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Abstract

Due to the rise of multimodal deep-learning, there are now a lot of
datasets and ways to represent and combine information from different
signals. However, despite such advances questions on characterizing fea-
ture interactions in multimodal datasets (i.e. which are datasets that
contain information from different signals or sources) is not well studied.

We propose a method based on classical information theory to mea-
sure the degree of redundancy, uniqueness, and synergy among the input
features. We work with two estimators for information that work well
with high-dimensional datasets. We conduct experiments with real-world
datasets, to assess the quality of the proposed procedure. Next we show
how these estimates can be used to measure the interactions in multimodal
datasets, the kinds of interactions that multimodal models can capture,
and good ways to choose a model.

1 Introduction
A core challenge in machine learning lies in capturing the interactions between
multiple features or signals. Despite progress in new models that seem to better
capture interactions from increasingly complex real-world multimodal datasets,
several fundamental research questions remain: How can we quantify the in-
teractions that are necessary to solve a multimodal task? Subsequently, what
type of interactions are our multimodal models actually capturing? This paper
aims to formalize these research questions by proposing an information-theoretic
approach to quantify the nature and degree of feature interactions. Our math-
ematical framework and associated empirical quantification brings together 2
previously disjoint research fields: Partial Information Decomposition (PID) in
information theory (Williams and Beer. 2010, Bertschinger et al., 2014 , Grif-
fith and Koch (2014) and multimodal machine learning (Liang et al., 2022b;
Baltrušaitis et al., 2018). PID provides precise definitions enabling the catego-
rization of interactions into redundancy, uniqueness, and synergy. Redundancy
describes task-relevant information shared among features, uniqueness studies
the task-relevant information present in only one of the features, and synergy
investigates the emergence of new information when both features are present
(see Figure 11.
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Leveraging insights from neural representation learning, we propose 2 new
estimators for PID that are accurate and scalable to large real-world multimodal
datasets and models. The first is exact, based on convex optimization, and is
able to scale to features with reasonable discrete support, while the second is
an approximation based on sampling, which enables us to handle features with
large discrete or even continuous supports. Through extensive experiments, we
demonstrate that these estimated statistics play a helpful role in:

• Dataset quantification: We apply PID to quantify distributions in the form
of large-scale multimodal datasets, showing that these estimates match
common intuition for interpretable modalities (e.g., language, vision, and
audio) and yield new insights in relatively understudied domains (e.g,
healthcare, HCI, and robotics).

• Model quantification: Across a suite of models, we apply PID to model
predictions and find consistent patterns in the interactions that different
models capture.

• Model selection: Given our findings that different models tend to capture
different interactions, a natural question arises: given a new multimodal
task, can we quantify its PID values to infer (a priori) what type of models
are most suitable? We answer this question in the positive, demonstrating
successful model selection for both existing benchmarks and completely
new case studies engaging with domain experts in computational pathol-
ogy, mood prediction, and robotics to choose the best multimodal model
for their applications.

2 Background and Related Work
Let Xi and Y be sample spaces for features and labels. Define ∆ to be the set
of joint distributions over (X1,X2,Y). We are concerned with features X1, X2

(with support Xi ) and labels Y (with support Y ) drawn from some distribution
p ∈ ∆. We denote the probability mass (or density) function by p (x1, x2, y),
where omitted parameters imply marginalization. Key to our work is defin-
ing estimators that given p or samples {(x1, x2, y) : X1 ×X2 × Y} thereof (i.e.,
dataset or model predictions), returns estimates for the amount of redundant,
unique, and synergistic interactions.

2.1 Partial Information Decomposition
Information theory formalizes the amount of information that a variable (X)
provides about another (Y ), and is quantified by Shannon’s mutual information
(Shannon, 1948). However, the direct extension of information theory to 3 or
more variables, such as through total correlation (Watanabe 1960: Garner, 1962)
or interaction information (McGill. 1954: Te Sun 1980), both have significant
shortcomings. In particular, the three-way mutual information I (X1;X2;Y )
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can be both positive and negative, leading to considerable difficulty in its inter-
pretation. Partial information decompo-

sition (PID) (Williams and Beer 2010) elegantly generalizes information the-
ory to multiple variables, by positing a decomposition of the total information
2 variables X1, X2 provide about a task Y into 4 quantities (see Figure 2 ):
redundancy R between X1 and X2, unique information U1 in X1 and U2 in
X2, and synergy S. Williams and Beer (2010) show that PIDs should satisfy a
set of consistency equations (see Appendix A for details). Since then, various
valid PIDs have been proposed. In this paper, we adopt the definition used by
Bertschinger et al. (2014); Griffith and Koch (2014), where the PID of a joint
distribution p is defined as the solution to the optimization problems:

R = max
q∈∆p

Iq (X1;X2;Y ) ,

U1 = min
q∈∆p

Iq (X1;Y | X2) ,

U2 = min
q∈∆p

Iq (X2;Y | X1) ,

S = Ip (X1, X2;Y )− min
q∈∆p

Iq (X1, X2;Y ) ,

where ∆p = {q ∈ ∆ : q (xi, y) = p (xi, y)∀y ∈ Y, xi ∈ Xi, i ∈ [2]} and the no-
tation Ip(·) and Iq(·) disambiguates mutual information under p and q respec-
tively. Compared to others, this definition enjoys several useful properties in
line with intuition (Bertschinger et al., 2014).

PID as a framework for multimodality: Our core insight is that PID provides
a formal framework to understand both the nature and degree of interactions
involved when two features X1 and X2 are used for task Y . However, computing
PID via these optimization problems is a considerable challenge, since it involves
optimization over ∆p instead of simply estimating information-theoretic mea-
sures for the observed distribution p. Up to now, analytic approximations of
these quantities were only possible for discrete and small support (Bertschinger
et al. 2014, Griffith and Koch 2014. Wollstadt et al. 2019) or continuous but
low-dimensional variables (Pakman et al., 2021; Wollstadt et al. 2021; Proca
et al. 2022). Leveraging ideas in neural representation learning, Sections 3.1
and 3.2 are our first technical contributions enabling scalable estimation of PID
values for highdimensional continuous distributions. Applying these new esti-
mators to controllable synthetic datasets and real-world benchmarks (Section
4), PID provides a path towards understanding the nature of interactions in
constructed datasets, the types of interactions learned by different models, and
principled approaches for model selection.

3 Estimation
We now present two estimators for PID. The first is exact, based on convex
optimization, and is able to scale to problems where |Xi| and |Y| are around

3



100. The second is an approximation based on sampling, which enables us to
handle large or even continuous supports for Xi and Y .

3.1 CVX: Dataset-level Optimization
Our first estimator, CVX, follows the idea of Bertschinger et al. (2014) to
directly compute PID from its definitions (11)-(4) using convex programming.
Crucially, they show that the solution to the max-entropy optimization problem:
q∗ = argmaxq∈∆p

Hq (Y | X1, X2) equivalently solves (1)(4). While Bertschinger
et al. (2014) note that this is a convex objective with linear constraints, they
report that directly performing optimization is numerically difficult, as routines
such as Mathematica’s FINDMINIMUM do not exploit convexity. We over-
come this by rewriting conditional entropy as a KL-divergence (Globerson and
Jaakkola, 2007), Hq (Y | X1, X2) = log |Y| −KL(q||q̃), where q̃ is an auxiliary
product density of q (x1, x2) · 1

|Y| . This relationship between q and q̃ is enforced
using linear constraints, yielding the following equivalent problem:

argmin
q,q̃∈∆p

KL(q∥q̃), q̃ (x1, x2, y) = q (x1, x2) /|Y|.

The KL-divergence objective is easily recognized as convex, allowing the use
of conic solvers such as SCS (O’Donoghue et al. 2016), ECOS (Domahidi et al.,
2013), and MOSEK (ApS 2022) without excessive parameter tuning. Plugging
q∗ into (1)-(4) yields the desired PID.

Pre-processing via feature binning: In practice, X1 and X2 often take con-
tinuous rather than discrete values. We workaround this by histogramming each
Xi, thereby estimating the continuous joint densities Xi ’s by discrete distri-
butions with finite suppor 1 To make our discretization as data-independent as
possible, we focus on a prespecified number of fixed-width bins (except for the
first and last). We discuss in Appendix B.1 how the number and width of bins
on affects the quality of PID estimation.

3.2 BATCH: Batch-level Amortization
We now present our next estimator,BATCH, that is suitable for large datasets
where Xi is high-dimensional. We wish to estimate the PID values given a
sampled dataset D =

{(
x
(j)
1 , x

(j)
2 , y(j)

)}
of size n. We propose an end-to-end

model parameterizing joint distributions in ∆ and a training objective whose
solution allows us to approximate PID based on (1)-(4).

Simplified algorithm sketch: We first illustrate our method with the assump-
tion that oracles for densities (or probabilities if Xi, Y are discrete), p (y | xi)

and p (xi) are known to us. Let X̃i =
{
x
(j)
i | j ∈ [n]

}
⊆ Xi be the subsam-

pled support of D, with Ỹ defined similarly. Let ∆̃ denote the set of unnor-
malized joint distributions over X̃1 × X̃2 × Ỹ. Mimicking 11 - 4 , , we define
∆̃p =

{
q̃ ∈ ∆̃ : q̃

(
x
(j)
i , y(k)

)
= p

(
x
(j)
i , y(k)

)
∀j, k ∈ [n]

}
. Our goal, loosely
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speaking, is to optimize q̃ ∈ ∆̃p for objective 1 . Instead of mathematical
optimization, we apply a variant of projected gradient descent on q̃, where pro-
jections onto ∆̃p are afforded by a variant of the Sinkhorn-Knopp algorithm.

Parameterization using neural networks: In practice, the above method suf-
fers from 2 problems, (i) ∆̃p is too large to explicitly specify q̃, and (ii) we do
not have oracles for p. We overcome (ii) by approximating p using p̂, which
we decompose into p̂ (y | xi) and p̂ (xi), both parameterized by neural networks.
These p̂ have been trained separately. To tackle (i), we approximate q̃ by again
parameterizing it using a neural network gϕ : X̃n

1 × X̃n
2 × Yn → Rn×n×|Y| with

parameters ϕ ∈ Φ. Given full datasets X1 ∈ X̃n
1 ,X2 ∈ X̃n

2 ,Y ∈ Yn, gϕ learns
a matrix A ∈ Rn×n×|Y| to represent the unnormalized joint distribution q̃, i.e.,
we want A[i][j][y] = q̃ (X1[i],X2[j], y). To ensure that q̃ ∈ ∆̃p, we use an un-
rolled version of Sinkhorn’s algorithm (Cuturi. 2013 ) which projects A onto
∆̃p by iteratively normalizing all rows and columns to sum to 1 and rescal-
ing to satisfy the marginals p̂. Overall, each gradient step involves computing,
q̃ = SINKHORNp̂(A), and updating ϕ to minimize (1) under q̃. Since Sinkhorn
iterations are differentiable, gradients can be backpropagated through the pro-
jection step.

Approximation with small subsampled batches: Problem (i) is not fully re-
solved, since the intermediate q̃ is too large to store. Hence, for each gradient
iteration t, we bootstrap m ≪ n datapoints Dt =

{(
x
(j)
1 , x

(j)
2 , y(j)

)}
⊆ D. The

network gϕ : X̃m
1 × X̃m

2 × Ym → Rm×m×|Y| now takes in a batch of m data-
points and returns the unnormalized joint distribution A ∈ Rm×m×|Y| for the
subsampled points. Using A, we perform Sinkhorn’s projection and a gradient
step and ϕ as before, as if Dt was the full dataset. This use of a mini-batch of
size m can be seen as an approximation of full-batch gradient descent. While it
is challenging to obtain an unbiased estimator of the full-batch gradient since
computing the full A is intractable, we found our approach to work in practice
for large m. Our approach can also be informally viewed as performing amor-
tized optimization (Amos. 2022) by using ϕ to implicitly share information
about the full-batch using subsampled batches. Upon convergence, we extract
PID by approximating Iq̃ ({X1, X2} ;Y ) by sampling and plugging into (1)-44.

4 Experiments

4.1 Quantifying Real-world Multimodal Benchmarks
We now apply these estimators to quantify the interactions in real-world multi-
modal benchmarks.

Real-world multimodal data setup: We use a large collection of real-world
datasets in MultiBench (Liang et al. 2021b) which test multimodal fusion of
different input signals (including images, video, audio, text, time-series, sets,
and tables) and require representation learning of complex real-world interac-
tions for different tasks (predicting humor, sentiment, emotions, mortality rate,
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Model EF ADDITIVE AGREE AlIGN ELEM TENSOR MI MULT LoWER REC AVERAGE
R 0.35 0.48 0.44 0.47 0.27 0.55 0.20 0.40 0.47 0.53 0.41 ± 0.11
Acc

(
DR

)
0.71 0.74 0.73 0.74 0.70 0.75 0.67 0.73 0.74 0.75 0.73 ± 0.02

U 0.29 0.31 0.19 0.44 0.20 0.52 0.18 0.45 0.55 0.55 0.37 ± 0.14
Acc

(
DU

)
0.66 0.55 0.60 0.73 0.66 0.73 0.66 0.72 0.73 0.73 0.68 ± 0.06

S 0.13 0.09 0.08 0.29 0.14 0.33 0.12 0.29 0.31 0.32 0.21 ± 0.10
Acc

(
DS

)
0.56 0.66 0.63 0.72 0.66 0.74 0.65 0.72 0.73 0.74 0.68 ± 0.06

Table 1: Average interactions (R/U/S) learned by models alongside their aver-
age performance on interaction-specialized datasets (DR/DU/DS). Synergy is
the hardest to capture and redundancy relatively easier to capture by existing
models.

Task VQA 2.0 CLEVR
Measure R U1 U2 S R U1 U2 S
Value 0.79 0.87 0 4.92 0.55 0.48 0 5.16

Table 2: Estimating PID on QA (Antol et al. 2015) datasets
(
×10−3 scale).

Synergy is consistently the highest.

ICD-9 codes, imagecaptions, human activities, digits, and design interfaces).
We also include experiments on question-answering (Visual Question Answer-
ing 2.0(Antol et al. 2015. Goyal et al. 2017) and CLEVR (Johnson et al. 2017))
which test grounding of language into the visual domain (see Appendix C.4 for
full dataset details).

Results on multimodal fusion: From Table 2 we find that different datasets
do require different interactions. Some interesting observations: (1) all pairs of
modalities on MUS- Table 2:

TARD sarcasm detection show high synergy values, which aligns with intu-
ition on sarcasm in human communication, (2) uniqueness values are strongly
correlated with unimodal performance (e.g., modality 1 in AV-MNIST and
MIMIC), (3) datasets with high synergy do indeed benefit from interaction
modeling as also seen in prior work (Liang et al. 2021b) (e.g., MUSTARD,
UR-FUNNY), and (4) conversely datasets with low synergy are those where
modeling higher-order interactions do not help (e.g., MIMIC).

Results on QA: We observe consistently high synergy values as shown in
Table 4 This is consistent with prior work studying how these datasets were
balanced (e.g., VQA 2.0 having different images for the same question such that
the answer can only be obtained through synergy) (Goyal et al. 2017) and that
models trained on these datasets require non-additive interactions (Hessel and
Lee, 2020).

4.2 Quantifying Multimodal Model Predictions
We now shift our focus to quantifying multimodal models. Do different mul-
timodal models learn different interactions? Better understanding the types
of interactions where our current models struggle to capture can provide new
insights on improving these models.
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Setup: For each dataset, we train a suite of models on the train set Dtrain
and apply it to the validation set Dval , yielding a predicted dataset Dpred =
{(x1, x2, ŷ) ∈ Dval }. Running PID on Dpred summarizes the interactions that
the model captures. We categorize and implement a comprehensive suite of
models (spanning representation fusion at different feature levels, types of in-
teraction inductive biases, and training objectives) that have been previously
motivated to capture redundant, unique, and synergistic interactions (see Ap-
pendix C.5 for full model descriptions).

Results: We show results in Table 3 and highlight the following observations:
General observations: We first observe that model PID values are consis-

tently higher than dataset PID. The sum of model PID is also a good indicator
of test performance, which agrees with their formal definition since their sum
is equal to I ({X1, X2} ;Y ), the total explained mutual information between
multimodal data and Y .

On redundancy: Several methods succeed in capturing redundancy, with an
overall average of R = 0.41± 0.11 and accuracy of 73.0± 2.0% on redundancy-
specialized datasets. Additive, agreement, and alignment-based methods are
particularly strong which align with their motivation (Ding et al. 2022; Radford
et al. 2021), but other methods based on tensor fusion (synergy-based), includ-
ing lower-order interactions, and adding reconstruction objectives (uniquebased)
also capture redundancy well.

On uniqueness: Uniqueness is harder to capture than redundancy, with an
average of U = 0.37± 0.14. Redundancybased methods like additive and agree-
ment do poorly on uniqueness, while those designed for uniqueness (lowerorder
interactions (Zadeh et al. 2017) and modality reconstruction objectives (Tsai et
al. 2019b) do well, with U = 0.55 and 73.0% accuracy on uniqueness datasets.

On synergy: On average, synergy is the hardest to capture, with an average
score of only S = 0.21 ± 0.10. Some of the strong methods are tensor fusion
(Fukui et al. 2016), tensors with lower-order interactions (Zadeh et al., 2017),
modality reconstruction (Tsai et al. 2019b), and multimodal transformer (Xu
et al. 2022), which achieve around S = 0.30, acc = 73.0%. Additive, agreement,
and element-wise interactions do not seem to capture synergy well.

On robustness: Finally, we also show empirical connections between esti-
mated PID values with model performance in the presence of noisy or missing
modalities. Specifically, we find high correlation (ρ = 0.62) between the perfor-
mance drop when Xi is missing and the model’s Ui value. Inspecting the graph
closely in Figure 4 (left), we find that the correlation is not perfect because
the implication only holds in one direction: high Ui coincides with large perfor-
mance drops, but low Ui can also lead to performance drops. The latter can be
further explained by the presence of large R and S values: when Xi is missing,
R and S interactions can no longer be discovered by the model which affects
performance. For the subset of points when Ui ≤ 0.05, the correlation between
R,S and performance drop is ρ = 0.41, ρ = 0.25 respectively, and ρ = 0.48 for
R+ S.
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4.3 PID Agreement and Model Selection
Now that we have quantified datasets and models individually, the natural next
question unifies both: what does the agreement between dataset and model
PID measures tell us about model performance? We hypothesize that when a
model is able to capture the interactions necessary in a given dataset (i.e., high
agreement), the model should also achieve high performance.

Setup: Given {R,U1, U2, S}D on a dataset D and {R,U1, U2, S}f(D) on a
model f trained on D, define the agreement for each interaction I ∈ {R,U1, U2, S}
as

αI(f,D) = ÎDIf(D), ÎD =
ID∑

I′∈{R,U1,U2,S} I
′
D
,

which summarizes the quantity of an interaction captured by a model
(
If(D)

)
weighted by its normalized importance in the dataset

(
ÎD

)
. The total agree-

ment sums over all interactions α(f,D) =
∑

I αI(f,D).
Results: Our key finding is that PID agreement scores α(f,D) correlate

(ρ = 0.81) with model accuracy across all 10 synthetic datasets, as illustrated
in Figure 4 (right). This shows that PID agreement can be a useful proxy
for model performance. For the specialized datasets, we find that αR is ρ =
0.98 correlated with model performance on DR, αU is ρ = 0.87 correlated with
performance on DU , and αS is ρ = 0.86 correlated with performance on DS ,
and negatively correlated with other specialized datasets. For mixed datasets
with roughly equal ratios of each interaction, the measures that correlate most
with performance are αR ( ρ = 0.81 ) and αS ( ρ = 0.72); for datasets with
relatively higher redundancy, the correlation of αR increases to ρ = 0.90; those
with higher uniqueness increases the correlation of αU1 and αU2 to ρ = 0.83 and
ρ = 0.87; those with higher synergy increases the correlation of αS to ρ = 0.79.

Using these observations, our final experiment is model selection: can we
choose the most appropriate model to tackle the interactions required for a
given dataset?

Setup: Given a new dataset D, we first compute its similarity via difference
in normalized PID values with respect to D′ among our suite of 10 synthetic
datasets,

s (D,D′) =
∑

I∈{R,U1,U2,S}

∣∣∣ÎD − ÎD′

∣∣∣ ,
to rank the dataset D∗ with the most similar interactions, and return the

top- 3 performing models on D∗. In other words, we select models that best
capture interactions that are of similar nature and degree as those in D. We
emphasize that even though we restrict dataset and model search to those only
on synthetic datasets, our model selection procedure generalizes to real-world
datasets.

Results: We test our selected models on 5 new synthetic datasets with dif-
ferent PID ratios and 6 real-world datasets, summarizing results in Table 5 We
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Figure 1: We find high correlation ( ρ = 0.62 ) between the performance drop
when Xi is missing and the model’s Ui value: high Ui coincides with large
performance drops, but low Ui can also lead to performance drops. The latter
can be further explained by the presence of large R and S values which also cause
performance drops. Right: PID agreement scores α(f,D) between datasets and
models strongly correlate (ρ = 0.81) with model accuracy across all 10 datasets
with varying PID values.

find that the top 3 chosen models achieve 95% − 100% of the best-performing
model accuracy, and above 98.5% for all datasets except MUSTARD which gets
95.2%. For example, UR-FUNNY and MUStARD have the highest synergy
(S = 0.13, S = 0.3) and indeed transformers and higher-order interactions are
helpful (MULT: 0.65%, MI: 0.61%, TENSOR: 0.6% ). ENRICO has the highest
R = 0.73 and U2 = 0.53, and indeed methods for redundant and unique inter-
actions perform best (LOWER: 0.52%, Align: 0.52%, AgreE: 0.51% ). MIMIC
has the highest U1 = 0.17, and indeed unimodal models are mostly sufficient
(Liang et al. 2021b).

4.4 Real-world Applications
Finally, we apply PID to 3 real-world case studies: pathology, mental health,
and robotic perception

Case Study 1: Computational pathology. Cancer prognostication is a chal-
lenging, multimodal survival task in Table 5: Model selection results on unseen
synthetic and real-world datasets. Given a new dataset D, finding the closest
synthetic dataset D′ with similar PID values and recommending the best models
on D′ consistently achieves 95%− 100% of the best-performing model on D.

anatomic pathology that requires integration of both wholeslide imaging
(WSI) and molecular features for patient stratification (Mobadersany et al.
2018: Chen et al., 2021; Lipkova et al. 2022). We quantify the interactions
of these modalities on The Cancer Genome Atlas (TCGA), a large public data
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Dataset MIMIC UR-FUNNY MOSEI MUSTARD MAPS
% Performance 99.78% 98.58% 99.35% 95.15% 100%

Table 3: Model selection results on unseen synthetic and real-world datasets.
Given a new dataset D′, finding the closest synthetic dataset D with similar PID
values and recommending the best models on D′ consistently achieves 95%-100%
of the best-performing model on D

consortium of paired WSI, molecular, and survival information (Weinstein et
al., 2013; Tomczak et al. 2015). The modalities include: (1) a sequence of pre-
extracted histology image features from diagnostic WSIs and (2) feature vector
of bulk gene mutation status, copy number variation, and RNA-Seq abundance
values. We evaluate these interactions on two cancer datasets in TCGA, lower-
grade glioma (TCGA-LGG (Network, 2015), n = 479 ) and pancreatic adeno-
carcinoma (TCGAPAAD (Raphael et al. 2017), n = 209 ).

Results: In TCGA-LGG, most PID measures were nearzero except U =
0.06 for genomic features, which indicates that genomics is the only modality
containing task-relevant information. This conclusion corroborates with the
high performance of unimodal-genomic and multimodal models in Chen et al.
(2022), while unimodal-pathology performance was low. In TCGA-PAAD, the
uniqueness values (for pathology and genomic features) and synergy value were
U1 = 0.06, and U2 = 0.08 and S = 0.15 respectively, which also match the
improvement of using multimodal models that capture synergistic interactions.

Case Study 2: Mental health. Suicide is the second leading cause of death
among adolescents (CDC, 2020). Intensive monitoring of behaviors via adoles-
cents’ frequent use of smartphones may shed new light on the early risk of sui-
cidal ideations (Glenn and Nock, 2014, Nahum-Shani et al. 2018), since smart-
phones provide a valuable and natural data source with rich behavioral mark-
ers spanning online communication, keystroke patterns, and application usage
(Liang et al. 2021a). We used a dataset, MAPS, of mobile behaviors from high-
risk adolescent populations with consent from participating groups (approved
by NIH IRB for central institution and secondary sites). Passive sensing data is
collected from each participant’s smartphone across 6 months. The modalities
include (1) text entered by the user represented as a bag of top 1000 words, (2)
keystrokes that record the exact timing and duration of each typed character,
and (3) mobile applications used per day as a bag of 137 apps. Every morning,
users self-report their daily mood, which we discretized into −1, 0,+1. In total,
MAPS dataset has 844 samples from 17 participants. Results: We first experi-
ment with MAPS T,A using text and application usage features. PID measures
show that MAPST,A has high synergy (0.26) and low redundancy and unique-
ness (0.08). The synthetic dataset y = (z∗2 , z

∗
c ) has the most similar interactions,

which enables us to select models REC, MULT, and EF, which turned out to
achieve 100%, 86%, and 76% of the best-performing model respectively. We also
experiment with MAPS T,K using text and keystroke features. MAPS T,K has
high synergy (0.40), some redundancy (0.12), and low uniqueness (0.04). We
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found DS has the most similar interactions and our suggested models LOWER,
REC, and TENSOR were indeed found to be the top 3 best-performing models
on MAPST,K . This shows that model selection is quite effective on MAPS.

Case Study 3: Robotic Perception. MuJoCo PuSH (Lee et al. 2020) is
a contact-rich planar pushing task in MuJoCo (Todorov et al. 2012), where
a 7-DoF Panda Franka robot is pushing a circular puck with its end-effector
in simulation. The pushing actions are generated by a heuristic controller that
tries to move the end-effector to the center of the object. The dataset consists of
1000 trajectories with 250 steps sampled at 10Hertz. The multimodal inputs are
gray-scaled images from an RGB camera, force and binary contact information
from a force/torque sensor, and the 3D position of the robot end-effector. We
estimate the 2D position of the unknown object on a table surface while the
robot intermittently interacts with it.

Results: CVX predicts R = 0.24, U1 = 0.03, U2 = 0.06, S = 0.04 and
BATCH predicts R = 0.75, U1 = 1.79, U2 = 0.03, S = 0.08. We find that
BATCH predicts U1 as the highest PID value, which aligns with our obser-
vation that image is the best unimodal predictor. Comparing both estimators,
CVX underestimates U1 and R since the high-dimensional time-series modalities
cannot be easily described by clusters without losing information. In addition,
both estimators predict a low U2 value but attributes relatively high R, imply-
ing that a multimodal model with higher-order interactions would not be much
better than unimodal models. Indeed, we observe no difference in performance
between these two models in our experiment.
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