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ABSTRACT 

 

Automated driving functions are gradually entering individual mobility markets. First studies 

on consumer acceptance show that parts of the classical innovation acceptance models can be 

applied to autonomous driving, but others do not work in this context. As it is expected that 

perception and evaluation of automated driving functions are correlated with the behaviour of 

the driver, we investigated if eye-tracking data as an implicit behavioural measurement could 

indicate the acceptance of automated driving. We developed and conducted a user experience 

study with a pre- and a post-questionnaire, a standardized test track, and 98 test drivers with 

eye-tracking glasses using level 2 driver assistant systems either with a Mercedes-Benz E-Class 

or S-Class. The study refers to the Consumer Acceptance of Technology model and adds eye 

distraction from forward road scenes as antecedent indicator while activating the automated 

“Lane Keeping”-function in separated one minute slots. Results of structural equation 

modelling show that despite a lack of significance, our general line of argument is largely 

confirmed according to which a longer eyes-off-road-time indicates a higher acceptance of 

automated driving technology. It is assumed that the effects could become more apparent when 

participants use the automated driving function within a longer period. 
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INTRODUCTION 

“Autonomous Driving” is currently one of the “hot topics” on mobility markets (Bertrandias et 

al. 2018). Original equipment manufacturer (OEM) deal with the development of innovative 

functionalities, politicians discuss about legal issues and science investigates the driver’s 

intention of using this technology. The investigation of these intentions is essential because it 

provides important insights into the acceptance of this technology. In the field of technology 

acceptance different theoretical models were developed (e.g. Davis et al. 1989; Kulviwat et al. 

2007) as well as reviewed and evolved during the last decades (e.g. Nasco et al. 2008; Hong et 

al. 2013). However, most studies investigating the acceptance of automated driving are based 

on standardized questions in the context of scenario descriptions or simulated driving with 

regard to an automated vehicle so that only explicit measurements are included in the model 

(e.g. Buckley et al. 2018; Planing 2014; Nielsen/Haustein 2018; Rödel et al. 2014; Waytz et al. 

2014; Bansal/Kockelman 2016; König/Neumayr 2017; Haboucha et al. 2017). Yet, the 

automated driving technology is developed incrementally – series vehicles today only reached 

autonomous level 2 from 5 (SAE International 2018) – but the full disruptive version of a 

driverless car is already in the head of consumers. In a level 2 vehicle, drivers can take their 

hands off the wheel for a certain period of time. However, they are still responsible for the 

entire driving process and can take control of the vehicle again at any time (see Table 1). 

 

Driving function Description of autonomous level 2 functions in today series vehicles 

Lane Keeping … assists the driver in keeping the vehicle in its lane. 

Lane Changing … assists the driver in lane changing, e.g. in an overtaking manoeuvre. 

Automatic Distance Keeping … keeps the vehicle within a safe distance from vehicles ahead. 

Automatic Speed Control … ensures that vehicle speed does not exceed a legally enforced speed. 

Automated Parking … assists the driver in moving the vehicle into a parking spot. 

Automated Braking … prevents dangerous situations by informing the driver of an upcoming 

     collision and by braking automatically in an emergency situation. 
Table 1: Overview of available automated driving functions. Adapted from Selinka/Kuhn 2018. 

 

Since the autonomous car is already in the head of the driver, the technology acceptance models 

could be supplemented by implicit behavioural measured variables to overcome the weaknesses 

of an exclusively explicit measurement through standardized questioning. With implicit 

behavioural measured variables we mean above all variables that measure the behaviour of 

drivers with level 2 automated vehicles using implicit methods like eye-tracking. Especially the 

parameter “eyes-off-road-time” is of interest, which specifies how long a driver keeps his eyes 

away from the road. A longer eyes-off-road-time could indicate a higher technology acceptance, 

since the driver already turns his attention away from the road when driving with a level 2 (and 

not fully autonomous) vehicle. Our research question can therefore be formulated as: To what 

extent do implicit behavioural measured variables indicate the acceptance of automated driving, 

a technology where the fully disruptive innovation (level 5) is already known?  

 

To address this question, we conducted a user experience study with level 2 automated vehicles 

in which the test drivers were equipped with an eye-tracking glasses system (Tobii glasses 2, 

50 Hz sampling rate) to measure their eye-distraction from forward road scenes. 

 

THEORETICAL BACKGROUND AND STATE OF RESEARCH 

The evaluation of technology acceptance for automated driving is essentially based on the 

Technology Acceptance Model (TAM) and the Consumer Acceptance of Technology (CAT) 

model as its further development (e.g. Buckley et al. 2018; Köpsel et al. 2018). The TAM 

identifies two central factors that influence the “Attitude Toward Adoption”, i.e. the attitude 

toward the use of the technology, and by the end the “Adoption Intention” of the technology: 

“Perceived Usefulness” (PU) and “Perceived Ease of Use” (PEoU). PU refers to the degree to 
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which a person believes that using a particular technology is helpful and enhances performance 

(Davis et al. 1989). PEoU is an individual assessment in terms of the effort required to use the 

technology (Davis et al. 1989). Buckley et al. conducted a study where they applied the TAM 

to assess driver’s intended use of automated driving technology after undertaking a driving 

simulation task (Buckley et al. 2018). The TAM variables of PU and PEoU explained 41% of 

the variance in intentions (Buckley et al. 2018). 

 

The CAT model adopts the core idea of the TAM and adds “Relative Advantage” (RA) to the 

cognitive dimension of PU and PEoU. RA refers to the degree to which a technology is 

perceived as superior to its predecessor (Kulviwat et al. 2007). This aspect is particularly 

important in the context of automated driving, as the functions are intended to support the driver 

in comparison to a “conventional car”. In addition to the cognitive dimension, the model also 

includes an affective dimension, which comprises “Pleasure” (e.g. happiness), “Arousal” (e.g. 

relaxation) and “Dominance” (e.g. control) (Kulviwat et al. 2007). These three variables define 

a person’s feelings that, in turn, influence the “Attitude Toward Adoption”, and by the end the 

“Adoption Intention” of the technology. A study published by Köpsel et al. examined the CAT 

model in the context of a user experience setting. Over 200 test drivers activated automated 

driving functions following a standardized test track on public roads using either a Mercedes-

Benz E-Class or a Tesla Model S with level 2 automated driving functions (Köpsel et al. 2018). 

Questionnaires before and after the driving experience included items on attractiveness of 

innovation (Boyd/Mason 1999), self-efficacy (Jones 1986; Meuter et al. 2005) and standardized 

dimensions of expectations. The cognitive determinants of the CAT model showed high 

explanation of variance in test driver’s intention of using automated driving functions. While 

the cognitive part of the CAT model has been confirmed, there were no effects of affective 

determinants on the “Attitude Toward Adoption” and thus on the “Adoption Intention” (Köpsel 

et al. 2018). Furthermore, the authors emphasized that it was very difficult to transfer the 

dimensions of the cognitive part into the context of automated driving (Köpsel et al. 2018). 

 

Against this background, the present paper builds upon the “reduced” version of the CAT model 

including the cognitive part in terms of RA, PU and PEoU. The focus is not so much on a further 

empirical test of the already known line of argument, whereby the variables of the cognitive 

dimension influence the “Attitude Toward Adoption”, which in turn affects the “Adoption 

Intention”. Rather, we refer to one of the few studies that used eye-tracking as implicit 

behavioural measurement for the evaluation of technology acceptance in terms of TAM (Molina 

et al. 2013). Molina et al. investigated the usage of mobile devices in teaching-learning contexts. 

The eye-tracking system was mainly used to distinguish between visualization behaviours of 

different types of devices – the relationship between the eye-tracking parameters and the 

variables of the TAM was not analysed (Molina et al. 2013). Given that, further studies on 

implicit behavioural measurements in the area of technology acceptance are required, especially 

in the field of automated vehicles. The benefit – in considering implicit behavioural 

measurements – is an understanding of technology acceptance that takes into account that the 

final stage of development is already known. Furthermore, the study by Köpsel et al. 

highlighted the context-dependency of item formulations with regard to the affective dimension 

of the CAT model (Köpsel et al. 2018), which makes it necessary to use measurements that are 

context-independent. This context-independency is also met by implicit behavioural 

measurements in terms of eye-tracking. 

 

RESEARCH APPROACH AND METHODOLOGY 

We conducted a user experience study with a total of 98 test drivers recruited through local 

press releases using either a Mercedes-Benz E-Class or S-Class equipped with identical level 2 

automated driving systems. Each participant got a general introduction to the automated driving 
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system while sitting in one of these test vehicles. The test drivers were also informed that they 

were responsible for the entire driving process and had to respect traffic regulations. The 

participants were equipped with eye-tracking glasses (Tobii glasses 2, 50 Hz sampling rate) for 

measuring glance behaviour. The following main drive took place on a standardized test track 

in Stuttgart/Germany in December 2017 (see Figure A1). The driving experience had an 

average time of approx. 40 minutes and was framed by two questionnaires before (expectations) 

and after (experience/evaluation) the test. We reached an age distribution corresponding to the 

German population (see Table 2). A χ2-test showed no significant differences between the age 

structure of our sample and the population in Germany. With a gender split of 63% to 37% we 

had a disproportionally high share of male participants. 

 

Age Distribution in our study Distribution in Germany 

18-29 years 19.4% 17.0% 

30-39 years 10.2% 14.7% 

40-49 years 20.4% 16.7% 

50-59 years 20.4% 18.9% 

60-69 years 13.3% 13.8% 

70 years and older 16.3% 18.8% 
Table 2: Age distribution of test drivers. 

 

The eye-tracking technology is mainly used in distraction studies with regard to the active usage 

of human-machine interfaces in vehicle cockpits (Kraft et al. 2018). In this context, the project 

of the National Highway Traffic Safety Administration (NHTSA) is of particular importance 

aiming to fight driver distraction caused by In-Vehicle Electronic Devices (NHTSA 2010). 

According to the findings of this project, driver distraction can be measured by assessing the 

driver’s glance behaviour, i.e. the driver’s eye-distraction from forward road scenes when 

using/ looking at an in- vehicle display is evaluated (eyes-off-road-time). As studies show a 

general positive relationship between driver’s eye-distraction/eyes-off-road-time and their 

degree of habituation and relaxation in driving conditions (Kraft et al. 2018), we assume that 

this correlation might be transferred to the acceptance of automated driving technology. The 

assumption that driving while automated driving functions are activated is: A more “relaxing” 

driving behaviour in terms of a longer eyes-off-road-time indicates a higher acceptance of 

automated driving technology. Based on this assumption, we derive the following three 

hypotheses concerning the cognitive part of the “reduced” CAT model: 

 

Cognition Hypotheses with regard to “eyes-off-road” parameter 

RA H1. Test drivers with longer eyes-off-road-time evaluate automated driving  

        functions with a higher relative advantage. 

PU H2. Test drivers with longer eyes-off-road-time evaluate automated 

       driving functions with a higher perceived usefulness. 

PEoU H3. Test drivers with longer eyes-off-road-time evaluate automated driving 

        functions with a higher perceived ease of use. 
Table 3: Hypotheses. 

 

Empirical examination of these hypotheses required the definition of two “Areas of Interests” 

(AOIs). AOI1 comprised all glances on the road (eyes-on-road) while AOI2 comprised all 

other glances, e.g. to the interior space of the vehicle (eyes-off-road) (see Figure 1). We 

investigated the raw eye-tracking video material in Tobii Pro Lab and defined here in a first 

step the two event types AOI1 and AOI2. We then analysed each video with reduced speed 

and manually marked the driver’s glances starting with the AOI “eyes- off-road”. The program 

calculated the difference between the time-stamps for every pair of AOI so that we could get 

the total duration for each driver’s eyes-off-road-time (in sec). It must be noted that this study 
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refers to the driver’s eyes-off-road-time while activating the “Lane Keeping”-function in 

separated one minute slots at fixed locations on the test track. 

 
 

 
“eyes-on-road” (circle symbolizes driver’s eye glance) 

 

 
“eyes-off-road” (circle symbolizes driver’s eye glance) 

Figure 1: Eye-tracking recordings at “Lane Keeping”. 

 

Figure 2 illustrates the model as tested in this study. The items for the “reduced” version of the 

CAT model were mainly adapted from prior studies and appropriately modified to suit the 

purposes of the study. A list of the CAT items and scale types is presented in Table A1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2: Conceptual Model. 

 

DATA ANALYSIS AND RESULTS 

Because of the exploratory character of this study, the model and hypotheses are examined by 

a consistent partial least squares-based structural equation modelling approach 

(Dijkstra/Henseler 2015). The data is analysed in SmartPLS 31 (Ringle et al. 2015), employing 

a path weighting scheme and consistent bootstrapping method. In this context, we draw on 

5,000 bootstrap samples and applied no sign change option.  

 

Firstly, we evaluate the three reflectively measured models of RA, PEoU and Attitude Toward 

Adoption (see Table 4) concerning reliability and validity. Assessment of convergent validity 

leads to the exclusion of four items from the initial structural equation model as their loadings 

are clearly below the threshold value of 0.70 (Hair et al. 2017). The loadings of the remaining 

items are above 0.70 or slightly lower. Table 4 summarizes the final set of indicators and their 

loadings, respectively. A further criterion for convergent validity is the average variance 

extracted (AVE) which should be at 0.50 or higher (Henseler et al. 2015). In this study, the 

AVE scores exceed the minimum requirement of 0.50 so that on average all reflective 

constructs explain more than 50% of the variance of their indicators (see Table A2). As far as 

discriminant validity is concerned, we evaluate the Fornell-Larcker criterion which states that 

                                                           
1 Outliers in the eye-tracking parameter (n=3) were detected by visual inspection of boxplots and excluded before running the 

analysis. Occasional missing values were replaced with the mean value. Results were estimated after six iterations. 

Relative 
Advantage 

Perceived 
Usefulness 

Perceived 
Ease of  
Use 

Attitude  
Toward 
Adoption 

Adoption 
Intention 

Cognition 

Implicit behavioural 

measurement via 

eye-tracking (eyes- 

 off-road-time) 

H2. positive effect 
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a latent variable should share more variance with its associated indicators than with any other 

construct (Hair et al. 2017). Accordingly, the square roots of the AVE should be larger than the 

interconstruct correlations. This condition is met, since all AVE measures prove to be greater 

than the interconstruct correlations suggesting that the reflectively measured models are 

empirically distinct from each other (see Table A3). In addition, the indicator loadings are 

higher compared to their cross loadings (Hair et al. 2017) (see Table A4). Finally, the HTMT-

values for all reflectively measured models are significantly below the more rigorous threshold 

value of 0.85 with the 95% bias-corrected confidence intervals not including the value of 1 (see 

Table A5), which provides further confidence for discriminant validity (Hair et al. 2017). For 

reliability assessment, we evaluate Cronbach’s α, Composite Reliability and Dijkstra- 

Henseler’s ρA (threshold value = 0.70). These three measures vary between 0.76 and 0.92 (see 

Table A2), thus suggesting a satisfactory level of internal consistency (Henseler et al. 2015). 

 

Measurement  Loading 

Implicit behavioural 

measurement 

Eyes-off-road-time 

single-item 

 

 

1. Total Duration of “eyes-off-road” while activating 

the “Lane Keeping”-function 

in sec 

 

 

 

1.0 

Cognition   

Relative Advantage of 

automated driving functions 

reflective 

Based on your experience with the test vehicle, how do 

you evaluate the following autonomous driving 

functions?  

 

 1. … Distance alert assistant 

2. … Automated braking assistant 

3. … Speed adaption assistant 

7 point scale from very negative to very positive 

 

0.70 

0.61 

0.82 

Perceived Usefulness of 

automated driving functions  

single-item 

 

1. In my daily life, automated driving functions will 

be… 

7 point scale from very useless to very useful 

1.0 

Perceived Ease of Use of 

automated driving functions  

reflective 

 

1. This technology looks easy to learn. 

2. This technology looks easy to master. 

3. The implicit knowledge of this technology looks 

easy to figure out by myself. 

7 point scale from very useless to very useful 

 

0.96 

0.71 

0.63 

Attitude Toward 

Adoption 

Attitude toward the use of 

automated driving functions  

reflective 

 

 

Overall, how would you describe your experience?  

For me, using the automated driving functions is: 

1. … bad/good  

2. … negative/positive  

3. … unfavourable/favourable 

4. … unpleasant/pleasant 

7 point scale within a semantic differential 

 

 

 

 

0.94 

0.85 

0.90 

0.71 

Adoption Intention 

Intention to adopt 

automated driving functions  

single-item 

 

1. Assuming you have access to such a technology in 

the future, what is the probability that you would use 

it? 

7 point scale from unlikely to likely 

 

 

1.0 

Table 4: Loadings of the final set of indicators. 
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After confirming reliability and validity with regard to the reflective measurement models, we 

evaluate the results of the structural model. Multicollinearity assessment by means of variance 

inflation factor (VIF) demonstrates that the results are not biased, since the VIF values range 

between 1.0 and 1.15 (see Table A6), thus not exceeding the threshold value of 5 (Hair et al. 

2017). The results of testing the model and its hypotheses are summarized in Figure 3. 

 

Examination of the explanatory power shows a substantial adjusted R2 value of 0.57 for our 

ultimate endogenous variable Adoption Intention. Focusing on the predictive power of the eye-

tracking parameter, we find rather weak adjusted R2 values. However, this weak predictive 

power can be explained by the lacking statistical significance of eyes-off-road-time, thus 

leading to a rejection of all three hypotheses. Notwithstanding the absence of statistical 

significance, it must be noted that the effects are largely in line with our expectations (see Figure 

2). 

 

In assessing the impact of a particular predictor latent variable, the effect size f2 is calculated. 

A recommended guideline is that values of 0.02, 0.15 and 0.35 represent a small, medium or 

large effect at the structural level (Hair et al. 2017). The path between eyes-off-road-time and 

RA indicates a small effect size (f2 = 0.02) so that the removal of the path from the structural 

model would have a small effect on RA. Similarly, the removal of the path between eyes-off-

road-time and PEoU suggests a small effect size (f2 = 0.02). Finally, the path between eyes-off-

road-time and PU is clearly smaller than 0.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3: Results of structural equation modelling using a partial least squares-based approach. 

Note: ***p ≤ 0.01; **p ≤ 0.05; *p ≤ 0.10; dashed paths refer to non-significant relationships. 

 

DISCUSSION, LIMITATIONS AND FURTHER RESEARCH 

The objective of this study is the evaluation of automated driving technology using implicit 

behavioural measurement in terms of the eye-tracking parameter “eyes-off-road-time”. In 

summary, our general line of argument is – despite a lack of significance – largely confirmed 

according to which a longer eyes-off-road-time indicates a higher acceptance of automated 

driving technology. However, the absence of significance could be primarily a consequence of 

our operationalization, since eyes-off-road-time refers to a period of only one minute. It is 

assumed that the effects could become more apparent when test drivers use the automated 

driving function within a longer timeframe. Furthermore, it should also be kept in mind that 

this study refers to level 2 automated vehicles. Drivers are obligated to keep their concentration 

on the road. In the next stage of development, drivers have more freedoms, since level 3 

automated vehicles allow them to turn their attention away from forward road scenes for a 

Relative 
Advantage 

Perceived 
Usefulness 

Perceived 
Ease of  
Use 

Attitude  
Toward 
Adoption 

Adoption 
Intention 

0.13 

-0.04 

0.15 

0.21 

0.16 
0.24** 

0.60*** 

0.19* 

0.76*** 

R2
adj = 0.01 

R2
adj = 0.06 

R2
adj = 0.01 

R2
adj = 0.59 R2

adj = 0.57 

Cognition 

Implicit behavioural 

measurement via 

eye-tracking (eyes- 

 off-road-time) 
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longer time. Accordingly, it can be expected that the eyes-off-road-time parameter provides in 

this context more reliable information with regard to the evaluation of technology acceptance. 

If our line of argument is further confirmed, it will be necessary that the OEMs develop 

measures to bring “technology enthusiasts”, who already fully trust the technology, back onto 

the road. The findings could also be integrated into the marketing process in order to address 

precisely this target group. It is also possible to include in future studies further automated 

driving technologies (e.g., automated braking assistant, automatic speed control) to obtain a 

more comprehensive picture of technology acceptance. Finally, a balanced relation between 

male and female participants would be desirable as well. 

 

Overall, the present study argues to include implicit behavioural measured variables when 

evaluating technology acceptance of automated driving, since this is a technology where the 

fully disruptive innovation (level 5) is already in the head of consumers. The implicit 

behavioural measured variables also meet the requirement of context-independency, a demand 

formulated by Köpsel et al. for the evaluation of technology acceptance in the field of automated 

driving (Köpsel et al. 2018). The effects that tend to be observed in this study now need to be 

examined further using level 3 automated vehicles, which in turn provides a deeper 

understanding of technology acceptance. 
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Figure A1: Test track in Stuttgart/Germany. 

 
 

Measurement  Source 

Cognition   

Relative Advantage of 

automated driving functions 

Based on your experience with the test vehicle, how do 

you evaluate the following autonomous driving 

functions?  

 

 … Distance alert assistant 

… Automated braking assistant 

 

 …. Speed adaption assistant 

… Automated parking assistant 

… Lane keeping assistant 

… Lane change assistant 

7 point scale from very negative to very positive 

 

 

Perceived Usefulness of 

automated driving functions 

In my daily life, automated driving functions will be… 

7 point scale from very useless to very useful 

 

Kulviwat 

et al. 2007 

Perceived Ease of Use of 

automated driving functions 

 

This technology looks easy to learn. 

This technology looks easy to master. 

The implicit knowledge of this technology looks easy to 

figure out by myself. 

It seems convenient for me to use this technology. 

7 point scale from very useless to very useful 

Hong et 

al. 2013 

 

               Manual drive 

              Free use of driver assistance system 

              Standardized use of driver assistance system 
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Attitude Toward Adoption 

Attitude toward the use of 

automated driving functions 

 

 

Overall, how would you describe your experience?  

For me, using the automated driving functions is: 

… bad/good  

… negative/positive  

… unfavourable/favourable 

… unpleasant/pleasant 

7 point scale within a semantic differential 

 

 

Kulviwat 

et al. 2007 

Adoption Intention 

Intention to adopt 

automated driving functions 

 

Assuming you have access to such a technology in the 

future, what is the probability that you would use it? 

7 point scale from unlikely to likely 

 

 

Kulviwat 

et al. 2007 

Table A1: Item summary. 

 

 AVE Cronbach’s α Composite Reliability Dijkstra-Henseler’s ρA 

Adoption Intention 1 1 1 1 

Attitude Toward Adoption 0.73 0.92 0.92 0.92 

Off-road-time 1 1 1 1 

Perceived Ease of Use 0.61 0.80 0.82 0.86 

Perceived Usefulness 1 1 1 1 

Relative Advantage 0.51 0.76 0.76 0.77 

Table A2: Criteria for assessing convergent validity and reliability. 

Note: AVE refers to convergent validity. Cronbach’s α, Composite Reliability and Dijkstra-Henseler’s ρA refer to reliability. 

 
 Adoption 

Intention 

Attitude Toward 

Adoption 

Off-road- 

time 

Perceived 

Ease of Use 

Perceived 

Usefulness 

Relative 

Advantage 

Adoption 

Intention 

1      

Attitude Toward 

Adoption 

0.76 0.86     

Off-road-time 0.01 -0.03 1    

Perceived Ease  

of Use 

0.31 0.43 0.15 0.78   

Perceived 

Usefulness 

0.77 0.70 0.01 0.21 1  

Relative 

Advantage 

0.35 0.41 0.13 0.31 0.25 0.72 

Table A3: Fornell-Larcker criterion for assessing discriminant validity. 

Note: Diagonal elements in bold represent the square roots of the shared variance between the constructs and their indicators 

(AVE); off-diagonal elements represent the correlations among the constructs (interconstruct correlation). 
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        Adoption      

     Intention 

Attitude 

Toward 

Adoption 

Off-road-

time  

Perceived 

Ease of Use 

Perceived 

Usefulness 

Relative 

Advantage 

Eyes-off-road-time 0.01 -0.03 1 0.15 0.01 0.13 

Adoption Intention 1 0.76 0.01 0.31 0.77 0.35 

Attitude 1 0.71 0.94 -0.04 0.50 0.65 0.31 

Attitude 2 0.62 0.85 -0.04 0.37 0.60 0.43 

Attitude 3 0.70 0.90 -0.00 0.31 0.65 0.36 

Attitude 4 0.56 0.71 -0.00 0.26 0.49 0.33 

Assistant 1 0.21 0.32 0.17 0.20 0.15 0.70 

Assistant 2 0.20 0.26 0.06 0.21 0.15 0.61 

Assistant 3 0.34 0.31 0.04 0.25 0.22 0.82 

Ease of use 1 0.32 0.41 0.10 0.96 0.25 0.26 

Ease of use 2 0.21 0.29 0.12 0.71 0.14 0.27 

Ease of use 3 0.18 0.29 0.14 0.63 0.08 0.19 

Perceived Usefulness 0.77 0.70 0.01 0.21 1 0.25 

Table A4: Cross loadings for assessing discriminant validity. 

Note: The indicator loadings in bold are consistently higher on the construct with which they are associated than on any other 

construct as referred to the cross loadings. 

 
 Adoption 

Intention 

Attitude Toward 

Adoption 

Off-road- 

time 

Perceived 

Ease of Use 

Perceived 

Usefulness 

Attitude Toward 

Adoption 

0.76 

[0.62; 0.86] 

    

Off-road-time 0.01 

[0.00; 0.01] 

0.03 

[0.00; 0.03] 

   

Perceived Ease of Use 0.32 

[0.09; 0.54] 

0.43 

[0.22; 0.62] 

0.16 

[0.04; 0.32] 

  

Perceived Usefulness 0.77 

[0.62; 0.87] 

0.70 

[0.58; 0.79] 

0.01 

[0.00; 0.01] 

0.21 

[0.05; 0.42] 

 

Relative Advantage 0.34 

[0.12; 0.56] 

0.41 

[0.17; 0.62] 

0.13 

[0.04; 0.24] 

0.32 

[0.11; 0.57] 

0.24 

[0.05; 0.48] 
Table A5: HTMT-values and 95% bias-corrected confidence intervals for assessing discriminant validity. 

Note: 95% bias-corrected confidence intervals are reported in parentheses. Confidence intervals base on 5,000 bootstrap 

samples. 

 

 Adoption 

Intention 

Attitude Toward 

Adoption 

Off-road- 

time 

Perceived 

Ease of Use 

Perceived 

Usefulness 

Relative 

Advantage 

Attitude Toward 

Adoption 

1.0      

Off-road-time    1.0 1.03 1.0 

Perceived Ease  

of Use 

 1.13   1.12  

Perceived 

Usefulness 

 1.09     

Relative 

Advantage 

 1.15   1.11  

Table A6: Inner VIF-values for assessing multicollinearity. 


