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Abstract—Microgrid represents a new paradigm in the power
sector that offers more reliability and flexibility for electricity de-
livery. A microgrid consists of different types of power generation
units, loads and energy storage systems that are controlled and
coordinated. Smart power processing units play an important role
in a microgrid. The present paper presents an application-specific
instruction set processor for the study of power converters op-
erating in isolated microgrids. The proposed processor has been
developed in order to solve differential algebraic equations that
describe the dynamical behavior of microgrid power processor.
Due to the inherently parallelism of the proposed processor the
simulation time is reduced considerably with respect to a general
purpose processor.

Index Terms—microgrid, off-grid system, photovoltic system

I. INTRODUCTION

A microgrid is a subsystem of a larger electrical grid which
consists of a collection of distributed power generators and
loads located in a nearby area [1]. A typical diagram of a
microgrid is depicted in Figure 1.
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Figure 1. Diagram of a typical microgrid

One of the biggest challenges in the design and operation
of microgrids is that they are inherently asymmetrical and
heterogeneous [2], i.e., they present several different types of

microgenerators and loads. Additionally, it is also desired that
a microgrid continues operating with the loss of any com-
ponent and/or any generator (plug-and-play capability) [1].
Another important challenge in plug-and-play microgrid is to
have a dynamic fast-acting load balancing system. A microgrid
can operate connected to the utility grid or as a stand-alone
system. This paper deals only with stand-alone microgrids.

Smart power processing devices (e.g. power inverters and
converters) can provide the necessary functionality to deal with
the aforementioned challenges. Such power processing units
are considered intertialess [2] and can potentially intervene to
correct a failure or imbalance almost instantly. A multi-level
hierarchical management and control system is able to operate
the power processing units in a coordinated way [3].

Giving the importance of power processing units in mi-
crogrids it is useful to study in detail their interaction in a
microgrid. A simulation environment that is able to accomplish
the aforementioned should make explicit the behavior of the
system in a wide range of time scales, i.e., it should be able
to simulate the dynamics of the system from miliseconds
to hours or even days. Large processing power is required
in order to simulate the system in the required time scales
considering also the inherently complexity and nonlinearity of
the microgrid.

The cost reduction and performance increment of field-
programmable gate arrays (FPGA) in the last years [4] have
make it possible to design and implement application-specific
instruction set processor (ASIP) that can be used for a wide
range of applications such as video processing [5], [6], ad-
vanced encryption [7], power monitoring [8] and monitoring
seismic activity [9]. The advantages offered by ASIPs is
that they can be fine tunned to perform specific tasks more
efficiently and faster than general purpose processors.

In this regards, the present work proposes an ASIP designed
to be the calculation core of a simulation environment for
microgrids. This proposed system is able to simulate concur-
rently several microgenerators and loads in a few milliseconds,
solving several non-linear differential algebraic equations.

The rest of the paper is structured as follows: First, a simple
stand-alone microgrid structure is presented. This microgrid
topology will be used for the design and evaluation of the
ASIP-based simulation environment. In section III-A the ar-



chitecture of the ASIP is described. Next, a simple microgrid
case of study is presented and simulated using the proposed
simulation environment. Finally, section V presents the main
conclusions and the future activities of this work.

II. A STAND ALONE MICROGRID STRUCTURE

The proposed ASIP and simulation environment have been
designed based on a specific microgrid structure. The idea
behind this approach is to validate the usefulness of an
ASIP-based simulation environment for a simple microgrid
configuration so that it can be later extended to more complex
microgrid topologies.

The microgrid structure used in this work consists of n
power sources connected in parallel to an alternate current
(AC) bus, as depicted in Figure 2. Each power source (PS)
injects current to the AC bus through a power unit (PU)
that is controlled by a local current controller (LCC). The
current reference for each LCC is provided by a global current
controller (GCC) as seen in Figure 2. Notice that by having
the GCC define the current references of each LCC, (i∗Si

), all
the currents generated by the power sources, iSi

will be in
phase. More specifically, the GCC is in charge of:

• identifying the total current required by the load such that
the AC bus voltage, vAC , is equal to a reference value,
v∗AC ,

• determining the power contribution of each power source
to the load by providing the desired value of the current
(iSi

) that each power source needs to inject to the AC
bus.
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Figure 2. Structure of an Isolated Microgrid. GCC=Global Current Con-
troller, LCC=Local current controller, PU=Power Unit, PS=Power source

As seen in Figure 2 each power source is associated to a
power unit and a local current controller (LCC+PU+PS). A
more detailed representation of this subsystem is shown in
Figure 3, where the power source is a photovoltaic generator
and the power unit is a full-bridge inverter. The LCC provides

the required signals, µ1i , µ2i , µ3i , µ4i , to turn on the MOS-
FETS such that the full-bridge output current, iSi

, is equal
to the reference value, i∗Si

. This subsystem can be modeled
according to the following set of differential equations

Ci
dvCi

dt
=ipvi

− uiiSi (1)

Li
diSi

dt
=uivCi

− vAC (2)

here Ci, Li represent the capacitance and inductance, respec-
tively, of the i-th PVG+Full bridge unit. ui ∈ {1,−1} is the
output of the LCC used to generate µ1i, µ2i, µ3i, µ4i in the
following way

ui = 1⇔ µ1i = µ4i = 1⇔ µ2i = µ3i = 0 (3)
ui = −1⇔ µ1i = µ4i = 0⇔ µ2i = µ3i = 1 (4)
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Figure 3. PV Power Source Diagram

Each photovoltaic generator (PVG) represents a string of r
PV modules with the electrical characteristics of Fig.4 which
can also be described as follows

ipvi = Igi − Isi (eαivpvi − 1) (5)

where ipvi and vpvi are the current generated and the voltage
at the i-th PV generator and Igi, Isi and αi are its parameters.
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Figure 4. i-v and P -v curves of a PV Generator



As mentioned previously, the control scheme, i.e., the GCC
and LCC, is in charge of making the current delivered to
the grid such that the AC bus voltage is sinusoidal with
constant frequency and amplitude. Moreover, the AC bus
voltage can be defined as a function of the delivered current,
i.e., vAC = f(iL). In this regard, the control scheme must be
designed considering f(iL). In this work, the load is modeled
as a resistor, i.e.,

vAC = RL

i=n∑
i=1

iSi
(6)

Nevertheless, modifying (6) and redesigning the controller it
is possible to consider reactive and/or nonlinear loads.

Notice that the proposed case of study can be simulated
solving a set of non-linear differential algebraic equations
(DAE), i.e., equations (1) to (6). In this case the order of the
DAE will be 2n, where n is the number of PVG+Full-bridges
presented in the system.

III. ASIP-BASED SIMULATION ENVIRONMENT

The proposed simulation environment consists of an ASIP,
and ARM processor and general purpose computer. The ASIP
is controlled by an ARM processor, which is connected to
a PC for interfacing with the user. A general diagram of
the system is shown in figure Fig 5. Notice that the ARM
processor and the ASIP can be easily integrated in a single
silicon device, i.e., a field-programmable gate array (FPGA)
or an application specific integrated circuit (ASIC). The ARM
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Figure 5. System Architecture

processor sends to the ASIP the simulation program to be
executed and controls the execution of the program. The ASIP
program memory and control registers are memory-mapped in
the ARM memory space. The ARM processor also polls the
Output FIFO and if there is data available it pops the data
from the FIFO and sends it to the computer. Communication
between ARM processor and ASIP occurs through an AXI
interface. The ASIP executes the program which has the
instructions to generate the simulation data, it also sends the
data to the Output FIFO when the print instruction is executed.

The ASIP communicates with a general purpose computer
to transmit all the simulated data for detailed data analysis
and visualization. The communication is also required so that
the computer can download the simulation program that will
be executed in the ASIP. The computer program includes the
information about the configuration of the microgrid such as
value of the load, the number of active energy sources and the
photo-generated current in each PV power source unit.

A. The ASIP Architecture

The ASIP architecture is shown in figure Fig 6. The
architecture allows execution of mathematical operations con-
currently in order to solve equations (1),(2) and (6) in a short
period of time. Operations are executed using IEEE 754 double
precision floating point format. This number representation
was preferred over fixed point because operands in (5) can
be of order -12 and +12, needing at least 40 bits for integer
value and 40 bits for fractional value.
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Figure 6. ASIP Architecture

The following subsections describe the main modules of the
ASIP.

1) Control unit: The control unit fetches instructions from
the Program Memory and executes them. This module com-
municates with other modules of the processor through a data
bus and a control bus. The data bus is used to read and write
parameters in each module. The control bus is used by the
control unit to indicate a module when it has to execute an
operation and to be notified when a module has complete
it. There is one dedicated start signal for each module in
the processor so the control unit can indicate to different
modules to start an operation in the same clock cycle. The
simulation program instructions are stored in the Program
Memory by the ARM processor through an AXI interface.
This memory is mapped in the ARM memory space so an
access to an address in that memory region will access the
Program Memory directly.

2) PV Source Inverter and Controller: The photovoltaic
Source Inverter module (PVSI) calculates the output current of
a photovoltaic generator and the voltage on its internal capac-
itor by solving equations (1) and (2). This unit implements in
the ASIP the LCC+PU+PS depicted in Figure 3. In Figure 7
the structure of the PVSI implemented in the ASIP is shown.

Submodule VC Integral solves equation (1) and submodule
IL Integral solves equation (2). Each of these two modules
have a floating point multiplier, a floating point adder, and
a finite state machine with the corresponding sequence of
mathematical calculations and data movement to solve the
equations.

PVSI has a finite states machine (FSM) to control the other
submodules. When the ASIP Control Unit asserts the start
signal the FSM triggers execution of mathematical operations
to get values of output current and voltage capacitor in the
photovoltaic generator, these two operations are executed in
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Figure 7. PVSI Block Diagram

parallel. When both calculations are complete the FSM asserts
the ready signal indicating to the ASIP Control Unit that a
calculation cycle has complete.

The parameter module in PVSI store the values specific to
a photovoltaic generator that are needed for the mathematical
calculations, these values are: capacitance, inductance, reverse
saturation current, initial voltage in capacitor, initial current
in inductor, and number of solar cells in the photovoltaic
generator. These values are written by the ASIP Control Unit
through the data bus.

The controller in PVSI determines the value of u which is
used to control the inverter switches as shown in Figure 3. It
has two modes of operation which can be selected through a
PVSI parameter: (1) based on reference voltage or (1) based
on current reference. The control signal u is then defined
according to the set reference value.

Additionally, the number of PVSI modules in the ASIP is
determined by a parameter, so it can be changed at synthesis
time.

3) Battery Source Inverter and Controller: Battery Source
Inverter and Controller unit (BSI) calculates the output current
of a battery and an inverter. It works similar to a PVSI with the
difference that it does not include VC Integrator submodule
as the voltage is provided by the battery.

4) Exponential Unit: Exponential module receives a float-
ing point value and returns its exponential value also in floating
point format. Exponential value is needed by the VC Integrator
in PVSI module, as shown in Fig 7, to calculate the output
current (5). In order to reduce simulation time a set of lookup
tables were implemented to generate the exponential value
of a given number. There are different lookup tables for
different operation ranges. When this unit receives a request
it converts the operand to an integer and a fractional number,
then depending on the values this unit extracts the exponential
value from the corresponding lookup table. Given that this
module takes a lot of resources there is only one exponential
unit shared by all the PVSI units, so an arbitration method was
implemented to return the corresponding exponential value to
the different requesters.

5) Reference Unit: The Reference Unit generates the volt-
age of reference or the current of reference used by the PVSI
and BSI units to calculate their corresponding value for u.
This unit implements the GCC depicted in Figure 2. The
generated voltage of reference is a sinusoidal waveform with
a peak amplitude of 170V or 120V RMS. All PVSI and BSI
units receive the same voltage of reference and each of them
generates the corresponding value of u in order to follow this
input voltage. This unit can also be configured to generate
a different current of reference for each PVSI and BSI units.
Based on the configured parameters this module calculates the
current that each source have to inject

6) Load Unit: Load unit calculates voltage on the load by
adding the current generated by all the energy sources and
multiplying it by the value of the load as described by (6).

7) Instruction Set: The ASIP is controlled by instructions
stored in the Program Memory. Instructions are one, two or
three words long, where every word is 64 bits width. Every
instruction is composed by an eight bits operation code and
the arguments. Supported instructions are shown in Table I

Table I
ASIP INSTRUCTIONS

Instruction Mnemonic Arguments
Write parameter WR address, data
Read parameter RD address
Set cycles counter SETC number of cy-

cles
Decrement and jump
if not zero DJNZ address offset
Enable source ENAB modules
Execute calculation EXEC modules
Wait calculation WAIT modules
Print data PRINT index
Stop program execution STOP

IV. VALIDATION AND SIMULATION RESULTS

The ASIP and ARM processor were implemented in a
FPGA Xilinx Zynq-7000 AP SoC XC7Z020-CLG484. Table II
shows the resources utilized when synthesizing the ASIP with
eight PVSI units and one BSI unit.

Table II
FPGA RESOURCES UTILIZATION

Resource Utilization
Slice LUTs 43056 (81%)
Slice Registers 25088 (24%)
RAM Blocks 133 (26%)
DSPs 18 (8%)

A typical program that the ASIP processor runs is shown
in Figure 8.

A. Validating the proposed simulation environment

In order to validate the developed ASIP-based simulation
environment two cases have been tested. Such cases were sim-
ulated in the proposed environment and in a Python program



WR 0x00 , 0x00 , 0 x4034000000000000
/ / C i r c u i t l o a d = 20 Ohms

WR 0x00 , 0x01 , 0 x3eb0c6f7a0b5ed8d
/ / d e l t a t = 1 us

WR 0x00 , 0x03 , 0 x0000000000000009
/ / s a m p l i n g = 1 e v e r y 10 c y c l e s

WR 0x02 , 0x00 , 0 x4069000000000000
/ / PVSI0 C a p a c i t o r = 5mF ( 1 / 2 0 0 )

WR 0x02 , 0x01 , 0 x403546ce01000201
/ / PVSI0 I n d u c t o r = 47mH ( 1 / 2 1 . 2 7 6 6 )

WR 0x02 , 0x02 , 0 x402299999999999a
/ / PVSI0 P h o t o c u r r e n t = 9 . 3A

WR 0x02 , 0x03 , 0 x4070e00000000000
/ / PVSI0 I n i t i c a l Vc = 270V

WR 0x02 , 0x04 , 0 x0000000000000000
/ / PVSI0 I n i t i a l IL = 0A

WR 0x02 , 0x05 , 0 x3eb21e908ed8f651
/ / Dark s a t . c u r r . = 1 ,08uA

WR 0x02 , 0x06 , 0 x3fadddddddddddde
/ / q / kTn = 0 ,05833

WR 0x0A , 0x01 , 0 x403546ce01000201
/ / Bat0 I n d u c t o r = 47mH ( 1 / 2 1 . 2 7 6 6 )

WR 0x0A , 0x03 , 0 x4070e00000000000
/ / Bat0 Vbat = 370V

WR 0x0A , 0x04 , 0 x0000000000000000
/ / Bat0 I n i t i a l IL = 0A

ENAB 0 x00000101 / / Enab le PVSI0 and Bat0
SETC 0x0186A0 / / Cyc l e s c o u n t e r = 100 .000
EXEC 0 x0404 / / Ca lc PVSI0 & Bat0 IL
WAIT 0 x0404 / / Wait c a l c u l a t i o n
EXEC 0 x0002 / / C a l c u l a t e l o a d v o l t a g e
WAIT 0 x0002 / / Wait c a l c u l a t i o n
PRINT 0x02 / / P r i n t V l o a d
PRINT 0x03 / / P r i n t V r e f e r e n c e
PRINT 0x04 / / P r i n t PVSI0 IL
PRINT 0x05 / / P r i n t PVSI0 Vc
PRINT 0x14 / / P r i n t Bat0 IL
PRINT 0x15 / / P r i n t Bat0 Vbat
DJNZ 0x0F / / Dec and jump i f n o t z e r o
STOP / / S top s i m u l a t i o n

Figure 8. ASIP Program for Simulation Case A (Table III)

running in a general purpose processor (GPP) of a typical
personal computer.

The general purpose processor used was the Intel(R)
Core(TM) i5-4200M CPU. The differential equations that
describe the system were simulated in the GPP with Python
2.7 executed in a machine with Fedora Linux.

The details of the cases simulated in the aforementioned
platforms are shown in Table III. Each PV panel has the
electrical characteristics shown in Fig. 4.

Figures 9 and 10 show the results of Case A. The system
simulated in GPP solved the differential equations using the

Table III
PARAMETERS OF THE CASE SIMULATED

Case Number of PV
Generators

Composition of PVG Load

A 1 1 string with 6 PV panels 20 Ω
B 4 2 strings with 6 PV panels and

2 strings with 5 PV panels
20 Ω

Runge-Kutta method of the Odespy Pythons library [10].
Figures 11 and 12 show the results of Case B. As mentioned
previously, Case B represents a microgrid with 4 PV power
sources, where each power source is associated with a full-
bridge converter. The aforementioned figures shown that the
proposed FPGA-based simulation environment generates iden-
tical responses as a conventional software based simulation.
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Figure 9. Simulation results: voltage in the PVG for Case A using a FPGA-
based simulation environment and a conventional general purpose processor.
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simulation environment and a conventional general purpose processor.

B. Comparing the simulation time

In order to compare the execution time of both simulation
a microgrid with 1, 2, 4, 8 and 16 photovoltaic power
sources were simulated. For these cases, both simulation
systems solved the differential equations using the Forward-
Euler method. The simulation time for each case are shown in
Table IV, as expected the FPGA-based simulation environment
is around 10 times faster than the GPP. Additionally, as shown
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Figure 11. Simulation results: voltage in each PVG for Case B using a FPGA-
based simulation environment and a conventional general purpose processor.
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Figure 12. Simulation results: voltage at the load for Case B using a FPGA-
based simulation environment and a conventional general purpose processor.

in 13, for the FPGA-based system, the simulation time grows
with respect to the quantity of PV generators with a smaller
slope than the GPP environment.

Table IV
SIMULATION TIME

PVSIs GPP FPGA
(ms) (ms)

1 956 130
2 1179 142
4 1475 167
8 2242 219
16 3352 320

V. CONCLUSIONS

A dynamical model useful for the analysis of power process-
ing units that operates in microgrid has been presented. For a
proof-of-concept test such model has been implemented in a
FPGA-based simulation environment. The simulation results
with the proposed FPGA-based systems have been proved to
be identical than those obtained with a high level simulation
language using a high-order numerical method. Finally, due
to its concurrent nature, the FPGA-based system is able to
execute the simulation in a much lower time than a General
Purpose Process. The simulation time of the proposed system
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Figure 13. Simulation Circuit Block Diagram

is less dependent on the amount of energy sources consid-
ered. The results of the present paper suggests that FPGA-
based systems are suitable environments for the simulation of
microgrid systems with several energy sources and loads of
different types.
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