,

and so Lemmas 3.4, 3.14, 3.17 and [20, Remark 2.4] complete the argument. �

Theorem 3.19. Any [pre-]variety P ⊆ AΣ is disjunctive iff it is [relatively both]
congruence-distributive [and finitely-subdirectly-representable] with SIω[P](P) ∪ A=1

Σ

being “a universal (infinitary) model class”/hereditary.

Proof. The “only if” part is by Lemma 3.2.1 and Corollary 3.18. Conversely, assume
P is [relatively both] congruence-distributive [and finitely-subdirectly-representable]
with hereditary SIω[P](P) ∪ A=1

Σ , in which case, by Remark 2.4, it is [relatively]
finitely-subdirectly-representable, while, by (2.5), Co[P](Tm4

Σ) ∩ ℘(θ,Eq4
Σ), where

θ , (Eq4
Σ ∩(

⋂
CoSIω

[P](P)(Tm4
Σ))) ∈ Co[P](Tm4

Σ), is distributive, for Co[P](Tm4
Σ/θ) is

so. Let ∀j ∈ 2 : ϑj , CgTm4
Σ

[P] (θ ∪ {〈x2·j , x(2·j)+1〉}) ∈ (Co[P](Tm4
Σ) ∩ ℘(θ,Eq4

Σ)) 3
f , (ϑ0 ∩ ϑ1) ⊆ Eq4

Σ. Consider any A ∈ SIω[P](P) and any ā ∈ A4. Let h ∈
hom(Tm4

Σ,A) extend {〈xi, ai〉 | i ∈ 4}, in which case B , (A�(img h)) ∈ (SIω[P](P)∪
A=1

Σ ), and so (({〈a0, a1〉, 〈a2, a3〉} ∩ ∆A) 6= ∅) &|⇔ (A |= Φ4
f[h�V4]), unless B ∈

SIω[P](P). Otherwise, by (2.5) and the Homomorphism Theorem, θ ⊆ η , (kerh) ∈
MIω(Co[P](Tm4

Σ)), in which case we have:

(A |= Φ4
f[h�V4])⇔ ((ϑ0 ∩ ϑ1) = f ⊆ η)⇔ (η = CgTm4

Σ
[P] (η ∪ (ϑ0 ∩ ϑ1)) =

(CgTm4
Σ

[P] (η ∪ ϑ0) ∩ CgTm4
Σ

[P] (η ∪ ϑ1))⇔ (∃j ∈ 2 : η = CgTm4
Σ

[P] (η ∪ ϑj))⇔
(∃j ∈ 2 : ϑj ⊆ η)⇔ (∃j ∈ 2 : 〈x2·j , x(2·j)+1〉 ∈ η)⇔ (∃j ∈ 2 : a2·j = a(2·j)+1),

and so f is a disjunctive system for SIω[P](P). Thus, P, being [relatively] finitely-
subdirectly-representable, is f-disjunctive, as required. �
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This, by Remark 2.4 and Corollary 3.18 (as well as the Compactness Theorem
for ultra-multiplicative classes; cf., e.g., [14]), immediately yields:

Corollary 3.20. Any [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive iff it is [rel-
atively] congruence-distributive with SIω[Q](Q)∪A=1

Σ being “a universal (first-order)
model class”/“hereditary (and ultra-multiplicative)”.

This, in its turn, by Footnote 1, Corollary 2.11 and Lemma 2.12, immediately
yields:

Corollary 3.21. Any locally-finite [quasi-]variety Q ⊆ AΣ is (finitely) disjunctive
iff it is [relatively] congruence-distributive with SIω[Q](Q) ∪ A=1

Σ being “a universal
{infinitary} model class”/hereditary.

Finally, this, by the congruence-distributivity of lattice expansions (cf., e.g., [16])
and Corollary 2.7, immediately yields:

Corollary 3.22. Suppose Σ+ ⊆ Σ. Then, any finitely-generated variety V ⊆ AΣ

of lattice expansions with non-trivially-hereditary SI(ω)(V) is finitely disjunctive.

This provides an immediate (though far from being constructive) insight into
the finite disjunctivity of the finitely-generated variety of distributive/Stone|“De
Morgan” lattices/algebras|algebras‖lattices, a constructive one being given by [18,
Example 1/2] and [19, Lemma 11].
3.2.1.1. Implicativity versus finite semi-simplicity and disjunctivity. By Footnote
1, Theorem 3.9, Corollaries 2.8, 2.11, 2.13, 3.18, 3.20, 3.21, Lemma 2.12 and [20,
Remark 2.4], we eventually get:

Theorem 3.23. Any locally-finite/ [quasi-]variety Q ⊆ AΣ is implicative iff it
is /finitely both disjunctive and [relatively] semi-simple iff it is [relatively] both
congruence-distributive and semi-simple with Si[Q](Q) ∪ A=1

Σ being “a universal
/first-order model class”|“hereditary /“and ultra-multiplicative””.

This, by the congruence-distributivity of lattice expansions (cf., e.g., [16]), Corol-
laries 2.7, 3.4 and Footnote 1, immediately yields:

Corollary 3.24. Suppose Σ+ ⊆ Σ. Then, any locally-finite variety V ⊆ AΣ of lat-
tice expansions is implicative iff it is semi-simple “and (finitely) disjunctive”|“with
non-trivially-hereditary (Si |SI)(V)”.

Corollary 3.25. Suppose Σ+ ⊆ Σ. Let K ⊆ AΣ be a finite set of finite lattice
expansions without non-simple non-one-element subalgebras and V the variety gen-
erated by K. Then, V is implicative with (Si |SI)(V) = IS>1K.

These provide an immediate /{though far from being constructive} insight into
the not/ implicativity of (and so not/ REDPC for; cf. Theorem 3.7) the not/ semi-
simple finitely-generated variety of Stone/distributive|“De Morgan” algebras/latti-
ces|algebras‖lattices /(cf. [8]|[21]‖) /“a constructive one being given by Theorem
3.13 and [18, Example 1]|“Remark 4.3””.

Whether the /-alternative stipulations are necessary in Theorem 3.23 remains
an open issue. On the other hand, the necessity of the “[relative] congruence-
distributivity”//“lattice expansion” stipulation therein// as well as in Corollaries
3.20, 3.21, 3.22, 3.24, 3.25 and Theorem 3.19 is demonstrated by:

Example 3.26. Let Σ = {∧} and SL the variety of semi-lattices, in which case,
for any filter F 6= A of any A ∈ SL, χF

A is a surjective homomorphism from A

onto S2 ∈ SL with S2 , 2 and ∧A , (∩�22), and so, by (2.8), SL = IPSDS2.
Now, assume |A| > 2, in which case, providing A is a chain, for any ā ∈ A3 with
| img ā| = 3 such that a0 6A a1 6A a2 and i ∈ 2, ∆A 6= θi , ([ai, ai+1]2A ∪
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∆A) = CgA({〈ai, ai+1〉}) ∈ Co(A), while (θ0 ∩ θ1) = ∆A, and so A is not finitely-
sibdirectly-irreducible. Otherwise, take any b̄ ∈ A2 such that c , (b0 ∧A b1) 6∈
(img b̄), in which case, for each j ∈ 2, ϑj , ((

⋃
{[c∧A d, bj ∧A d]2A | d ∈ A})∪∆A) )

∆A is symmetric and forms a subalgebra of A2, and so the transitive closure ηj =
CgA({〈c, bj〉}) ⊇ ϑj of ϑj is a congruence of A distinct from ∆A. By contradiction,
prove that (η0 ∩ η1) ⊆ ∆A. For suppose (η0 ∩ η1) * ∆A. Take any ē ∈ ((η0 ∩ η1) \
∆A) 6= ∅, in which case, for all k, l ∈ 2, 〈ek, e1−k〉 ∈ (θl \ ∆A), that is, there are
some ml ∈ ω, f̄ l ∈ Aml+2 and ḡl ∈ Aml+1 such that f l

0 = ek, f l
ml+1 = e1−k and,

for every n ∈ (ml + 1), f l
n[+1] ∈ [c ∧A gl

n, bl ∧A gl
n]A, and so ek 6A c, when taking

n = 0, because {l, 1− l} = 2, while ek = f
l|(1−l)
0 6A (bl|(1−l) ∧A g

l|(1−l)
0 ) 6A bl|(1−l).

By induction on any ` ∈ (ml + 2), show that ek 6A f l
`. The case ` = 0 is by the

equality ek = f l
0. Otherwise, (ml + 2) 3 (` − 1) < `, in which case, by induction

hypothesis, we have c >A ek 6A f l
`−1 6A (bl ∧A gl

`−1) 6A gl
`−1, and so we get

ek 6A (c ∧A gl
`−1) 6A f l

`. In particular, ek 6A e1−k, when taking ` = (ml + 1),
since f l

ml+1 = e1−k. Then, e0 = e1, in which case this contradiction shows that
(η0 ∩ η1) = ∆A, and so A is not finitely-sibdirectly-irreducible. Thus, by (2.10)
as well as the simplicity of two-element algebras and absence of their proper non-
one-element subalgebras, ((SI(ω) |Si)(SL){∪A=1

Σ }) = (IS2{∪A=1
Σ }) is the class of

{no-more-than-}two-element semi-lattices {that is, the universal first-order model
subclass of SL relatively axiomatized by the single universal first-order sentence
∀ı∈3xı((x2 ≈ x1) ∨ (x2 ≈ x0) ∨ (x1 ≈ x0))}, while SL, being finitely-semi-simple
and finitely-generated, is semi-simple and locally-finite. On the other hand, since
Fi(2) = {℘(N, 2) | N ⊆ 2}, the set {∆22 , (22)2} ∪ {ker(π�22) |  ∈ 2} of filtral
congruences of S2

2 does not contain its congruence ∆22∪{〈〈0,k〉, 〈0, 1− k〉〉 | k ∈ 2},
in which case, by Theorem 3.9, SL, not being filtral, is not implicative, and so, by
Theorem 3.23, is neither congruence-distributive nor disjunctive. �

3.2.2. Disjunctivity versus distributivity of lattices of sub-varieties.

Lemma 3.27. Let K be a class of Σ-algebras with a disjunctive system f ⊆ Eq4
Σ

as well as R and S are relative sub-varieties of K. Then, so is R ∩ ‖ ∪ S. In
particular, relative sub-varieties of K form a distributive lattice.

Proof. Take any I, J ⊆ Tmω
Σ with (R|S) = (K∩Mod(I|J)), in which case (R ∩ ‖ ∪ S)

= (K ∩Mod((I ∪ J)‖
⋃
{f[xi/φi, x2+i/ψi]i∈2 | (φ̄|ψ̄) ∈ ((I|J)[xj/x(2·j)+(0|1)]j∈ω)})),

and so the distributivity of unions with intersections completes the argument. �

This, by (2.10), (2.9) and Lemma 3.14, immediately yields:

Corollary 3.28. Let K be a [finite] class of finite Σ-algebras with a disjunctive
system f ⊆ Eq4

Σ and P the pre-variety generated by K. Suppose P is a variety.
Then, SI(P) = IS>1K, in which case S 7→ (S∩S{>1}K) and R 7→ IPSDR are inverse
to one another isomorphisms between the lattices of sub-varieties of P and relative
ones of S{>1}K, and so they are distributive [and finite].

Likewise, by (2.10), (2.9), Theorem 3.7 (as well as [20, Remark 2.4] and Lemma
3.27), we immediately have:

Corollary 3.29. Let K be a [finite] class of [finite] Σ-algebras with a (finite) im-
plicative system f ⊆ Eq4

Σ and P the pre-variety generated by K. Suppose P is a
variety. Then, (SI |Si)(P) = P>1

f = IS>1K, in which case S 7→ (S ∩ S{>1}K) and
R 7→ IPSDR are inverse to one another isomorphisms between the [finite] (distribu-
tive) lattices of sub-varieties of P and relative ones of S{>1}K.
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4. Morgan-Stone lattices versus distributive ones

From now on, we deal with the signatures Σ(−)
+[,01] , (Σ+(∪{¬})[∪{⊥,>}]),

[bounded] {distributive} lattices being supposed to be Σ+[,01]-algebras with their
variety denoted by [B]{D}L and the chain [bounded] distributive lattice with car-
rier n ∈ (ω \ 2) and the natural ordering on this denoted by Dn[,01], in which case
εn2 , {〈0, 0〉, 〈1, n− 1〉} is an embedding of D2[,01] into Dn[,01], while, for each i ∈ 2,
ε43:i , (χ3\(2−i)

3 ×χ3\(1+i)
3 ) is an embedding of D3[,01] into D2

2[,01]. First, taking the
Prime Ideal Theorem, (2.8), (2.10) and Corollary 3.11 into account, we immediately
have the following well-known fact (cf. [8] as to REDPC for [B]DL):

Lemma 4.1. Let A ∈ [B]L and F ⊆ A. Suppose F is either a prime filter of A

or in {∅, A}. Then, [unless F ∈ {∅, A}] h , χF
A ∈ hom(A,D2[,01]) [and h[A] = 2],

in which case [B]DL = IPSDD2[,01], and so [B]DL is the semi-simple [pre-/quasi-
]variety generated by D2[,01] with (Si |SI)([B]DL) = ID2[,01] and REDPC scheme
f〈x0〉

V1
.

A [bounded] (De) Morgan-Stone {(D)MS} lattice is any Σ−
+[,01]-algebra, who-

se Σ+[,01]-reduct is a [bounded] distributive lattice and which satisfies the Σ−
+-

identities:

¬(x0 ∧ x1) ≈ (¬x0 ∨ ¬x1),(4.1)
x0 / ¬¬x0,(4.2)

in which case, by (4.1) [and (4.2)[x0/>]], it satisfies the Σ−
+-quasi-identity [and the

Σ−
+[,01]-identity]:

(x0 / x1) → (¬x1 / ¬x0)[,(4.3)
¬¬> ≈ >],(4.4)

and so the Σ−
+[,01]-identities:

¬(x0 ∨ x1) ≈ (¬x0 ∧ ¬x1),(4.5)
¬¬¬x0 ≈ ¬x0[,(4.6)
¬⊥ ≈ >],(4.7)

their variety being denoted by [B](D)MSL. Then, bounded Morgan-Stone lattices,
satisfying the Σ−

+,01-identity:

(4.8) ¬> ≈ ⊥,
are nothing but (De) Morgan-Stone {MS} algebras [2] 〈cf. [23]〉, their variety being
denoted by (D)MSA. An a ∈ A is called {a} (negatively-)idempotent {element of
an A ∈ MSL}, if {(¬A)a} forms a subalgebra of A, i.e., ¬A(¬A)a = (¬A)a, with
their set denoted by =A

(¬), Morgan-Stone lattices with carrier of cardinality no less
than 2({−1}) and with({out non-}negatively-)idempotent elements being said to
be ( {totally} negatively-)idempotent.

Remark 4.2. By (4.1), (4.5), (4.6), Corollary 3.11 and Theorem 3.5, f〈x0,¬x0,¬¬x0〉
{x0,¬x0,{¬¬x0}

is an REDPC scheme for [B]MS(L[/A]). �

4.1. Subdirectly-irreducibles. Let MS6 be the Σ−
+-algebra with (MS6�Σ−

+) ,
((D2

2�(2
2 \ {〈1, 0〉})) ×D2) and ¬MS6 ā , 〈1 − a2, 1 − a2, 1 − a1〉, for all ā ∈ MS6

(the Hasse diagram of its lattice reduct with its [non-]idempotent elements marked
by [non-]solid circles and arrows reflecting action of its operation ¬ on its non-
idempotent elements is depicted at Figure 1), in which case it is routine to check to
be a Morgan-Stone lattice, and so are both MS5 , (MS6�(MS6 \ {〈0, 0, 1〉})
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Figure 1. The Morgan-Stone lattice MS6.

and MS2 , (MS5�{〈i, 1, 0〉 | i ∈ 2}) as well as, for each j ∈ 2, MS4:j ,
(MS5+j�(MS5+j \ (((j + 1) × {1}) × {1 − j}))). Likewise, let (DM|S)4|3 be

the Σ−
+-algebra with ((DM|S)4|3�Σ

−
+) , D

2|
2|3 and ¬(DM|S)4|3 , ((((π1�2) ◦ (22 \

∆2)) × ((π0�2) ◦ (22 \ ∆2)))|χ1
3), in which case ε

6|5
4|3 , ((((π0�22) × (π0�22)) ×

(π1�22))|(ε43:0 × χ
3\1
3 )) is an embedding of (DM|S)4|3 into (MS|MS)6|5. Finally,

for any n ∈ ({3, 4}|{2}), let (K|B)n be the Σ−
+-algebra with ((K|B)n�Σ−

+) , Dn

and ¬(K|B)n , {〈m,n− 1−m〉 | m ∈ n}, in which case ε
3‖4
2 is an embedding

of B2 into K3‖4, while, for every l ∈ 2, ε43:l is an embedding of K3 into DM4,
and so ε43:l ◦ ε64 is that into MS4:(1−l). Moreover, {MS6,MS5,MS2, img(ε32 ◦ ε53)} ∪
(
⋃
{{MS4:k, img(ε43:k◦ε64)} | k ∈ 2}) are exactly the carriers of members of S>1MS6,

in which case these are isomorphic to those of the skeleton MS , ({MS` | ` ∈
{6, 5, 2}}∪{MS4:k | k ∈ 2}∪{DM4,K3,S3,B2}), and so this is that of IS>1MS6

with the embeddability partial ordering � between members of MS, for these are all
finite. And what is more, D6 , (MS6∩π−1

0 [{1}]) is a prime filter of MS6�Σ+, while
Ω , {x0,¬x0,¬¬x0} is an equality determinant for 〈MS6, D6〉, in which case, by
[19, Lemma 11], fΩ , {(τ(xı) ∧ ρ(x2+)) / (τ(x1−ı) ∨ ρ(x3−)) | ı,  ∈ 2, τ, ρ ∈ Ω}
is a disjunctive system for MS6, and so, for ISMS6.

Remark 4.3. Elements of PF4 , {22 ∩ π−1
i [{1}] | i ∈ 2} are exactly all prime filters

of D2
2, while {x0,¬x0} is an equality determinant for M , ({DM4}×PF4), in which

case, by Theorem 3.13, f〈x0,¬x0〉
V1

is an implicative system for IS{>1}DM4 {and so,
by Corollary 3.12, its members are simple, as it is well-known but shown directly
in a more cumbersome way}. �

Theorem 4.4. For any prime filter F of the Σ+-reduct of any A ∈ MSL there is an
h ∈ hom(A,MS6) with (kerh) ⊆ (kerχF

A), in which case MSL is the [pre-/quasi-
]variety generated by MS6 with REDPC scheme f〈x0,¬x0,¬¬x0〉

Ω , and so SI(MSL) =
IMS.

Proof. Let f , χF
A, G , (¬A)−1[(¬A)−1[F ]], H , (A \ (¬A)−1[F ]) and h , (f ×

χG
A) × χH

A ), in which case, by (2.1) and (4.6), (ker f) ⊇ (((ker f) ∩ (kerχG
A)) ∩

(kerχH
A )) = (kerh) ⊆ (¬A ◦ h), while, by (4.1) and (4.5), G|H is either a prime

filter of A�Σ+ or in {∅, A}, whereas, by (4.2), F ⊆ G, and so, by (2.2), π0(h(a)) 6
π1(h(a)), for all a ∈ A. Then, by (2.7), Lemma 4.1 and the Homomorphism
Theorem, h is a surjective homomorphism from A onto the Σ−

+-algebra B with
(B�Σ+) , (D3

2�h[A]) as well as ¬B , (h−1 ◦ ¬A ◦ h), in which case B ⊆ MS6,
since π0(h(a)) 6 π1(h(a)), for all a ∈ A, and so B = (MS6�h[A]), as, for all
a ∈ A, (¬Aa ∈ G) ⇔ (¬Aa ∈ F ) ⇔ (a 6∈ H), in view of (4.6), as well as (¬Aa ∈
H) ⇔ (¬A¬Aa 6∈ F ) ⇔ (a 6∈ G). Hence, h ∈ hom(A,MS6) and (kerh) ⊆ (ker f).
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Thus, the Prime Ideal Theorem, (2.8), Corollary 3.28 and Remark 4.2 complete the
argument. �

The Σ−
+-reduct of any A ∈ MS, being a finite lattice, has zero/unit a/b, in

which case we have the bounded Morgan-Stone lattice A01 with (A01�Σ−
+) , A

and (⊥/>)A01 , (a/b), and so, for all C ∈ MS01 , {B01 | B ∈ MS} and D ∈
MS−2,01 , (MS01 \ {MS2,01}), ((D�Σ−

+) � (C�Σ−
+)) ⇒ (D � C). Then, since

MS2,01 6∈ MSA ⊇ (ISMS6,01) ⊇ MS−2,01, while surjective lattice homomorphisms
preserve lattice bounds (if any), whereas expansions by constants alone preserve
congruences, by (2.8), (2.9) and Theorem 4.4, we immediately get:

Corollary 4.5. Let K , (∅|{MS2,01}. Then, V , (BMSL|MSA) is the [pre-/quasi-
]variety generated by {MS6,01,MS2,01}\K with SI(V) = I(MS01 \K) and REDPC
scheme f〈x0,¬x0,¬¬x0〉

Ω .

This subsumes [2] and also yields a uniform insight into REDPC for Stone and
De Morgan algebras, originally given by separate distinct schemes in [12, 21] and a
bit enhanced in Corollary 4.7.

4.2. The lattice of sub-varieties. [Bounded/] Morgan-Stone lattices[/algebras],
satisfying either of the following equivalent — in view of (4.2) — Σ−

+-identities:

(4.9) (¬¬x0(∨¬x0)) ≈ ‖ / (x0(∨¬x0)),

are called [bounded/] (nearly) De Morgan lattices[/algebraas], their variety being
denoted by [B/](N)DM(L[/A]). Likewise, those, satisfying the Σ−

+-identity:

(4.10) (x0 ∧ ¬x0) / x1,

are nothing but [bounded/] Stone lattices[/algebras] [cf., e.g., [7]], their variety
being denoted by [B/]S(L[/A]). Then, members of [[B/]B(L[/A]) , ([B]DM(L[/A])∩
[B]S(L[/A])) are exactly [bounded/] Boolean lattices[/algebras]. Further, [bounded/]
Morgan-Stone lattices[/algebras], satisfying “either of the former”|“the latter” of
the following Σ−

+-identities:

(¬¬x0 ∧ ¬x0) ≈ ‖ / (x0 ∧ ¬x0),(4.11)
¬¬x0 / (x0 ∨ (¬¬x1 ∨ ¬x1)),(4.12)

“in which case they satisfy the Σ−
+-quasi-identities:

(4.13) (¬x0 / x0)← ‖ → (¬x0 / ¬¬x0),

in view of (4.2)”| are said to be quasi-|pseudo-strong, their variety being denoted
by [B/](Q|P)SMS(L[/A]), Then, members of [B/]SMS(L[/A]) , ([B/]QSMS(L[/A])∩
[B/]PSMS(L[/A])) ⊇ ([B/]DM(L[/A]) ∪ [B/]S(L[/A])) are said to be strong, in which
case, by (4.2) and the uniqueness of relative complements in distributive lattices:

(4.14) ([B]{Q}SMSL ∩ [B]NDML) = DML.

Furthermore, [bounded/] (( bdquasi-|pseudo-estrongc) {weakly} Kleene( 〈-Morgan〉-
Stone) lattices [/algebras] are [bounded/] (bdquasi-|pseudo-estrongc) De-Morgan(-
Stone) lattices[/algebras] satisfying the following Σ−

+-identity:

(4.15) (〈¬¬x2∧〉(x0 ∧ ¬x0)) / (〈x2∨〉(¬x1 ∨ {¬¬}x1)),

their variety being denoted by

[B/](bdQ|PeSc){W}K(〈M〉S)(L[/A]) ⊇ (∅(∪([B/]S(L[/A])))

{∪[B/](bdQ|PeSc)K(〈M〉S)(L[/A])}
(〈[B/]DM(L[/A]) ∪ [B/](bdQ|PeSc){W}K(S)(L[/A])〉))
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{in view of (4.2)}. Likewise, members of

[B/]NK(L[/A]) , ([B/]{W}KS(L[/A]) ∩ [B/]NDM(L[/A]))

are called [bounded/] nearly Kleene lattices[/algebras]. Next, the variety of totally
negatively-idempotent [bounded] Morgan-Stone lattices, being relatively axioma-
tized by the Σ−

+-identity:

(4.16) ¬¬x0 ≈ ¬x0,

is denoted by [B]TNIMSL. Likewise, the variety of one-element [bounded/] Morgan-
Stone lattices[/algebras], being relatively axiomatized by the Σ−

+-identity:

(4.17) x0 ≈ x1,

is denoted by [B/]OMS(L[/A]). Further, members of [B/](M|{W}K)S(L[/A]), satis-
fying following Σ−

+-identity:

(4.18) ((¬x0 ∧ ¬¬x0) ∧ ¬¬x1) / ((¬x0 ∧ x0) ∨ ¬x1),

are said to be almost quasi-strong, their variety being denoted by

[B/]AQS(M|{W}K)S(L[/A]) ⊇ ([B/]QS(M|{W}K)S(L[/A]) ∪ ([B]TNIMSL[/∅])).

Then, members of

[B/]AS(M|{W}K)S(L[/A]) , ([B/]AQS(M|{W}K)S(L[/A])∩
[B/]PS(M|{W}K)S(L[/A])) ⊇ ([B/]S(M|{W}K)S(L[/A]) ∪ ([B]TNIMSL[/∅]))

are said to be almost strong. Likewise, members of [B/](M|{W}K)S(L[/A]), satisfy-
ing the following Σ−

+-identity:

(4.19) (¬¬x0 ∧ ¬¬x1) / (x0 ∨ ¬x1),

are called [bounded/] almost “De Morgan”|“ {weakly} Kleene” lattices[/algebras],
their variety being denoted by [B/]A(DM|{W}K)(L[/A]) ⊇ ([B/](DM|{W}K)(L[/A])
∪ ([B]TNIMSL[/∅])). Finally, [bounded/] Morgan-Stone lattices[/algebras], satisfy-
ing the optional|non-optional version of the following Σ−

+-identity:

(4.20) (¬x0 ∨ d¬¬ex0) ' x1,

are called [bounded/] almost Stone|Boolean lattices[/algebras], their variety being
denoted by [B/]A(S|B)(L[/A]).

Let

MS[01]b(A)c , ({[(4.8), ](4.9), ((4.9)), (4.10), (4.11), (4.12), (4.15), {(4.15)},
〈(4.15)〉, 〈{(4.15)}〉, (4.18), (4.19), (4.20), d(4.20)e, (4.16)}b∩E(A)c)

bwhere A ∈ MS[01]c.

Table 1. Identities of MS[01] true in members of MS[01].

MS6[,01] ∅[∪{(4.8)}]
MS5[,01] {[(4.8), ](4.12), {(4.15)}, 〈{(4.15)}〉, }
MS4:0[,01] {[(4.8), ]((4.9)), (4.12), (4.15), {(4.15), 〈(4.15)〉, 〈{(4.15)}〉}}
MS4:1[,01] {[(4.8), ](4.11), (4.15), {(4.15)}, 〈(4.15)〉, 〈{(4.15)}〉, (4.18)}
DM4[,01] MS[01] \ {(4.15), {(4.15)}, (4.10), (4.20), d(4.20)e, (4.16)}
MS2[,01] MS[01] \ {[(4.8), ](4.9), (4.11), (4.10)}
K3[,01] MS[01] \ {(4.10), (4.20), d(4.20)e, (4.16)}
S3[,01] MS[01] \ {(4.9), ((4.9)), (4.19), (4.20), (4.16)}
B2[,01] MS[01] \ {(4.16)}
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Figure 2. The poset 〈MS[01],�〉 [with merely thick lines].

Lemma 4.6. For any A ∈ MS[01], MS[01](A) is given by Table 1. In particular,
the poset 〈MS[01],�〉 is given by Figure 2 with (non-)simple/f〈x0,¬x0d,¬¬x0e〉

{x0d,¬x0b,¬¬x0ce}-
implicative members marking (non-)solid circles-nodes [and merely thick lines].

Proof. Clearly, for any line of Table 1, the identities of the second column of it are
true in the algebra of the first one. Conversely,

MS(5|6)[,01] 6|= ((4.15)|〈{(4.15)}〉)[xi/〈1−min(1, i), 1|max(1− i, i− 1),
min(1, i)〉]i∈(2|3),

S3[,01] 6|= ((((4.9))‖(4.9))|((4.19)‖(4.20)))[xi/(1 + i)]i∈(1|2),

DM(4[,01] 6|= ((4.15)|{(4.15)})[xi/(〈i, i, 1− i〉]i∈2,

MS4:1[,01] 6|= (4.12)[x0/〈0, 1, 1〉, x1/〈0, 0, 1〉],
MS4:0[,01] 6|= (4.18)[xi/〈i, 1, i〉]i∈2,

K3[,01] 6|= ((4.10)|(d(4.20)e‖(4.20)))[x0/1, x1/(0|2)],
(B|MS)2[,01] 6|= (4.16|(4.9‖4.11))[x0/(0|〈0, 1, 0〉)][,

MS2,01 6|= (4.8)].

Moreover, by Remark 4.2, f〈x0,¬x0,¬¬x0〉
Ω is an REDPC scheme for MSL ⊇ MS,

in which case, by Corollary 3.4, any simple member A of it is f〈x0,¬x0,¬¬x0〉
Ω -

implicative, and so all those members of MS, which are embeddable into A, being
then f〈x0,¬x0,¬¬x0〉

Ω -implicative as well, are simple too. On the other hand,

(4.21) χ
3\1
3 = (ε53 ◦ π2) ∈ hom(S3[,01],B2[,01]),

in which case (kerχ3\1
3 ) ∈ (Co(S3[,01]) \ {∆3, 32}), and so S3[,01] is not simple.

Likewise, h , {〈ā, [a0+a1+a2+1
2 ]〉 | ā ∈ MS4:0} ∈ hom(MS4:0[,01],K3[,01]), in which
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case (kerh) ∈ (Co(MS4:0[,01]) \ {∆MS4:0 ,MS2
4:0}), and so MS4:0[,01] is not simple.

Thus, the fact that varieties are abstract and hereditary, the simplicity of two-
element algebras, the equality (4.11) = ((4.10)[x0/¬x0, x1/(x0 ∧¬x0)], Remark 4.3
and the truth of the identity (4.9)|(¬x0 ≈ ¬x1) in (DM|MS)4|2 end the proof. �

Corollary 4.7. Sub-varieties of [B/]MS(L[/A]) form the non-chain distributive
lattice with 29[(+11)/(−9)] elements, whose Hasse diagram with [both thick and]
thin lines is depicted at Figure 3, any (non-)solid circle-node of it being marked by
a (non-)semi-simple|filtral |〈f〈x0,¬x0d,¬¬x0e〉

{x0d,¬x0b,¬¬x0ce}−〉implicative variety V ⊆ [B/]MS(L

[/A]), numbered from 1[+(0/20)] to 29[+11] according to Table 2 with k , (9 ·
(1[/0])) [as well as ` , (29 · (0/1))] and MSV[,01] , max�((MS[−2,01][∪K]) ∩ V),
where K , ({MS2[,01]}[/∅]), given by the third column, in which case SI(V) =
IS>1MSV[,01], and so V is the (pre-‖quasi-)variety generated by MSV[,01], while
[B]SMSL is that generated by {SI}([B]DML ∪ [B]SL) with REDPC scheme f〈x0,¬x0〉

{x0,¬x0},
whereas any disjunctive sub-pre-variety of [B/]MS(L[/A]) is equational, and so is
any quasi-equational//finitely implicative one.

Proof. We use Lemma 4.6 tacitly. Then, the intersections of MS[−2,01][∪K] with the
29[(+11)/(−9)] sub-varieties of [B/]MS(L[/A]) involved are exactly all lower cones
of the poset 〈MS[−2,01][∪K],�〉, i.e., the sets appearing in the third column of Table
2 are exactly all anti-chains of the poset. So, (2.8), (2.9), (4.1), (4.5), Theorems
3.7, 3.9, 4.4, Corollaries 3.11, 4.5, Lemma 3.14, [20, Remark 2.4], the truth of the
Σ−

+-quasi-identities in {(
⋃

i∈2{(x2∧xi) / (x1−i∨x3), (x2∧¬xi) / (¬x1−i∨x3)})→
((x2∧¬¬xj) / (¬¬x1−j∨x3)) | j ∈ 2} in {DM4,S3} and the fact that pre-varieties
are abstract and hereditary complete the argument. �

It is in this sense that SMSL is the implicational/[quasi-]equational join of DML
and SL. The lattice of its sub-quasi-varieties is found in the next Section. This task
(as well as that solved in [17]) cannot be solved with using tools elaborated in [20]

Table 2. Maximal subdirectly-irreducibles of varieties of [bound-
ed/] Morgan-Stone lattices[/algebras].

1[+`] [B]MS(L[/A]) {MS6[,01]}[∪K]
2[+`] [B]PS〈WK〉MS(L[/A]) {MS5[,01],DM4[,01]}[∪K]

3d+1e[+`] [B]WKdMeS(L[/A]) {MS5[,01],MS4:1[,01]d,DM4[,01]e}[∪K]
5[+`] [B]PSWKS(L[/A]) {MS5[,01]}[∪K]

6d+1e[+`] [B]KdMeS(L[/A]) {MS4:i[,01] | i ∈ 2}d∪{DM4[,01]}e[∪K]
8d+1e[+`] [B]PSKdMeS(L[/A]) {MS4:0[,01],S3[,01]d,DM4[,01]e}[∪K]

10[+`] [B]NDM(L[/A]) {MS4:0[,01],DM4[,01]}[∪K]
11[+`] [B]NK(L[/A]) {MS4:0[,01]}[∪K]

12 [B]TNIMSL {MS2[,01]}
22b−kc [B/]bAcQSMS(L[/A]) {MS4:1[,01],DM4[,01]}b∪Kc
23b−kc [B/]bAcQS{W}KS(L[/A]) {MS4:1[,01]}b∪Kc
24b−kc [B/]bAcSMS(L[/A]) {S3[,01],DM4[,01]}b∪Kc
25b−kc [B/]bAcDM(L[/A]) {DM4[,01]}b∪Kc
26b−kc [B/]bAcS{W}KS(L[/A]) {S3[,01],K3[,01]}b∪Kc
27b−kc [B/]bAc{W}K(L[/A]) {K3[,01]}b∪Kc
28b−kc [B/]bAcS(L[/A]) {S3[,01]}b∪Kc
29b−kc [B/]bAcB(L[/A]) {B2[,01]}b∪Kc

21 [B/]OMS(L[/A]) ∅
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Figure 3. The lattice of varieties of [bounded/] Morgan-Stone lattices[/algebras].

because of Proposition 5.11 therein. And what is more, despite of implicativity of
{sub-varieties of} [B](A)DML and Remark 3.1, we have:

Remark 4.8. Clearly, θ , (∆3 ∪ ({1}× 3)) ⊆ (32 \ ({0, 2}2 \∆{0,2})) forms a subal-
gebra of K2

3[,01], in which case, if K3[,01], had a dual discriminator δ, then we would
have 2 = δK3[,01](1, 0, 2) θ δK3[,01](0, 0, 2) = 0, and so, by Theorem 4.4 and Corollary
2.7, no sub-variety of [B]MSL containing |“the non-simple subdirectly-irreducible”
K|S3[,01] (viz., including [B](K|S)L; cf. Corollary 4.7) is {dual} discriminator. �

On the other hand, the majority term µ+ for the variety of lattices, being a dual
discriminator for D2, is that for {B2[,01],MS2[,01]}, in which case, by Corollary
4.7, sub-varieties of [B]ABL are dual µ+-discriminator, and so, by Remark 4.8,
these are exactly all dual (µ+-)discriminator sub-varieties of [B]MSL. Nevertheless,
since ¬x0 ≈ > is true in MS2,01, this is term-wise-definitionally equivalent to D2,01

generating the variety BDL (cf., e.g., [1] or Lemma 4.1), in its turn, being well-known
(e.g., due to [4] {cf. [20, Lemma 2.10]} and existence of a three-element subdirect
square of D2,01 with carrier 22 \ {〈0, 1〉}, though 3 6= 1 is odd), in which case
MS2[,01] has no congruence-permutation term, for, otherwise, D2,01 would have
one, and so, by Corollaries 2.7 and 4.7, [B]BL is the only discriminator sub-variety
of [B]MSL.
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5. Quasi-varieties of strong Morgan-Stone lattices

Given any K ⊆ [B]MSL, (N)IK stands for the class of (non-)idempotent members
of K (in which case it is the relative sub-quasi-variety of K, relatively axiomatized
by the Σ−

+-quasi-identity:

(5.1) (¬x0 ≈ x0)→ (x0 ≈ x1),

and so a quasi-variety, whenever K is so).

Lemma 5.1. Any (non-one-element finitely-generated) A ∈ [B]MSL is non-id-
empotent if(f) hom(A,B2[,01]) 6= ∅, in which case I[B]SMSL ⊆ [B]DML, and so
[B]SMSL = (NI[B]SMSL ∪ [B]DML). In particular, NIMS[01] = {S3[,01],B2[,01]}.

Proof. The “if” part is by the fact that B2[,01] has no idempotent element. (Con-
versely, assume hom(A,B2[,01]) = ∅, in which case, by (4.21), hom(A,S3[,01]) = ∅,
and so, for any h ∈ hom(A, {MS6[,01][,MS2,01]}), (img h) * (img ε53), for, other-
wise, we would have (h◦ (ε53)

−1) ∈ hom(A,S3[,01]) = ∅. Take any ā ∈ A∗ such that
A is generated by img ā. Let n , (dom ā) ∈ ω and b̄ , 〈¬A¬Aaj ∨A ¬Aaj〉j∈n, in
which case there is some i ∈ n such that h(ai) 6∈ (img ε53), and so h(bi) ∈ {〈m,m, 1−
m〉 | m ∈ 2}. Put [by induction on any k ∈ n] c1[+k] , ((b0[+k][∨A¬Ack])[∧Ack]),
in which case h(c1[+k]) is in {〈ı, ı, 〉 | 〈ı, 〉 ∈ (22 \ 〈0, 0〉)}, for h(b0[+k]) is so,
and so, by induction on any l ∈ ((n + 1) \ (i + 1)) 3 n, we see that h(cl) is in
{〈m,m, 1 − m〉 | m ∈ 2}, for h(bi) is so. Then, h(¬Acn) = h(cn), in which case,
by (2.8) and Theorem 4.4 [resp., Corollary 4.5], ¬Acn = cn, and so A, being non-
one-element, is idempotent.) Finally, (2.8), (4.21) and Corollary 4.7 complete the
argument. �

This, by (2.8), Corollary 4.7, (2.1), (2.7) with I = 2 and the locality of quasi-
varieties, immediately yields:

Corollary 5.2. For any variety V ⊆ [B]MSL {such that either [B](S|B)L ⊆ V}, NIV
is the pre-/quasi-variety generated by

∅{∪{A×B2[,01] | A ∈ (MSV[01] \{[(S|B)(3|2)[,01]})}∪ (MSV[011] ∩{(S|B)(3|2)[,01]})},

in which case NI[B]MSL is the one generated by {MS6[,01] ×B2[,01]}, while

NI[B]〈S〉(DM‖K)〈S〉L
is the one generated by {(DM‖K)(4‖3)[,01] ×B2[,01]〈,S3[,01]〉}, whereas

NI[B](TNI o O)MSL = [B]OMSL,

and so any (non-one-element) A ∈ [B]MSL is non-idempotent if(f) hom(A,B2[,01])
6= ∅.

Likewise, Lemma 5.1 and [17, Proof of Lemma 4.9] immediately yield:

Corollary 5.3. K3 is embeddable into any member of SKSL \ NISKSL.

Corollary 5.4. NI[B]MSL ∪ [B]TNIMSL is the sub-quasi-variety of [B]MSL rela-
tively axiomatized by the Σ−

+-quasi-identity:

(5.2) (¬x0 ≈ x0)→ (x0 ≈ ¬x1)

and is the pre-/quasi-variety generated by {MS6[,01] ×B2[,01],MS2[,01]}.

Proof. Clearly, (5.2) = (5.1[x1/¬x1]) is true in both NI[B]MSL and MS2[,01]. Con-
versely, any A ∈ I[B]MSL, satisfying (5.2), has an idempotent element a, in which
case, for any b ∈ A, as A |= (5.2)[x0/a, x1/(¬A)b], we have ¬Ab = a(= ¬A¬Ab), and
so A ∈ [B]TNIMSL. Then, Corollaries 4.7 and 5.2 complete the argument. �



MORGAN-STONE LATTICES 23

Likewise, we have:

Corollary 5.5. For any variety V ⊆ [B]MSL such that V * [B]{W}KSL, the class
NIV∪(V ∩ [B]{W}KSL) is the sub-quasi-variety of V relatively axiomatized by the
Σ−

+-quasi-identity:

(5.3) (¬x0 ≈ x0)→ (x0 / ({¬¬}x1 ∨ ¬x1))

and is the pre-/quasi-variety generated by MS(V∩[B]{W}KSL)[,01] ∪ {A×B2[,01] | A ∈
(MSV[,01]\{S3[,01],B2[,01]})}. In particular, NI[B]〈S〉DM〈S〉L ∪ 〈S〉K〈S〉L is the sub-
quasi-variety of [B]〈S〉DM〈S〉L relatively axiomatized by either of (5.3) and is the
pre-/quasi-variety generated by {DM4[,01] ×B2[,01],K3[,01]〈,S3[,01]〉}.

Proof. Clearly, (5.3) is satisfied in NIV ∪ (V ∩ [B]{W}KSL). Conversely, consider
any A ∈ IV satisfying (5.3) and any a, b ∈ A, in which case there is some c ∈ A
such that ¬Ac = c, and so, as A(5.3)[x0/c, x1/(a|b)], we have c 6A (¬A(a|b) ∨A

{¬A¬A}(a|b)). Then, by (4.2), (4.3) and (4.5) {as well as (4.6)}, we get (a ∧A

¬Aa) 6A c, in which case A ∈ (V ∩ [B]{W}KSL), and so Corollaries 4.7 and 5.2
complete the argument. �

This, by Lemma 5.1 and [17, Case 8 of Proof of Theorem 4.8], immediately
yields:

Corollary 5.6. DM4 is embeddable into any member of {S}DM{S}L not satisfying
(5.3).

Members of [B]{〈dQ|PeS〉}bWcK{S}L, satisfying the Σ−
+-quasi-identity:

(5.4) {¬x0 / x0, (x0 ∧ ¬x1) / (¬x0 ∨ x1)} → (¬x1 / (¬¬)x1),

are called (weakly-)regular, their quasi-variety being denoted by

(W)R[B]{〈dQ|PeS〉}bWcK{S}L
(= {〈d| ⊇e〉}(R[B]{〈dQ|PeS〉}bWcK{S} ∪ ([B]OMSL{〈d|[B]TNIMSLe〉}))

in view of (4.13){〈d|(4.2)e〉}).
Given any [bounded] Morgan-Stone lattice Ab∈ [B]{〈dQ‖PeS〉}(W)K{S}Lc, by

(4.1), (4.3) and (4.5) bas well as ((4.2) and) (4.15)c, (I|F)A
(W) , {a ∈ A | (¬A¬A)a(6

| >)A¬Aa} ⊇ {b(∧|∨)A¬Ab | b ∈ A} 6= ∅, for A 6= ∅, is ban|a ideal|filter
of A�Σ+c such that ¬A[(I|F)A

(W)] ⊆ (F|I)A
(W) bin which case <A

(W) , ((FA
(W) ×

{1}) ∪ (IA
(W) × {0})) forms a subalgebra of A×B2[,01] such that, for every d̄ ∈

<A
(W), (d1 = 1) ⇒ (d0 ∈ FA

(W)), and so, by Corollary 4.7, the (weak) regulariza-
tion <(W)(A) , ((A×B2[,01])�<A

(W)) of A is in (W)R[B]{〈dQ|PeS〉}(W)K{S}Lc.
Then, (π0�<S3[,01]) ∈ hom(<(S3[,01]),S3[,01]) is bijective, so, by Corollary 4.7,
S3[,01] ∈ R[B]SKSL. Likewise, (ε42‖{〈i, 〈χ

4\3
4 (i) + χ

4\1
4 (i), χ4\2

4 (i)〉〉 | i ∈ 4}) ∈
hom((B‖K)(2‖4)[,01],K4[,01]‖<(K3[,01])) is injective‖bijective, so, by Corollary 4.7,
(B‖K)(2‖4)[,01] ∈ R[B]KL.

Lemma 5.7.

(W)R[B]{〈dQ|PeS〉}bWcK{S}L ⊆ (NI[B]{〈dQ|PeS〉}bWcK{S}L(∪[B]TNIMSL)).

Proof. Consider any A ∈ (W)R[B]{〈dQ|PeS〉}bWcK{S}L and any a, b ∈ A such that
¬Aa = a, in which case, as, for any c ∈ {b,¬Ab}, A |= (4.1‖5.4)[x0/a, x1/(c‖(a ∧A

c))] (and A |= (4.5)[x0/¬Aa, x1/¬Ac)), we have ¬Ac 6A (¬Aa ∨A ¬Ac) = ¬A(a ∧A

c) 6A (¬A¬A)(a∧Ac) = (a∧A(¬A¬A)c) 6A (¬A¬A)c, and so, as A |= (4.2(o4.6))[x0/
b], we get both b 6 ¬A¬Ab 6A (¬A¬A)¬Ab = ¬Ab, when c = ¬Ab, and ¬Ab 6A

(¬A¬A)b, when c = b. Then, ¬Ab = (¬A¬A)b, in which case, as A |= (4.15(o{4.15}))
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[x0/(a‖(¬A)b), x1/(b‖a)], we have (¬A)b 6A a 6A (¬A)b, i.e., a = (¬A)b, and so (by
Corollary 5.4) A is (either) non-idempotent (or totally negatively-idempotent). �

Corollary 5.8. K4 is embeddable into any A ∈ (NIQSMSL \ SL) ⊇ (RQSKSL\
SL).

Proof. Then, there are some a, b ∈ A such that c , (a∧A¬Aa) 6= d , (b∧A c) 6A c,
in which case, applying (4.1) and (4.3) [twice], we have [¬A¬Ad 6A ¬A¬A]c 6A

¬Ac 6A ¬Ad, and so, by (4.2) and (4.11), we get ¬A¬A(c|d) = (c|d). In this way,
as c 6= d, by (5.1), we have ¬Ac 6= c, in which case we get ¬Ad 6= ¬Ac, and so
{〈0, d〉, 〈1, c〉, 〈2,¬Ac〉, 〈3,¬Ad〉} is an embedding of K4 into A. Finally, Lemma 5.7
completes the argument. �

Theorem 5.9. Let V , [B]{(〈Q((‖P)〉S)}(W)K{S}L and K , (∅{∪(MSV[,01] ∩
({S3[,01]}(∪〈∅(‖{MS2[,01]})〉)))}). Then, QV , (W)R[B]{(〈Q(‖P)〉S)}(W)K{S}L
is the pre-/quasi-variety generated by <((W)[MSV[,01] \ K] ∪ K, so R[B]{S}K{S}L
is the one generated by {K4[,01]{,S3[,01]}}.

Proof. Consider any finitely-generated A ∈ (Q \ ([B]OMSL(∪[B]TNIMSL))). Take
any ā ∈ A+ such that A is generated by img ā. Let n , (dom ā) ∈ (ω \ 1) and
b , (∧A

+〈¬A¬Aam∨A¬Aam〉m∈n), in which case, by (4.1), (4.5) and (4.15), we have
¬Ab 6A b. Consider any B ∈ K′ , {MS6[,01][,MS2,01]} and h ∈ hom(A,B). Let
(I|J) , {i ∈ n | h(ai) 6∈ (F|I)B

(W)}, (ı|) = |(I|J)| and k̄|¯̀any bijection from ı| onto
I|J . We prove, by contradiction, that there is some g ∈ hom(A,B2[,01]) such that
g[img((k̄|¯̀) ◦ ā)] = {0|1}. For suppose that, for every g ∈ hom(A,B2[,01]), there is
either some i ∈ ı or some j ∈  such that g(a(k|`)i|j )) = (1|0), in which case, as,
by Lemmas 5.1 and 5.7, hom(A,B2[,01]) 6= ∅, we have (I ∪ J) 6= ∅, and so we are
allowed to put c , (∨A

+((k̄◦ā(◦¬A◦¬A))∗(¯̀◦ā◦¬A))). Then, π0o2(h((¬A¬A)c)) = 0,
in which case (by (4.6)) π0(h(¬Ac)) = 1, and so ¬Ac 
A (¬A¬A)c, for (h ◦ π0) ∈
hom(A�Σ+,D2). Now, consider any C ∈ K′ and f ∈ hom(A,C), in which case
(C�(img f)) ∈ V 63 DM4[,01], in view of Corollary 4.7, and so (img ε64) * (img f),
i.e., =MS6 = ε64[2

2 \∆2] * (img f). Consider the following complementary cases:
• (img f) ⊆ (img ε53),

in which case, by (4.21), e , (f ◦(ε53)
−1◦χ3\2

3 ) ∈ hom(A,B2[,01]), and so, by
the assumption to be disproved, π1o2(f(c)) = e(c) = 1. Then, f(b∧A¬Ac) =
〈0, 0, 0〉 6C f(¬Ab ∨A c).
• (img f) * (img ε53),

in which case there is some m ∈ n such that f(am) 6∈ (img ε53) + =MS6 ,
in which case f(b) ∈ =MS6 , and so f(b ∧A ¬Ac) 6C f(b) = f(¬Ab) 6C

f(¬Ab ∨A c).
Thus, anyway, f(b ∧A ¬Ac) 6C f(¬Ab ∨A c), in which case, by (2.8) and Theorem
4.4 [resp., Corollary 4.5], (b ∧A ¬Ac) 6A (¬Ab ∨A c), and so A 6|= (5.4)[x0/b, x1/c].
This contradiction to the (weak) regularity of A definitely shows that, for each
D ∈ MSV[,01] ⊆ ISK′ and every h′ ∈ hom(A,D), there is some g′ ∈ hom(A,B2)
such that (img f ′) ⊆ <D

(W), where f ′ , (h′ × g′), in which case, by (2.7), f ′ ∈
hom(A,<(W)(D)), while, by (2.1), (ker f ′) ⊆ (kerh′), and so the locality of quasi-
varieties, (2.8) and Corollary 4.7 complete the argument. �

Thus, the apparatus of (weak) regularizations of [bounded] (weakly) Kleene-
Stone lattices involved here yields a more transparent and immediate insight/proof
into/to [20, Proposition 4.7].

Lemma 5.10. K3 ×B2 is embeddable into any A ∈ (NISKSL \ RSKSL).
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Figure 4. The lattice of pre-/quasi-varieties of strong Morgan-
Stone lattices.

Proof. Then, by (4.1), (4.3), (4.5) and (4.6), there are some a, b ∈ A such that
(c|d) , ¬A¬A(a|b)(> | �)A¬A(c|d) and (c ∧A ¬Ad) 6A (¬Ac ∨A d), in which case,
using (4.1), (4.5) and (4.6), by induction on construction of any ϕ ∈ Tm2

Σ−
+
, we

get ¬A¬AϕA(c, d) = ϕA(c, d), and so the subalgebra B of A generated by {c, d} is
a non-idempotent Kleene lattice such that B 6|= (5.4)[x0/c, x1/d]. Hence, K3 ×B2

being embeddable into B, by [17, Case 4 of Proof of Theorem 4.8], is so into A. �

Lemma 5.11. DM4 ×B2 is embeddable into any A ∈ (NISMSL \ SKSL).

Proof. Then, there are some a, b ∈ A such that, by (4.2), c , ¬A¬A(a∧A ¬Aa) 
A

d , (¬Ab ∨A ¬A¬Ab), in which case, by (4.1), (4.5) and (4.6), we have both
¬A(c|d)(> | 6)A(c|d) = ¬A¬A(c|d), and so, by induction on construction of any ϕ ∈
Tm2

Σ−
+
, we get ¬A¬AϕA(c, d) = ϕA(c, d). Thus, the subalgebra B of A generated

by {c, d} is a non-idempotent De Morgan lattice such that B 6|= (4.15)[x0/c, x1/d],
in which case, by the proof of [17, Lemma 4.10], DM4 ×B2 is embeddable into B,
and so into A. �

Lemma 5.12. Let A ∈ QSMSL and a ∈ A. Suppose ¬A¬Aa 6= a. Then,
b , (¬Aa ∧A ¬A¬Aa) 6A c , (a ∨A ¬Aa) 6A d , (¬Aa ∨A ¬A¬Aa), while both
¬Ac = b = ¬Ad and ¬Ab = d, whereas b 6= c 6= d, in which case {〈0, b〉, 〈1, c〉, 〈2, d〉}
is an embedding of S3 into A, and so S3 is embeddable into any member of
(QSMSL \ DML).

Proof. In that case, by (4.2), b 6A c 6A d, while, by (4.1), (4.5) and (4.6),
both ¬Ac = b = ¬Ad and ¬Ab = d, whereas c 6= d, for, otherwise, since A |=
(4.2|4.11)[x0/a], {b,¬Aa, a,¬A¬Aa, d} would be a pentagon of the distributive lat-
tice A�Σ+, and so b 6= c, for otherwise, we would have c = b = ¬Ac = ¬Ab = d. �

Theorem 5.13. Sub-pre/quasi-varieties of SMSL form the fifteen-element non-
chain distributive lattice depicted at Figure 4.

Proof. We use Corollary 4.7 tacitly. Clearly, DM4 ×B2 is not in SKSL, for DM4

is not so, while π0�(22 ×∆2) is a surjective homomorphism from the former onto
the latter, in which case, by Corollary 5.5, SKSL ( (SKSL ∪ NISMSL) ( SMSL, for
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SMSL 3 DM4 6|= (5.3)[xi/〈i, 1− i〉]i∈2. Likewise, S3 6∈ DML, so, by Corollaries
5.2, 5.5 and Theorem 5.9, (KL ∪ NIDML) ( (SKSL ∪ NISMSL), NIDML ( NISMSL,
NIKL ( NISKSL and RKL ( RSKSL, while, by Corollary 5.2, NIKL 3 (K3 ×B2) 6|=
(5.4)[x0/〈〈0, 1〉, 〈1, 1〉〉, x1/(〈〈0, 0〉, 〈1, 1〉〉], so, by Lemma 5.7, RSKSL ( NISKSL, as
well as KL 3 K3 6|= (5.1)[x0/〈0, 1〉, x1/〈0, 0〉], so NISKSL ( SKSL. Finally, by The-
orem 5.9, S3 ∈ RSKSL 3 K4 6|= (4.10)[xi/(1 − i)]i∈2, so SL ( RSKSL. Thus, by
Lemma 5.1, Corollaries 5.2, 5.5, Theorem 5.9 and [17, Theorem 4.8], the fifteen
quasi-varieties involved are pair-wise distinct and do form the lattice depicted at
Figure 4. Now, consider any pre-variety P ⊆ SMSL such that P * DML, in which
case, by Lemma 5.12, S3 ∈ P, and so SL ⊆ P, as well as the following exhaustive
cases:

(1) P * (SKSL ∪ NISMSL),
in which case, by Corollaries 5.5 and 5.6, DM4 ∈ P 3 S3, and so P = SMSL.

(2) P ⊆ (SKSL ∪ NISMSL) but neither P ⊆ SKSL nor P ⊆ NISMSL,
in which case (SKSL|NISMSL) + (P ∩ (NISMSL|SKSL)), and so, by Lemma|
Corollary 5.11|5.3 ((DM4 × B2)|K3) ∈ P 3 S3. Then, by Corollary 5.5,
P = (SKSL ∪ NISMSL).

(3) P ⊆ NISMSL but P * SKSL,
in which case, by Lemma 5.11, (DM4×B2) ∈ P 3 S3, and so, by Corollary
5.2, P = NISMSL.

(4) P ⊆ SKSL but P * NISMSL,
in which case, by Corollary 5.3, K3 ∈ P 3 S3, and so P = SKSL.

(5) P ⊆ NISKSL but P * RSKSL,
in which case, by Lemma 5.10, (K3 ×B2) ∈ P 3 S3, and so, by Corollary
5.2, P = NISKSL.

(6) P ⊆ RSKSL but P * SL,
in which case, by Corollary 5.8, K4 ∈ P 3 S3, and so, by Theorem 5.9,
P = RSKSL.

(7) P ⊆ SL,
in which case P = SL.

In this way, [17, Theorem 4.8] completes the argument. �

This, by Corollaries 4.7, 5.2, 5.5 and Theorem 5.9, immediately yields:

Corollary 5.14. Any [pre-/-quasi-]variety P ⊆ SMSL such that P * DML is gen-
erated by (P ∩ DML) ∪ SL.

5.1. Relatively simple relatively subdirectly-representable pre-varieties
of strong Morgan-Stone lattices and algebras.

Lemma 5.15. Let P ⊆ [B]SMSL be a pre-variety. Then, (SiP(Q) ∩ NI[B]SMSL) ⊆
IB2[0,1] ⊆ [B]BL ⊆ [B]KL ⊆ [B]DML.

Proof. Consider any A ∈ (SiQ(Q) ∩ [B]NISMSL), in which case |A| > 1 [viz.,
⊥A 6= >A], and so [as, by (4.7) and (4.8), {〈0, 0,⊥A〉, 〈1, 1,>A〉} ∈ hom(B2,01,A) is
injective], by Corollary 4.7 and Theorem 5.13, B2[,01] ∈ Q. Then, by Corollary 5.2,
since B2[,01] has no proper subalgebra, there is some h ∈ homS(A,B2[,01]) 6= ∅, in
which case, by (2.5), as (img h) = ∆2 is not a singleton, A2 6= (kerh) = h−1

2 [∆B2 ] ∈
CoQ(A) ⊆ {A2,∆A}, and so h is injective, as required, in view of Corollary 4.7. �

Theorem 5.16. Any relatively semi-simple relatively subdirectly-representable (mo-
re specifically, implicative) pre-variety P ⊆ [B]SMSL is a sub-variety of [B]DML,
in which case it is fϕ̄

V1|Ω,wp(Ω)-implicative, and so “ {relatively} 〈finitely-〉semi-
simple”/“ bfϕ̄

V1‖Ω,wp(Ω)-cimplicative sub-{pre-}varieties of [B]SMSL are exactly sub-
varieties of [B]DML.
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Proof. In that case, P is generated by K , SiP(P), and so, by Lemmas 5.1 and 5.15,
P ⊆ [B]DML. Consider the following complementary cases:

• K = ∅,
in which case P = [B]OMSL.
• K 6= ∅.

Consider the following complementary subcases:
– K ⊆ NI[B]SMSL,

in which case, by Footnote 1 and Lemma 5.15, K = IB2[,01], and so,
by Corollary 4.7, P = [B]BL.

– K * NI[B]SMSL.
Consider the following complementary subcases:
∗ K ⊆ ([B]SKSL ∪ NI[B]SMSL),

in which case IK ⊆ [B]KL, and so, by Lemma 5.15, P ⊆ [B]KL.
Conversely, take any A ∈ (IK 6= ∅, in which case (A[�Σ−

+]) ∈
(ISKSL, and so, by Corollary 5.3, there is an embedding e of K3

into A[�Σ−
+]. Then, [as a , e(〈0, 1〉) = ¬Aa, by (4.7) and (4.8),

{〈0, 0,⊥A〉, 〈0, 1, a〉, 〈1, 1,>A〉} is an embedding of K3,01 into A,
in which case] K3[,01] ∈ Q, and so, by Corollary 4.7, P = [B]KL.
∗ K * ([B]SKSL ∪ [B]NISMSL.

Take any B ∈ (K \ ([B]SKSL ∪ [B]NISMSL)) 6= ∅, in which case,
by Corollaries 5.5 and 5.6, there is an embedding f of DM4 into
B[�Σ−

+], and so DM4 ∈ P in the []-non-optional case. [By con-
tradiction, prove that DM4,01 ∈ P. For suppose DM4,01 6∈ P,
in which case it is not embeddable into B, and so, by (4.7) and
(4.8), both f(〈0|1, 0|1〉) 6= (⊥|>)A. Then, by (4.7) and (4.8), g ,
(((π0�(22×{〈0, 1〉}))◦f)∪{〈〈0, 0〉, 〈0, 0〉,⊥B〉, 〈〈1, 1〉, 〈1, 1〉,>B〉}
) is an embedding of DM6 , ((DM4,01 × K3,01)�(dom g)) into
B, while ∆K3 × ∆K3 is that of K3,01 into DM6, whereas both
π0‖1[DM6] = (DM‖K)4‖3, in which case {DM6,K3,01} ⊆ P 63
DM4,01, and so, by the Homomorphism Theorem, (2.5) and
the filtrality of BDML with its simple members DM4,01 and
K3,01, being due to Corollary 4.7, since Fi(2) = {℘(N, 2) |
N ∈ ℘(2)}, Co{P}(DM6) = ({ker(πi�DM6) | i ∈ (2{\1})} ∪
{∆DM6 , DM

2
6 }}). In this way, since ∆DM6 ( ker(π1�DM6) (

DM2
6 , for 6 6= 3 6= 1, DM6 ∈ (SIP(P) \ SiP(P)), contrary

to the relative semi-simplicity of P.] Thus, by Corollary 4.7,
P = [B]DML.

This, by Corollary 4.7 (and Corollary 3.4), completes the argument. �

6. Conclusions

Perhaps, the most acute problem remained open concerns the lattice of quasi-
varieties of all (at least, quasi-strong) MS lattices. In this connection, perhaps,
a most acute open issue what is a “reasonable” class generating R〈PS〉KSL 63
<W(MS5) ∈ NIPSKSL, for <W(MS5)(5.4)[xi/〈1 − i, 1, 0, 1〉]i∈2. After all, an in-
teresting (though purely methodological) point remained open is whether the op-
tional version of Corollary 5.14 can be proved directly prior proving Corollaries
4.7, 5.2, 5.5 as well as Theorems 5.9 and 5.13, in which case these would imme-
diately ensue from the main results of [17]. Likewise, it would be interesting to
find equational proofs (like that of (4.14)) of the rather curious inclusions such as
[B/]NDM(L[/A]) ⊆ [B/]PSMS(L[/A]) ⊆ [B/]WKMS(L[/A]) and [B/]QSWKS(L[/A])
⊆ [B/]QSKS(L[/A]), just ensuing from Corollary 4.7.
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