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Abstract—The decentralized nature of multi-agent systems
requires continuous data exchange to achieve global objectives. In
such scenarios, Age of Information (AoI) has become an impor-
tant metric of the freshness of exchanged data due to the error-
proneness and delays of communication systems. Communication
systems usually possess dependencies: the process describing
the success or failure of communication is highly correlated
when these attempts are “close” in some domain (e.g. in time,
frequency, space or code as in wireless communication) and is,
in general, non-stationary. To study AoI in such scenarios, we
consider an abstract event-based AoI process ∆(n), expressing
time since the last update: If, at time n, a monitoring node
receives a status update from a source node (event A(n − 1)
occurs), then ∆(n) is reset to one; otherwise, ∆(n) grows linearly
in time. This AoI process can thus be viewed as a special random
walk with resets. The event process A(n) may be non-stationary
and we merely assume that its temporal dependencies decay
sufficiently, described by α-mixing. We calculate moment bounds
for the resulting AoI process as a function of the mixing rate of
A(n). Furthermore, we prove that the AoI process ∆(n) is itself
α-mixing from which we conclude a strong law of large numbers
for ∆(n). These results are new, since AoI processes have not
been studied so far in this general strongly mixing setting. This
opens up future work on renewal processes with non-independent
interarrival times.

Index Terms—Age of Information, Temporal Communication
Dependencies, Moment Bounds, Strong LLN, α-Mixing

I. INTRODUCTION

Age of Information (AoI) is a metric that measures the
freshness of status updates from a source available at a
monitor. AoI arises if information traverses via a network
that requires a certain transmission, service or processing time
until the information arrives from a source at a monitor. AoI
matters in problems such as distributed optimization, learning
and monitoring, where small AoI usually lets algorithms that
use the aged data converge faster.

Many effects give rise to AoI. To encompass them, we
consider an abstract model for the information exchange
between two nodes, a source and a monitor. Information
exchange is described by a sequence of events A(n) that
represent successful fresh status updates from the source at
the monitor (Figure 1).

We use a discrete time model and denote time steps by
n ≥ 0. We refer to a time slot n as the time interval from time
step n to n + 1. The source node sends fresh status updates
to the monitor. A fresh update sent at time step n is received
either at time step n+ 1 (more precisely, at the start of time
slot n + 1) or not at all. Here, fresh means that the update
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A(n)

Monitor

∆(n)

Fig. 1: A source sends status updates through a channel to a
monitor. At time n+1 an update is successfully received and
the AoI process ∆(n) is reset to one if the event A(n) has
occurred.

from the source is from time step n. If a fresh update sent at
time step n is received at time step n + 1, then we say the
event A(n) has occurred. The event A(n) is thus associated
with the n-th time slot. Hence, whenever an event A(n) occurs
∆(n+ 1) = 1. The resulting AoI process ∆(n) is defined as

∆(n+ 1) :=

{
1, A(n) has occurred,
∆(n) + 1, otherwise,

(1)

with ∆(0) := 1. This simple AoI model thus considers
status updates that require one time-slot for communication.
However, it also serves as a basis for more general AoI models
where communication requires a certain (possibly stochastic)
transmission time, as to be discussed later.

The AoI process (1) can be seen as a special random walk
on the positive real line that restarts whenever an event A(n)
occurs. From this perspective, the AoI process can represent
various hill-climbing phenomena, where a process growths
over time and then resets at certain events. This has for
example been used in physics to study Doppler laser cooling,
where atoms raise from a ground level in the presence of
a light field [1]. In the context of wireless communication,
A(n) may represent the joint event that information is sent and
that the used communication channel is in a good state, e.g.,
because the signal-to-noise ratio of a received signal is above a
certain threshold, thus guaranteeing successful communication
[2].

In literature, communication channels have been studied
under various time-correlation models. Most common are
channel representations as linear-time invariant systems [3]
or finite-state Markov chains [4]. However, the abstract AoI
process (1) has only been studied under the assumption that the
event process A(n) is an independent stochastic process [1].
Independence assumptions are often particularly unrealistic for



communication systems. For example, success of sequential
communication attempts via wireless fading channels can be
highly correlated, but the correlation usually decays over
time. In general, many real-world systems possess potentially
“long range” dependencies that decay as the events get more
separated in time [5].

This work studies the abstract AoI process (1) in the
fundamental setting where the event process A(n) merely
possesses a temporal dependency decay property, where the
process’ dependency decays over time in a way that can be
described by α-mixing. Due to this abstract view, our results
can be applied to AoI processes that arise in communication,
computing or as the consequence of other phenomena that
delay the transport of information. Our results are fundamental
in that we relate for the first time the rate of mixing of the
event process A(n) to properties of the AoI process ∆(n).
We calculate moment bounds for the AoI process ∆(n) as a
function of the α-mixing rate of A(n). We show that ∆(n) is
itself α-mixing, which leads to a strong law of large numbers
(SLLN) for ∆(n) under sufficiently rapid α-mixing of the
event process A(n).

A. Prior and Related Work

Age of Information has repeatedly risen in popularity over
time. Historically, processes related to aging have been studied
to understand the age distribution of populations as individuals
live and die [6, 7]. Most notably, age processes were studied
as part of Blackwall’s renewal theory, see e.g. [8, Chapter
V]; here renewals occur after i.i.d. interarrival times with
a certain fixed distribution. In Markov renewal theory, see
e.g. [9], the sequence of interarrivals constitute a Markov
chain. Renewal theory with dependent interarrivals has re-
cently been considered in [10] from an abstract symbolic
dynamics perspective. Notably, renewal theory with temporally
dependent interarrivals, where the dependency is described by
a probabilistic mixing notion has not been considered so far.

Freshness of information has first been considered in [11].
More recently, AoI has become popular in the networking and
information theory community as a representative metric for
the freshness of data [12, 13]. Here, AoI has been studied
for various queuing and scheduling models [14, 15] that
require i.i.d. service and waiting times as in renewal theory.
The analysis presented therein relies on the saw-tooth nature
of AoI processes in combination with certain stationarity
and ergodicity assumptions for the waiting and service time
processes. In wireless communication settings, AoI has been
considered in edge-based network models where success of
communication via individual edges has been considered as
i.i.d. across time [16]. In the above cases, we observed that
i.i.d. assumptions are prominent for arrival and service times as
well as for the success of communication. In the former case,
this is due to the tractability of sums of independent random
variables using laws of large numbers. In the latter case, it
is due to the tractability of products of independent random
variables. However, interarrival times can be highly dependent
as arrivals tend to form clumps [17]. Similarly, communication

success over wireless fading channels can be highly correlated
[18].

The previous two paragraphs motivate our consideration of
the fundamental AoI process (1) as a function of an event
process A(n) with dependencies described by suitably prob-
abilistic mixing notion. Close to our work is the perspective
of the AoI process (1) as a random walk with restarts, as
studied in [1] and followup papers. Here, the process is called
Sisyphus random walk due to its analogy with climbing and
falling down a hill indefinitely. This line of work analyzes
(1) as a countable-state Markov process where A(n) is an
independent stochastic process. The AoI process (1) has not
yet been studied when A(n) is a general (not necessarily
stationary) stochastic process with time dependencies. We
intend to close this gap.

B. Paper Summary

We first recall necessary background from probability theory
in Section II. Notably, we use the notion of first-order stochas-
tic dominance (Definition 1), which is a stochastic order for
random variables (r.v.s) denoted by X ≤st X for some r.v.s
X and X . Further, we use the notion of α-mixing (Defini-
tion 2). For every (not necessarily stationary) sequence of
r.v.s {Xn}n≥0, one can define α-mixing coefficients α(X,m),
which provides a worst-case measure of temporal dependency
of events generated by {Xn}kn=0 and {Xn}∞n=k+m for all
k ≥ 0. We will then discuss details of the AoI process (1)
and associated assumptions in Section III.

Our main results are proven in Sections IV and V. Our first
result is a set of sufficient conditions that guarantees that the
average p-th moment of the AoI process (1) is finite. We will
denote by α(A,n) the α-mixing coefficients of the indicator
process 1A(n). Theorem 1 shows that sufficiently fast decay of
α(A,n) guarantees that all AoI r.v.s ∆(n) are stochastically
dominated by a single r.v. that has certain finite moments
depending on the decay rate of α(A,n).

Theorem 1. Suppose there are κ ≥ 0 and ε ∈ (0, 1) such that
P
(
∪n+κ
k=nA(k)

)
≥ ε for all n ≥ 0. If

∑
m≥0 m

p−1α(A,m) <

∞ for some p > 0, then there is a r.v. ∆ with ∆(n) ≤st ∆ for
all n ≥ 0 and E

[
∆

p
]
< ∞.

The p-th moment of the dominating r.v. ∆ is calculated in
the proof of Theorem 1 as a function of ε, κ and the mixing
coefficients α(A,n). Notice that Theorem 1 does not require
that A(n) is a stationary process. Hence, 1

N

∑N−1
n=0 ∆p(n)

might not converge. However, by stochastic dominance, we
have a bound for the limiting average moments of the AoI
process:

Corollary 1. If Theorem 1 holds for some p > 0, then

lim sup
N→∞

E

[
1

N

N−1∑
n=0

∆p(n)

]
≤ E

[
∆

p
]
. (2)

Secondly, we study the mixing rate of the AoI process (1)
in Section V. Here, our main result bounds the mixing rate of



(1) by a combination of the mixing coefficient α(A,n) and
the tail decay of the dominating r.v. from Theorem 1.

Theorem 2. Suppose the assumptions of Theorem 1 are sat-
isfied, then the AoI process ∆(n) is α-mixing with coefficients
α(∆, n), such that

α(∆, n) ≤ min
0≤m≤n

{α(A,n−m) + P
(
∆ > m

)
} (3)

with ∆ from Theorem 1.

We also show that the mixing rate of α(∆, n) is almost as
fast as the mixing rate of α(A,n). Specifically, we show that

∞∑
n=0

np−1α(A,n) < ∞ =⇒
∞∑

n=0

nq−1α(∆, n) ∀q < p.

(4)
Using (3), we conclude Section V with a SLLN for the AoI
process (1) under sufficiently rapid α-mixing of the event
process A(n).

We close our work with conclusions, future work and open
problems in Section VI. Most notably, we highlight that our
analysis of the abstract AoI process (1) under merely α-mixing
communication is a gateway to study more complex AoI pro-
cesses. For example, renewal processes with non-independent
interarrivals or real-world AoI processes where the mixing rate
of the communication process has been estimated from data.

II. PROBABILITY THEORY BACKGROUND AND NOTATION

We consider an underlying, sufficiently rich probability
space (Ω,F ,R) [19, p. 482]. All events are to be understood
as elements of F and all r.v.s are measurable functions from
Ω to another measurable space.
Definition 1. A r.v. X is said to be stochastically dominated by
a r.v. X , denoted by X ≤st X , if P (X > m) ≤ P

(
X > m

)
for all m ≥ 0.

Proposition 1 ([20]). Suppose X is a non-negative integer-
valued r.v., then for every p > 0:

E [Xp] =

∞∑
m=0

((m+ 1)p −mp)P (X > m) . (5)

Let A and B be two sub-σ-algebras of F . The following is
a measure of dependency between A and B

α(A,B) := sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|. (6)

Consider a (not necessarily stationary) stochastic process X =
{Xn}n≥0. For 0 ≤ l ≤ m ≤ ∞, define the sub-σ-algebra
generated from Xl up to Xm by

Fm
l := σ (Xn | l ≤ n ≤ m) , (7)

Informally, the σ-algebra generated by a stochastic process
from a time interval describes the information that can be
extracted from the associated process realizations, cmp. [21]
for details. With these σ-algebras we can now define α-mixing,
which it a notion of asymptotic independence. We refer to [22]
for a survey about α-mixing and other mixing notions.

Definition 2. The α-mixing coefficients of the process X are

α(X,n) := sup
l≥0

α(F l
0,F∞

l+n), n ≥ 0. (8)

The process X is called α-mixing (or strongly mixing) if
α(X,n) → 0 as n → ∞.

A. Notation

We make frequent use of the small o and big O notation:
Consider two real-valued sequences xn, yn. Then xn ∈ o(yn)
if lim sup

n→∞
xn

yn = 0 and xn ∈ O(yn) if lim sup
n→∞

xn

yn < ∞. Fur-

ther, we use the floor and ceiling function. For some x ∈ R, the
floor function is defined as ⌊x⌋ := max{n ∈ Z : n ≤ x} and
the ceiling function is defined as ⌈x⌉ := min{n ∈ Z : n ≥ x}.

III. THE AGE OF INFORMATION PROCESS

We study the discrete-time AoI stochastic process ∆(n) in
(1) as depicted in Figure 1. We refer to a time slot n as the time
interval from time step n to n+ 1. Successful status updates
from the source node are received at the monitor whenever
an event A(n) occurs. The event A(n) is associated with the
n-th time slot. Hence, whenever an event A(n) occurs, the
monitor receives a fresh update during time slot n and thus
∆(n + 1) = 1. We refer to A(n) as the event process of
the AoI process ∆(n). With a slight “abuse” of notation, we
refer by A(n) interchangeably to the event A(n) as well as
to its corresponding indicator function 1A(n).1 We make the
following assumptions for the event process A(n):
Assumption III.1. There is some ε ∈ [0, 1), such that

P (A(n)) ≥ 1− ε, ∀n ≥ 0.

Assumption III.2. The event process A(n) is α-mixing (Defi-
nition 2) with coefficients α(A,n).

Assumption III.1 requires that at every time step the monitor
receives an update from the source with non-zero probability.
A slightly weaker assumption that is also sufficient for our
results is that there is some κ ≥ 0 and some ε ∈ [0, 1), such
that P

(⋃n+κ
k=n A(k)

)
≥ 1− ε, ∀n ≥ 0. The weaker version

thus requires that for every time interval of the form [n, n+κ]
the probability that the monitor receives an update from the
source is greater than zero. This weaker assumption is in fact
necessary for the existence of a r.v. ∆ such that ∆(n) ≤st ∆
for all n ≥ 0; without it, there exists a subsequence {nk}
such that P

(
lim
k→∞

∆(nk) = ∞
)

= 1. For simplicity, we will

present our results in Section IV and Section V for κ = 0,
though all proofs can be easily extended to κ > 0.

Assumption III.2 requires that the dependency of events
A(n) and A(m) decays as |m − n|→ ∞. There are many
examples where A(n) will be α-mixing. In general, A(n)
will be α-mixing if it can be written as a Borel-measurable
function of another α-mixing process [22, Thm. 5.2]. Here,
an important class of examples are scenarios where the

1The abuse of notation actually follows the de Finetti notation [23] as
popularized by David Pollard.



communication events A(n) are a Borel-measurable function
of a geometrically ergodic Markov process [22, 24]. This
class has been a common tool to approximate wireless fading
channels [4, 18, 25]. In addition, it was shown in [26] that an
event process that represents successful communication via
a geometrically ergodic wireless fading channel is α-mixing
even when online, AoI-aware medium access control protocols
are used to decide when to communicate.

Another class of examples comes from renewal theory. [27,
Theorem 6.1] shows that the event process resulting from a lat-
tice renewal processes with i.i.d. interarrival times is α-mixing
if the waiting time distribution has a finite moment greater
than one. In [28], the α-mixing rates of linear processes and
ARMA processes are determined. Finally, it is also possible
to directly estimate α-mixing coefficients from observed data
[29, 30]. We will further discuss this in Section VI on future
work.

IV. AOI MOMENT BOUNDS UNDER α-MIXING
COMMUNICATION

In this section, we analyze the moments of the AoI process
(1). As the event process A(n) may in general be non-
stationary, we use stochastic dominance (Definition 1) to
construct uniformly dominating r.v.s for the AoI process ∆(n).
This immediately leads to bounds for the limiting average
moments of the AoI process. Furthermore, uniformly dominat-
ing r.v.s also immediately leads to bounds for the asymptotic
growth of the AoI process.

To construct uniformly dominating r.v.s, we derive an upper
bound to the complementary cumulative distribution functions
(CCDF) P (∆(n) > m) uniformly over all n ≥ 0; the CCDF
is also known as the violation probability in the AoI context
[15]. In the next subsection, we will construct a function u :
N0 → [0, 1] such that P (∆(n) > m) ≤ u(m) for all m ≥ 0
independent of n ≥ 0 with lim

m→∞
u(m) = 0. We can now

use this bound to define the CCDF of a new random variable.
Specifically, define a non-negative integer-valued r.v. ∆ by
defining

P
(
∆ > m

)
:= u(m), ∀m ≥ 0. (9)

This uniquely defines ∆ and by construction ∆ stochastically
dominates all ∆(n) for all n ≥ 0. Moreover, if

∑∞
m=0((m+

1)p − mp)u(m) < ∞ for some p > 0, then it follows from
Proposition 1 that E

[
∆

p
]
< ∞.

A. Violation probability under α-mixing communication

By construction of the AoI process (1), we have that

P (∆(n) > m) = P

(
n−1⋂

l=n−m

Ac(l)

)
, (10)

where Ac(n) denotes the complement of the event A(n).
Observe that if the events A(n) where independent, then
probability on the right-hand side above could directly be
written as the product of the individual probabilities. However,
we merely consider that A(n) is α-mixing, Assumption III.2.

To use this temporal dependency decay, we separate events in
(10) by intervals of certain length.

Let {am} and {bm} be two non-decreasing sequences of
non-negative integers with am ≤ m and bm ≤ m. Now fix
n ≥ m ≥ 0 and define time indices

n1 := n−m+ am, nk := nk−1 + am + bm (11)

as long as nk ≤ n. Let L(m) be the number of constructed
time indices. Notice, that removing events from the intersec-
tion in (10) leads to an upper bound. Thus

P (∆(n) > m) = P

(
n−1⋂

l=n−m

Ac(l)

)
(12)

≤ P

L(m)⋂
k=1

(
nk−1⋂

l=nk−am

Ac(l)

) (13)

= P

L(m)⋂
k=1

{∆(nk) > am}

 . (14)

Notice that by construction of the time indices nk, the events
{∆(nk) > am} in (14) are separated by bm steps. The
following lemma uses this separation to formulate a bound for
the joint event in (14) using the marginals P (∆(nk) > am)
and the mixing coefficients α(A,n) of A(n).

Lemma 1. For n ≥ m ≥ 0,

P(∆(n) > m) ≤
L(m)∏
k=1

P (∆(ns) > am) (15)

+ α(A, bm)

L(m)−1∑
k=1

(
k−1∏
s=1

P (∆(ns) > am)

) ,

where ns is defined in (11).

Proof. We expand the right-hand side of (14) using Assump-
tion III.2. Consider the following σ-algebras:

Fs
l := σ (A(n) | l ≤ n ≤ s) , l ≥ 0, s ≥ 0. (16)

Each event {∆(nk) > am} in (14) is generated by the events
A(n) with n ∈ {nk−am, . . . , nk−1, nk−1}. By construction
of the above sub-σ-algebras, we have that

{∆(nk) > am} ∈ Fnk−1
nk−am

. (17)

Recall that by the construction of the time indices (11), the
events {∆(nk) > am} are separated by bm steps. We thus
have that

{∆(nL(m)) > am} ∈ F∞
nL(m)−am

(18)

and
L(m)−1⋂

k=1

{∆(nk) > lm} ∈ FnL(m)−1−1
0 , (19)

where L(m) is the number of constructed time indices. Due
to the aforementioned separation, we have

nL(m) − am − (nL(m)−1 − 1) = bm + 1 ≥ bm. (20)



By Assumption III.2 {A(n)}n≥0 is α-mixing with coefficient
α(A,n). It then follows from (18) and (19) and the construc-
tion of the time indices nk that

P (∆(n) > m) ≤ P
(
{∆(nL(m)) > am}

)
P

L(m)−1⋂
k=1

{∆(nk) > am}

+ α(A, bm).

(21)

The lemma then follows by applying the described procedure
successively.

With Assumption III.1, a preliminary bound for the violation
probability follows:

Corollary 2. Let n ≥ m ≥ 0, then P (∆(n) > m) ≤ p(m, δ)
with

p(m, δ) := εLδ(m) + α(A, ⌈mδ⌉)

Lδ(m)−1∑
k=1

εk−1

 (22)

for every δ ∈ (0, 1) with Lδ(m) :=
⌊

m
1+⌈mδ⌉

⌋
.

Proof. For δ ∈ (0, 1) choose am = 0 and bm = ⌈mδ⌉ for all
m ≥ 0 in Lemma 1 and use that P (∆(n) > 0) ≤ ε for all
n ≥ 0 by Assumption III.1.

Notice that Lemma 1 and Corollary 2 hold without As-
sumption III.2 since the mixing coefficients are defined for
all stochastic process. Under Assumption III.2 it now follows
that α(A,n) → 0 as n → ∞. Hence, the right-hand side
in (22) decays to zero as m → ∞, since lim

m→∞
⌈mδ⌉ = ∞

and lim
m→∞

Lδ(m) = ∞ for every δ ∈ (0, 1). The recipe
described at the beginning of this section thus immediately
shows that a r.v. exists that jointly stochastically dominates
∆(n) for all n ≥ 0. Moreover, for every q < p with p from
Assumption III.2, we can choose δ sufficiently close to one
such that p(m, δ) decays sufficiently fast such that

∞∑
m=0

((m+ 1)q −mq)p(m, δ) < ∞ (23)

Thus for every q < p, we can find a r.v. ∆ with ∆(n) ≤st ∆

for all n ≥ 0 and E
[
∆

q
]
< ∞.

B. Proof of Theorem 1

The previous paragraph shows Theorem 1 for all q < p. For
q = p the situation is different and the bound in Corollary 2 is
insufficient to complete Theorem 1. This is because bm in (15)
has to be chosen such that lim inf bm

m > 0, to guarantee that∑∞
m=0((m+1)p−mp)α(A, bm) < ∞. In this case L(m) < ∞

and thus am has to increase to infinity to guarantee that the
first term in (15) decays to zero. The central observation is
that both sequences am and bm, as used to construct the time
indices in (11), have to been chosen to jointly drift to infinity.
To do this, we use the bound from Corollary 2 in Lemma 1
to improve the bound on the violation probability.

Lemma 2. Let n ≥ m ≥ 0,

P(∆(n) > m) ≤ p(⌈λm⌉, δ)Lλ(m) (24)

+ α(A, ⌈λm⌉)

Lλ(m)−1∑
k=1

(
k−1∏
s=1

p(⌈λm⌉, δ)

) =: u(m, δ, λ)

for every (δ, λ) ∈ (0, 1)2 with Lλ(m) := ⌊ m
2⌈λm⌉⌋ and p(m, δ)

as defined in Corollary 2.

Proof. For λ ∈ (0, 1) choose am = bm = ⌈λm⌉ for all m ≥ 0
in Lemma 1. Then, (22) shows that for every δ ∈ (0, 1) and
every n ≥ 0, we have the bound

P (∆(n) > am) ≤ p(⌈λm⌉, δ). (25)

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix (δ, λ) ∈ (0, 1)2 and observe that
u(m, δ, λ) is by construction decreasing in m. Now define
a non-negative integer-valued r.v. ∆ by describing its CCDF
as follows:

P
(
∆ > m

)
:= u(m, δ, λ), m ≥ 0. (26)

By Lemma 2, ∆ stochastically dominates all ∆(n) for n ≥ 0.
To prove Theorem 1, we have to show that there exist (δ, λ) ∈
(0, 1)2, such that

∑∞
m=0((m+ 1)p −mp)u(m, δ, λ) < ∞.

We start by showing that
∞∑

m=0

((m+ 1)p −mp)α(A, ⌈λm⌉) < ∞ (27)

for all λ ∈ (0, 1). We claim that
∞∑

m=1

((m+ 1)p −mp)α(⌈λm⌉) ≤ 2p

λp

∞∑
m=1

mp−1α(m) (28)

This claim follows from the observations that for x ∈ R≥0

and m ≥ 1, ((m + 1)x − mx) ≤ 2xmx−1, and that |{n ≥
0 : ⌈λn⌉ = m}| ≤ 1

λ . Hence, by Assumption III.2 we have
that (27) holds for all λ ∈ (0, 1). Further, Lλ(m) ≤ 1

λ . To
complete the proof it is therefore left to show that

∞∑
m=0

((m+ 1)p −mp)p(⌈λm⌉, δ)Lλ(m) < ∞ (29)

for some (δ, λ) ∈ (0, 1)2. Since (m + 1)p − mp ≤
2pmp−1 for m ≥ 1, its enough to show that∑∞

m=1 m
p−1p(⌈λm⌉, δ)Lλ(m) < ∞. Using the summability

property of α(A,n) from Assumption III.2, we can show that

p(⌈λm⌉, δ)Lλ(m) ∈ O
((

ε(m
1−δ) +m−µδ

) 1
λ

)
(30)

for µ := p, if p ≤ 1 and µ := p−1, if p > 1.2 Asymptotically,
m−µδ will dominate ε(m

1−δ) for any δ ∈ (0, 1). It is thus
enough to show that

∑∞
m=1 m

p−1m−µ δ
λ < ∞, which holds

for δµ > λp. This completes the proof.
2The distinction follows, since mp−1α(A,n) is not necessarily monotone

for p > 1.



V. MIXING RATES OF AOI PROCESSES

Section IV shows that if A(n) is α-mixing with∑∞
n=0 n

p−1α(A,n) < ∞, then

P (∆(n) > m) ≤ P
(
∆ > m

)
∈ o(m−p) (31)

for a random variable ∆. This uniform tail decay of the
distributions of each ∆(n) indicates that the dependency of
∆(n) on A(m) decays as |n−m|→ ∞. This in turn indicates
that the dependency of ∆(n) on ∆(m) also decays. Theorem 2
affirms this indication and that ∆(n) is itself α-mixing. Now,
we present the proof of Theorem 2.

A. Proof of Theorem 2

For 0 ≤ l ≤ m ≤ ∞, define the σ-algebra generated from
∆(l) up to ∆(m) by

Fm
l (∆) := σ (∆(n) | l ≤ n ≤ m) . (32)

Similarly, define the σ-algebra generated from A(l) up to
A(m) by

Fm
l (A) := σ (A(n) | l ≤ n ≤ m) . (33)

The α-mixing coefficients of ∆(n) are

α(∆, n) := sup
l≥0

{sup
A,B

|P (A ∩B)− P (A)P (B)|}, (34)

where the supremum is taken over A ∈ F l
0(∆), B ∈ F∞

l+n(∆).
The idea of Theorem 2, is to condition events A∩B and B

in (34) on events {∆(l + n) ≤ m} and {∆(l + n) > m} for
0 ≤ m ≤ n. Then, we use the key property that an event B as
above conditioned on {∆(l + n) ≤ m} is already an element
of F∞

n+l−M (A), which thus allows us to use that A(n) is α-
mixing.

Lets develop some intuition as to why for B ∈ F∞
l+n(∆) it

holds that

B ∩ {∆(l + n) ≤ m} ∈ F∞
l+n−m(A). (35)

Observe that information B̃ ∈ σ(∆(n+ l)) = Fn+l
n+l (∆) is of

the form

B̃ = ∆(n+ l)−1(C),

where C is a subset of {1, . . . , n+ l}. By definition, we have

{∆(n+ l) ≤ m} = ∆(n+ 1)−1({1, . . . ,m}). (36)

Using the construction of the AoI process (1) it is then not
difficult to see that B̃ ∩ {∆(n + l) ≤ m} ∈ F∞

l+n−m(A).
A monotone class argument now completes the reasoning. A
formal proof of property (35) is given in Appendix A. We are
now ready to proof Theorem 2.

Proof of Theorem 2. Let l,m, n ≥ 0, A ∈ F l
0(∆) and

B ∈ F∞
l+n(∆). Further, let ∆ be a dominating r.v. as given

by Theorem 1. By the law of total probability, we have that
|P (A ∩B)− P (A)P (B)| is thus equal to

|P (A ∩B ∩ {∆(l + n) ≤ m})
+ P (A ∩B ∩ {∆(l + n) > m})
−
(
P (A)P (B ∩ {∆(l + n) ≤ m})

+ P (A)P (B ∩ {∆(l + n) > m})
)
| (37)

≤ |P (A ∩B ∩ {∆(l + n) ≤ m})
− P (A)P (B ∩ {∆(l + n) ≤ m})|

+ P (∆(l + n) > m)
(
|P (A ∩B | {∆(l + n) > m})

− P (A)P (B | {∆(l + n) > m})|
)

(38)

≤ |P (A ∩B ∩ {∆(l + n) ≤ m})
− P (A)P (B ∩ {∆(l + n) ≤ m})|
+ P

(
∆ > m

)
(39)

The first inequality uses conditional probability and triangular
inequality; the second inequality uses that ∆ ≤st ∆(n) for all
n ≥ 0 and that

|P (A ∩B | {∆(l + n) > m})
− P (A)P (B | {∆(l + n) > m})| ≤ 1. (40)

By construction of the AoI process, we have that F l
0(∆) ⊂

F l
0(A) for all l ≥ 0. Thus A ∈ F l

0(A). By (35), we have that
B ∩{∆(l+n) ≤ m} ∈ F∞

l+n−m(A). Since A(n) is α-mixing
it follows that

|P (A ∩B ∩ {∆(l + n) ≤ m})
− P (A)P (B ∩ {∆(l + n) ≤ m})| ≤ α(A,n−M) (41)

Thus for all n ≥ 0, we found that

α(∆, n) ≤ α(A,n−m) + P
(
∆ > m

)
(42)

for all 0 ≤ m ≤ n. To see that α(∆, n) → 0 as n → ∞
choose, e.g., m(n) = ⌈n

2 ⌉. Minimizing over m in (42) yields
the statement of Theorem 2.

B. Mixing rate of ∆(n)

The next natural question is to analyze the rate of conver-
gence of α(∆, n). For this, let q < p and let δ ∈ (0, 1). Then

∞∑
n=0

nq−1α(∆, n) ≤
∞∑

n=0

nq−1α(A, ⌈nδ⌉)

+

∞∑
n=0

nq−1P
(
∆ > n− ⌈nδ⌉

)
. (43)

By Assumption III.2, we have that
∑∞

n=0 n
p−1α(A,n) and

we can show using q < p that the first summation is finite for
some δ ∈ (0, 1). We also claim that, the second summation
is finite for every δ ∈ (0, 1). This follows from (31) and the
observation that

∑∞
n=0 n

q−1−p < ∞ for q < p. Here, we



used that lim
n→∞

np

(n−⌈nδ⌉)p = 1 for every δ ∈ (0, 1). We have
therefore shown that

∞∑
n=0

np−1α(A,n) < ∞ =⇒
∞∑

n=0

nq−1α(∆, n) ∀q < p.

(44)
Thus ∆(n) has almost the same asymptotic mixing rate as
A(n).

As a corollary to Theorem 2 and the mixing rate in (44),
we can now formulate a SLLN for ∆(n). The SLLN is based
on a SLLN for strongly mixing stochastic processes presented
in [31] that we state here paraphrased to suit our purpose:

Theorem 3 ( [31, Thm. 2.10] ). Suppose {Xn}n≥0 is a zero
mean α-mixing sequence of r.v. with

∑∞
n=0 α(X,n)

1
q < ∞

for some q > 1. If there is 1 < r < q and r
r−1 < s ≤ 2r

r−1
such that ∞∑

n=0

n− r−1
r sE

[
|Xn|

r−1
r s
]
< ∞, (45)

then 1
N

∑N−1
n=0 Xn → 0 a.s.

Using the moment bound in Theorem 1 and the mixing rate
in Theorem 2, we can carefully choose r, s in Theorem 3 to
conclude with the following SLLN for ∆(n). Details are given
in Appendix B.

Corollary 3. Suppose the assumptions of Theorem 1 hold for
some p > 1, then

1

N

N−1∑
n=0

(∆(n)− E [∆(n)])
a.s.−→ 0. (46)

If in addition A(n) is stationary, then

1

N

N−1∑
n=0

∆(n)
a.s.−→ lim

n→∞
E [∆(n)] ≤ E

[
∆
]

(47)

VI. CONCLUSIONS, OPEN PROBLEMS AND FUTURE WORK

AoI has so far only been studied with independent or
Markovian interarrivals. To study AoI, renewal theory is a
suitable tool, but there is little to no literature on renewal
theory with general (non-Markovian) dependent interarrival
times. Our presented results offer a path to analyze AoI in such
settings even when new information is received at a monitor
after general dependent interarrival times. To apply our results,
we seek to compute the α-mixing rate of a renewal sequence
(i.e. the indicator process that takes the value one when new
data arrives) when the sequence of dependent interarrival times
is itself α-mixing. This is still an important open problem,
since as of now the α-mixing rates of renewal sequences are
only known (asymptotically) when the associated interarrival
times are i.i.d. [27]. Then, we seek to apply our results to
the AoI associated with queuing models with non-independent
service times.

Notably, to apply our results to the aforementioned renewal
and queuing theory problems, we have to take into account
stochastic transmission times as mentioned in Section I. Inter-
estingly, a completely new analysis is not necessary here since

it turns out that one can represent the AoI of a renewal process
with interarrival times by the concatenation of two identical
AoI processes of the simpler form (1), which were analyzed
herein. This representation will be discussed in an upcoming
paper.

Another interesting line of work will be to identify scenarios
where modeling of the process that gives rise to AoI is
difficult. For such scenarios, we envision that α-mixing rates
of the event process A(n) can be directly estimated from data
[30] and then use our results to draw conclusions about the
average AoI using Theorem 2.

APPENDIX A

We verify that for B ∈ F∞
l+n(∆), we have that

B ∩ {∆(l + n) ≤ M} ∈ F∞
l+n−M (A), (48)

as used in Section V-A.
First consider B ∈ σ(∆(n+l)). Every AoI random variable

is a measurable map ∆(n+ l) : Ω → 2{1,...,n+l}. Thus B is of
the form B = ∆(n+l)−1(C) for some C ∈ 2{1,...,n+l}, i.e. C
is a subset of {1, . . . , n+ l}. Second, for any 0 ≤ m ≤ n+ l,
we have

{∆(n+ l) ≤ m} = ∆(n+ 1)−1({1, . . . ,m}). (49)

Therefore, using properties of the preimage of intersections,
we have that

B ∩ {∆(n+ l) ≤ m} = ∆(n+ l)−1 (C ∩ {1, . . . ,m}) (50)

=
⋃

c∈C∩{1,...M}

∆(n+ l)−1({c}).

(51)

By construction of the AoI process, we have that

∆(n+ l)−1(c) = A(n+ l− c)∩
c−1⋂
k=1

Ac(n+ l− c+ k). (52)

Since F(A)∞l+n−m is a σ-algebra, we thus conclude from (51)
and (52) that

B ∩ {∆(n+ l) ≤ m} ∈ F(A)∞l+n−m. (53)

Next we consider elements of the join σ-algebra F(∆)∞n+l.
It can be expressed as

F(∆)∞n+l = σ

( ∞⋃
k=n+l

σ(∆(k))

)
. (54)

For all B ∈
⋃∞

k=n+l σ(∆(k)), the previous paragraph shows
that

B ∩ {∆(n+ l) ≤ m} ∈ F(A)∞l+n−m, (55)

using the stability of σ-algebras under countable unions.
A generating-class argument now completes the proof: Let
G := {B ∈ F(∆)∞n+l : B satisfies (53)}. Clearly, Ω ∈ G and
countable unions of elements from G are in G. Finally, let
B ∈ G. Then

Bc ∪ {∆(n+ l) > m} ∈ F(A)∞l+n−m, (56)



since B ∩ {∆(n + l) ≤ m} ∈ F(A)∞l+n−m and F(A)∞l+n−m

is a σ-algebra. Finally,

Bc∩{∆(n+ l) ≤ m} = (Bc ∪ {∆(n+ l) > m})
∩ {∆(n+ l) ≤ m} ∈ F(∆)∞n+l−m, (57)

again, since {∆(n+l) ≤ m} ∈ F(∆)∞n+l−m and F(A)∞l+n−m

is a σ-algebra. We have therefore shown that G is itself a σ-
algebra, hence G = F(∆)∞n+l−m.

APPENDIX B

Proof of Corollary 3. Suppose that A(n) is α-mixing with∑∞
n=0 n

p−1α(A,n) < ∞ for some p > 1. Theorem 2 shows
that ∆(n) is α-mixing with

∑∞
n=0 n

q−1α(∆, n) < ∞ for
every q < p.

Let 1 < q < p. To apply Theorem 3 to ∆(n), we first have
to show that

∞∑
n=0

α(∆, n)
1
q =

∞∑
n=0

α(∆, n)
1
q−1α(∆, n) < ∞ (58)

Since
∑∞

n=0 n
q−1α(∆, n) < ∞ and α(∆, n) is mono-

tone, we especially have that α(∆, n) ∈ o(n−1) and hence
α(∆, n)

1
q−1 ∈ o(n1− 1

q ). Finally (58) follows, since 1 −
1
q ≤ q − 1 for q ≥ 0 and

∑∞
n=0 m

q−1α(∆, n) < ∞ by
Assumption III.2.

To complete the proof, recall that Theorem 1 showed that
E [∆(n)p] ≤ E

[
∆

p
]
< ∞. It is now easy to see that we can

choose r, s in Theorem 3, such that 1 < r−1
r s < p and thus

(45) holds. Theorem 3 therefore shows that 1
N

∑N−1
n=0 (∆(n)−

E [∆(n)])
a.s.−→ 0. If in addition A(n) is strictly stationary,

then E [∆(n)] is monotonically increasing and the additional
statement follows.
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