
EasyChair Preprint
№ 8671

On Reducing Non-Occurrence of Specified
Runtime Errors to All-Path Reachability Problems
of Constrained Rewriting

Misaki Kojima and Naoki Nishida

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 12, 2022

Submitted to:
WPTE 2022

© M. Kojima & N. Nishida
This work is licensed under the
Creative Commons Attribution License.

On Reducing Non-Occurrence of Specified Runtime Errors to
All-Path Reachability Problems of Constrained Rewriting*

Misaki Kojima
Nagoya University, Nagoya, Japan

k-misaki@trs.css.i.nagoya-u.ac.jp

Naoki Nishida
Nagoya University, Nagoya, Japan

nishida@i.nagoya-u.ac.jp

A concurrent program with semaphore-based exclusive control can be transformed into a logically
constrained term rewrite system that is computationally equivalent to the program. In this paper, we
first propose a framework to reduce the non-occurrence of a specified runtime error in the program
to an all-path reachability problem of the transformed logically constrained term rewrite system.
Here, an all-path reachability problem is a pair of state sets and is demonically valid if every finite
execution path starting with a state in the first set and ending with a terminating state includes a state
in the second set. Then, as a case study, we show how to apply the framework to the race-freeness of
semaphore-based exclusive control in the program. Finally, we show a simplified variant of a proof
system for all-path reachability problems.

1 Introduction

Recently, approaches to program verification by means of logically constrained term rewrite systems
(LCTRSs, for short) [10] are well investigated [5, 18, 4, 11, 6, 7]. LCTRSs are useful as computation
models of not only functional but also imperative programs. For instance, equivalence checking by
means of LCTRSs is useful to ensure correctness of terminating functions (cf. [5]). Here, equivalence
of two functions means that for every input, the functions return the same output or end with the same
projection of final configurations. In previous work [9], the method of transforming sequential programs
into LCTRSs has been extended to concurrent programs with semaphore-based exclusive control. In the
extension, each rewrite rule represents an action of exactly one process, and any list structure is not used
to represent waiting queues for semaphores.

In previous work [5, 6, 7, 9], to verify correctness of programs, rewriting induction (RI, for short) [13,
5] is used to prove equivalence of two programs. Since RI requires termination of LCTRSs, it cannot be
used to verify non-terminating programs. Furthermore, it is difficult (or impossible) to reduce the non-
occurrence of a specified runtime-error to equivalence, i.e., an inductive theorem which is a valid equation
of terms w.r.t. the reduction of a given LCTRS. This is because for an equation being an inductive
theorem, the notion requires the existence of a reduction sequence between instances of the LHS and
RHS of the equation, i.e., not all reduction sequences between the two instances are taken into account.
To take into account all reduction sequences, we focus on all-path reachability [14, 4, 15] which may take
the place of equivalence. An all-path reachability problem (APR problem, for short) of a rewrite system
is a pair P ⇒ Q of state sets P,Q and is demonically valid if every finite execution path—a reduction
sequence starting with a state in P and ending with a terminating state—includes a state in Q. DCC, a
proof system for APR problems of LCTRSs, has been proposed in [4] and APR problems must be useful
for verification by means of LCTRSs. In addition, target LCTRSs do not have to be terminating.

*This work was partially supported by JSPS KAKENHI Grant Number 18K11160 and DENSO Corporation.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

a program to be verified
+

a runtime error to be verified(
race-freeness of exclusive control

resource starvation
. . .

) // transformation //
LCTRS

+
APR problem

// a proof system
based on DCC

// yes/no/maybe

Figure 1: our framework for runtime-error verification

In this paper, we aim at developing a method for runtime-error verification by means of LCTRSs.
To this end, we first propose a framework to reduce the non-occurrence of a specified runtime error in
a concurrent program to an APR problem of the transformed LCTRS (Section 4.1). Then, as a case
study, we show how to apply the framework to the race-freeness of semaphore-based exclusive control
(Section 4.2). Finally, we show a simplified variant of the proof system DCC (Section 5). Fig. 1 illustrates
our framework for runtime-error verification. Missing proofs can be seen in the appendix.

In addition to the LCTRS obtained from a concurrent program, the framework takes as an input a
runtime error specified by a finite set of constrained terms representing error states. In the framework,
we introduce two fresh constants, success and error, and add two kinds of rewrite rules into the LCTRS:
One reduces any state to success, and the other rewrites all instances of the constrained terms to error.
Then, the framework outputs the APR problem {initial state(s)}⇒ {success}, together with the updated
LCTRS. By the definition of all-path reachability and the added rewrite rules, it holds that the generated
APR problem is true if and only if there is no reduction sequence of the original LCTRS from initial
states to any error state.

The contribution of this paper is to show an application of APR problems to runtime-error verifica-
tion. Such an application must increase the usefulness and practicability of LCTRSs.

Related Work The proof system DCC for LCTRSs has been proposed in [4] to prove reachability
properties, especially partial correctness of transition systems described by LCTRSs. In [3], total cor-
rectness of such transition systems is reduced to partial correctness (i.e., APR problems) by means of a
transformation of the language semantics. On the other hand, the property to be verified in this paper
is the non-occurrence of specified runtime errors, and using some characteristics of the property, we
propose a simplified variant of DCC.

2 Preliminaries

In this section, we briefly recall logically constrained rewriting [10, 5] and all-path reachability [14, 4,
15]. Familiarity with basic notions on term rewriting [1, 12] is assumed.

2.1 Logically Constrained Rewriting

Let S be a set of sorts and V a (countably infinite) set of variables, each of which is equipped with a
sort. A signature Σ disjoint from V is a set of function symbols f , each of which is equipped with a sort
declaration ι1 × ·· ·× ιn ⇒ ι , written as f : ι1 × ·· ·× ιn ⇒ ι , where ι1, . . . , ιn, ι ∈ S . In the rest of this
section, we fix S, Σ, and V and use them without notice in the paper. We denote the set of well-sorted
terms over Σ and V by T (Σ,V). We may write s : ι if s has sort ι . The set of variables occurring in
s1, . . . ,sn is denoted by Var(s1, . . . ,sn). Given a term t and a position p (a sequence of positive integers)

M. Kojima & N. Nishida 3

of t, t|p denotes the subterm of t at position p, and s[t]p denotes s with the subterm at position p replaced
by t, where the sorts of s|p and t coincide.

A substitution γ is a sort-preserving total mapping from V to T (Σ,V), and naturally extended for a
mapping from T (Σ,V) to T (Σ,V). The domain Dom(γ) of γ is the set of variables x with γ(x) ̸= x, and
the range of γ is denoted by Ran(γ). The restriction of γ w.r.t. a set X of variables is denoted by γ|X :
γ|X(x) = γ(x) if x ∈ X , and otherwise γ|X(x) = x. The application of γ to term s is denoted by sγ .

To define LCTRSs, we consider the following signatures, mappings, and constants: Two signatures
Σterms and Σtheory such that Σ = Σterms∪Σtheory; a mapping I that assigns to each sort ι occurring in Σtheory
a set Iι , i.e., I(ι) = Iι ; a mapping J that assigns to each f : ι1 ×·· ·× ιn ⇒ ι ∈ Σtheory a function fJ in
Iι1 ×·· ·×Iιn ⇒Iι , i.e., J (f) = fJ ; a set Valι ⊆ Σtheory of value-constants a : ι for each sort ι occurring
in Σtheory such that J gives a bijective mapping from Valι to Iι . Note that for each sort, I specifies the
universe, and for each symbol, J specifies the interpretation. We denote

⋃
ι∈S Valι by Val. We require

that Σterms ∩Σtheory ⊆ Val. The sorts occurring in Σtheory are called theory sorts, and the symbols theory
symbols. Symbols in Σtheory \Val are calculation symbols. A term in T (Σtheory,V) is called a theory term.
For ground theory terms, we define the interpretation J·K as J f (s1, . . . ,sn)K = J (f)(Js1K, . . . ,JsnK). Note
that for every ground theory term s, there is a unique value-constant c such that JsK = JcK. We may use
infix notation for calculation symbols.

We typically choose a theory signature with Σtheory ⊇ Σcore
theory, where Σcore

theory includes bool, a sort
of Booleans, such that Valbool = {true, false} and I(bool) = {⊤,⊥}, Σcore

theory = Valbool ∪{∧,∨, =⇒ :
bool × bool ⇒ bool, ¬ : bool ⇒ bool} ∪ {=ι , ̸=ι : ι × ι ⇒ bool | ι is a theory sort in Σtheory}, and J
interprets these symbols as expected: J (true) = ⊤ and J (false) = ⊥. We omit the sort subscripts
from = and ̸= when they are clear from context. The standard integer signature Σint

theory is Σcore
theory ∪

{+,−,×,exp,div,mod : int × int ⇒ int} ∪ {≥,> : int × int ⇒ bool} ∪ Valint where S ⊇ {int,bool},
Valint = {n : int | n ∈ Z}, I(int) = Z, and J (n) = n. Note that we use n (in sans-serif font) as the
function symbol for n ∈ Z (in math font). We define J in the natural way.

A constrained rewrite rule is a triple ℓ → r [φ] such that ℓ and r are terms of the same sort, φ is a
constraint, and ℓ has the form f (ℓ1, . . . , ℓn) that is not a theory term. If φ = true, then we may write ℓ→ r.
We define LVar(ℓ→ r [φ]) as Var(φ)∪(Var(r)\Var(ℓ)). We say that a substitution γ respects ℓ→ r [φ]
if Ran(γ|LVar(ℓ→r [φ]))⊆ Val and JφγK =⊤. Note that it is allowed to have Var(r) ̸⊆ Var(ℓ), but fresh
variables in the right-hand side may only be instantiated with value-constants (see the definition of →R
below). We let Rcalc be the set { f (x1, . . . ,xn)→ y [y= f (x1, . . . ,xn)] | f ∈ Σtheory \Val, x1, . . . ,xn,y∈V}.
The elements of Rcalc are also called constrained rewrite rules (or calculation rules) even though their
left-hand side is a theory term. The rewrite relation →R is a binary relation on terms, defined as follows:
for a term s, s[ℓγ]p →R s[rγ]p if ℓ→ r [φ] ∈R∪Rcalc and γ respects ℓ→ r [φ].

Now we define a logically constrained term rewrite system (LCTRS, for short) as an abstract re-
duction system (T (Σ,V),→R) where R is a set of constrained rewrite rules. LCTRS (T (Σ,V),→R) is
simply denoted by R. An LCTRS is usually given by supplying Σ, R, and an informal description of I
and J if these are not clear from context. The set of normal forms of R is denoted by NFR. LCTRS R
is said to be terminating (confluent) if →R is terminating (confluent).

Example 2.1 Let S = {int,bool}, Σ = Σterms ∪Σint
theory and Σterms = {fact : int ⇒ int}∪{n : int | n ∈ Z}.

We reduce 3−1 to 2 in one step with the calculation rule x−y → z [z = x−y], and 3× (2× (1×1)) to 6
in three steps. To implement an LCTRS calculating the factorial function over Z, we use the signature Σ

above and the LCTRS Rfact = { fact(x)→ 1 [x ≤ 0] fact(x)→ x× fact(x−1) [¬(x ≤ 0)] }. The term
fact(3) is reduced by Rfact to 6: fact(3)→Rfact 3× fact(3−1)→Rfact 3× fact(2)→Rfact · · · →Rfact 6.

A constrained term is a pair ⟨t | φ⟩ of a term t and a constraint φ . The set of all ground instances

4 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

of ⟨t | φ⟩ is denoted by J⟨t | φ⟩K: J⟨t | φ⟩K = {tγ | Dom(γ) ⊇ Var(t), Ran(γ) ⊆ T (Σ), γ respects φ}.
This paper considers constrained terms as sets of ground terms. A constrained equation s ≈ t [φ] is
called an inductive theorem of an LCTRS R if sγ ↔∗

R tγ for every ground substitution γ such that
Dom(γ)⊇ Var(s, t,φ) and γ respects φ .

2.2 All-Path Reachability

Let (M,⇀) be a transition system with ⇀⊆ M×M. An execution path is either an infinite ⇀-sequence
or a finite ⇀-sequence ending with an irreducible term. A state predicate is a set P (⊆ M). The predicate
P is said to be runnable (w.r.t. ⇀) if P ̸= /0 and for each t ∈ P there exists t ′ ∈ M such that t ⇀ t ′. Note
that a runnable state predicate does not include any irreducible state. A reachability predicate (w.r.t.
(M,⇀)) is a pair P ⇒ Q of state predicates P,Q.

An execution path τ is said to satisfy a reachability predicate P ⇒ Q, written τ |=∀ P ⇒ Q, if τ starts
with a state in P and τ includes a state in Q, whenever τ is finite. A reachability predicate P ⇒ Q is
said to be demonically valid (w.r.t. (M,⇀)) if τ |=∀ P ⇒ Q for all execution paths τ starting from a state
in P. The demonical validity of P ⇒ Q means that every finite execution path starting from a state in P
eventually reaches a state in Q.

Let R be an LCTRS and ⟨tℓ | φℓ⟩,⟨tr | φr⟩ constrained terms. We call the pair ⟨tℓ | φℓ⟩ ⇒ ⟨tr | φr⟩ an
all-path reachability problem (APR problem, for short) of R. Note that ⟨tℓ | φℓ⟩ and ⟨tr | φr⟩ may have
shared variables. The set of derivatives of a constrained term ⟨t | φ⟩ is defined as follows:

∆R(⟨t | φ⟩) =
⋃

ℓ→r [ψ]∈R ∆ℓ,r,ψ(⟨t | φ⟩)

where ℓ → r [ψ] has no shared variable with ⟨t | φ⟩1 and ∆ℓ,r,ψ(⟨t | φ⟩) = {⟨(t[r]p)γ | (φ ∧ψ)γ⟩ | p
is a position of t, t|p and ℓ are unifiable, γ is a most general unifier of t|p and ℓ, Ran(γ|Var(φ ,ψ)) ⊆
Val ∪ V , (φ ∧ ψ)γ is satisfiable}. A constrained term ⟨t | φ⟩ is said to be R-derivable if ∆R(⟨t |
φ⟩) ̸= /0. We say that R demonically satisfies ⟨tℓ | φℓ⟩ ⇒ ⟨tr | φr⟩, written R |=∀ ⟨tℓ | φℓ⟩ ⇒ ⟨tr | φr⟩,
if J⟨tℓγ | φℓγ⟩K ⇒ J⟨trγ | φrγ⟩K is demonically valid w.r.t. (T (Σ),→R) for any ground substitution γ such
that Dom(γ) = Var(tℓ,φℓ)∩Var(tr,φr), and Ran(γ)⊆ T (Σ), and Ran(γ|Var(φℓ)∩Var(φr))⊆ Val.

3 LCTRSs Modeling Programs with Semaphores

In this section, using Program 1, we briefly illustrate how to model by an LCTRS a concurrent programs
with exclusive control operated by means of semaphores.

A semaphore is a variable to specify the availability of a corresponding shared resource. Note that
the range of semaphores are non-negative integers from 0 to some specified upper limit u: u = 1 for
binary semaphores, and u > 1 for counting ones. This paper deals with the operations down and up of a
semaphore s for a shared resource src, which are defined as follows [17]:

• Operation down is executed as down(&s) before accessing src: If the value of s is not 0, then it is
decreased by 1; otherwise, the process executing down goes into the wait state, queuing up for s.

• Operation up is executed as up(&s) in releasing the access to src: If at least one process waits for
s, then the value of s is kept as it is and the process at the top of the waiting queue goes into the
executable state;2 otherwise, the value of s is increased by 1.

1When there exists a shared variable, we rename the variables in ℓ→ r [ψ].
2The process going into the executable state acquires the semaphore s and starts to access the shared resource.

M. Kojima & N. Nishida 5

Program 1: a simple reader-writer program with a counting semaphore

1 semaphore s = 2;

2 int x = 0;

3

4 void reader(void)

5 {

6 while(true){

7 int y;

8

9 down(&s);

10 y = x;

11 up(&s);

12 }

13 }

14

15 void writer(void)

16 {

17 while(true){

18 down(&s);

19 x = 1;

20 up(&s);

21 }

22 }

• down and up are atomic operations—when an atomic operation a is executed, any other operations
(processes) cannot interrupt until the execution of a finishes.

Note that the above specification can perform for both binary and counting semaphores.
Let us consider a configuration with three processes, the first and second of which execute reader in

Program 1, and the third of which executes writer in Program 1. For such a configuration, the LCTRS
R1 in Fig. 2 with the following initial term is generated [9]:

cnfg(p(rdr7,0)

1st process

, p(rdr7,0)

2nd process

, p(wtr18,0)

3rd process

, sem(2,1,3)

s

, 0
x

, 0
flag for atomic operation

)

where cnfg : process×process×process× semaphore× int × int → cnfg p : fcall× int → process sem :
int× int× int → semaphore The i-th argument with 1≤ i≤ 3 is the i-th process; the fourth is a semaphore
sem(vs,d, t) with vs a stored value, d a display to call a waiting process, and t a next ticket issued for
an upcoming waiting process; the fifth is a value stored in x; the sixth is a flag for atomic operations
represented by two or more rewrite rules.3 Unlike [9], this paper uses integers instead of bit vectors for
int. For page limitation, we omit the detailed explanation for the construction (see [9] for detail).

4 Reducing Non-Occurrence of a Runtime-Error to an APR Problem

In this section, to verify the non-occurrence of a specified runtime error, we first propose a framework
to reduce it to an APR problem. Then, as a case study, we show how to apply the framework to the
race-freeness of semaphore-based exclusive control.

All-path reachability P ⇒ Q w.r.t. a transition system is a property that for every finite execution path
starting from P, its initial state reaches a state in Q. This means that no infinite execution path is taken
into account for the transition system having the property. On the other hand, the non-occurrence of a
runtime error specified by error states has to take into account all execution paths, i.e., not only finite but
also infinite ones, because error states may occur in an infinite execution path. For this reason, we need
a breakthrough to take into account infinite execution paths in the APR setting where infinite paths are
excluded. To fill the gap, we do not modify the ordinary APR setting—the definition and proof system
of APR problems—and use the setting as it is.

3For non-terminating LCTRSs, atomic operations represented by two or more rewrite rules without this flag not in [9] may
be stuck because of another non-terminating process. To avoid such stuck, this flag has been introduced [8].

6 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

cnfg(p(rdr7,n), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr9(0),n), p2, p3,sem(s,d, t),x,0)
cnfg(p(rdr9(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr10(y),0), p2, p3,sem(s−1,d, t),x,0) [s ̸= 0]
cnfg(p(rdr9(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr9(y), t), p2, p3,sem(s,d, t +2),x,0) [s = 0]
cnfg(p(rdr9(y),n), p2, p3,sem(s,d, t),x,1)→cnfg(p(rdr10(y),0), p2, p3,sem(s,d, t),x,0) [n = d ∧n ̸= 0]
cnfg(p(rdr10(y),n), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr11(x),n), p2, p3,sem(s,d, t),x,0)
cnfg(p(rdr11(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr7,0), p2, p3,sem(s,d +2, t),x,1) [t ̸= d +2]
cnfg(p(rdr11(y),0), p2, p3,sem(s,d, t),x,0)→cnfg(p(rdr7,0), p2, p3,sem(s+1,d, t),x,0) [t = d +2]

cnfg(p1,p(rdr7,n), p3,sem(s,d, t),x,0)→cnfg(p1,p(rdr9(0),n), p3,sem(s,d, t),x,0)
...

cnfg(p1,p(rdr11(y),0), p3,sem(s,d, t),x,0)→cnfg(p1,p(rdr7,0), p3,sem(s+1,d, t),x,0) [t = d +2]

cnfg(p1, p2,p(wtr18,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr19,0),sem(s−1,d, t),x,0) [s ̸= 0]
cnfg(p1, p2,p(wtr18,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr18, t),sem(s,d, t +2),x,0) [s = 0]
cnfg(p1, p2,p(wtr18,n),sem(s,d, t),x,1)→cnfg(p1, p2,p(wtr19,0),sem(s,d, t),x,0) [n = d ∧n ̸= 0]
cnfg(p1, p2,p(wtr19,n),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr20,n),sem(s,d, t),1,0)
cnfg(p1, p2,p(wtr20,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr18,0),sem(s,d +2, t),x,1) [t ̸= d +2]
cnfg(p1, p2,p(wtr20,0),sem(s,d, t),x,0)→cnfg(p1, p2,p(wtr18,0),sem(s+1,d, t),x,0) [t = d +2]

Figure 2: the transformed LCTRS R1 for Program 1

Our approach to the gap is to make all finite prefixes of infinite execution paths be execution paths,
i.e., to append a terminating state to all transition sequences. To be more precise, given an LCTRS R as
a transition system, we introduce to R a fresh constant success and a rewrite rule cnfg(. . .) → success
that reduces all states to success. Such a constant and a rewrite rule imply that for an infinite sequence
t1 →R t2 →R · · · and every finite prefix sequence t1 →R t2 →R · · · →R tn, all states t1, . . . , tn are included
in an execution path t1 →R t2 →R · · · →R tn →R success.

To ensure the non-occurrence of error states, we consider an APR problem ⟨s0 | φ0⟩ ⇒ ⟨success |
true⟩. Since every state can reach success, we make error states not reach success by introducing to
R another fresh constant error and rewrite rules that reduce all error states to error. The occurrence of
an error state in an execution path implies the existence of a finite execution path that does not include
success.

4.1 A Framework of Reduction to APR Problems

Let P be a program to be verified, R an LCTRS obtained by transforming P, and ⟨s0 | φ0⟩ a constrained
term representing the initial state of P.4 In addition, let {⟨ui | φi⟩ | 1 ≤ i ≤ n} be a finite set of constrained
terms representing the states, called error states, of a certain run-time error to be verified. Introducing
fresh constants success and error with sort cnfg into the signature Σ, we reduce the non-occurrence of the
runtime error specified by {⟨ui | φi⟩ | 1 ≤ i ≤ n} to the APR problem ⟨s0 | φ0⟩ ⇒ ⟨success | true⟩ of the
LCTRS R∀ that is defined as follows:

R∀ :=R∪{cnfg(p1, . . . , pm,x1, . . . ,xk,xa)→ success}∪{ui → error [φi] | 1 ≤ i ≤ n}

where p1, . . . , pm are variables for processes, x1, . . . ,xk are variables for semaphores and global variables,
and xa is a variable for the flag for atomic operations represented by two or more rewrite rules.

Rule cnfg(p1, . . . , pm,x1, . . . ,xk,xa)→ success rewrites all states to success. Each rule ui → error [φi]
rewrites all states represented by ⟨ui | φi⟩ to error. Note that every finite execution path of R∀ starting
from J⟨s0 | φ0⟩K ends with either success or error.

4J⟨s0 | φ0⟩K do not have to be a singleton set.

M. Kojima & N. Nishida 7

The demonical validity of ⟨s0 | φ0⟩ ⇒ ⟨success | true⟩ w.r.t. R∀ is equivalent to the non-existence
of an execution path of R∀, that includes error. This is because there is no rule that rewrites either
error or success, and thus, error cannot be rewritten to success, and vice versa. Therefore, by proving
⟨s0 | φ0⟩ ⇒ ⟨success | true⟩ to be demonically valid, we can ensure the non-existence of a finite rewrite
sequence of R that starts with a ground term in J⟨s0 | φ0⟩K and includes a ground term in J⟨ui | φi⟩K for
some i, that is, the runtime error to be verified does not occur in any execution of P.

Theorem 4.1 R∀ |=∀ ⟨s0 | φ0⟩⇒ ⟨success | true⟩ if and only if s ̸→∗
R u for any ground term s∈ J⟨s0 | φ0⟩K

and any ground term u ∈
⋃n

i=1J⟨ui | φi⟩K.

Any error state has two normal forms, success and error, and R∀ is not ground confluent. The normal
forms of R∀ with sort cnfg are success and error. By definition, it is clear that ⟨s0 | φ0⟩⇒ ⟨success | true⟩
is demonically valid w.r.t. R∀ if and only if every ground term in J⟨s0 | φ0⟩K has a unique normal form.
From this fact, for the demonical validity of our APR problems, we may prove UN→ property of ground
terms in J⟨s0 | φ0⟩K. Though, for the present, we have no method to prove such UN→ property because
e.g., R∀ is not ground confluent.

4.2 A Case Study: Race-Freeness of Semaphore-based Exclusive Control

Let smax be the upper limit of a semaphore s. The exclusive control by means of s fails when smax or
more processes are in their critical sections w.r.t. s simultaneously. A process is said to be in the critical
section if the present state of the process is between the state just after getting the semaphore by means of
down and the state just before executing up to return the semaphore. Viewed in this light, for an LCTRS
obtained from a program, we can determine which function symbols represent critical sections, that is,
we can prepare a finite set of configurations under the critical race condition.

Example 4.2 Consider the transformed LCTRS R1 in Fig. 2 and the following initial configuration for
Program 1 again: cnfg(p(rdr7,0),p(rdr7,0),p(wtr18,0),sem(2,1,3),0,0). Recall that the upper limit
(initial value) of the semaphore s is 2 and there are three processes, the first and second of which execute
reader, and the third of which executes writer. At most two processes can access the global variable
x—can be in their critical sections w.r.t. s—simultaneously. A process executing reader is in the critical
section when executing statements on Lines 10–11 in Program 1, and a process executing writer is in
the critical section when executing statements on Lines 19–20. Therefore, the following eight constrained
terms represent the critical race condition, i.e., the configurations where three processes are in their
critical sections w.r.t. s simultaneously:

⟨cnfg(p(rdr10(y),n),p(rdr10(y),n),p(wtr19,n),sem,x,a) | true⟩
⟨cnfg(p(rdr10(y),n),p(rdr10(y),n),p(wtr20,n),sem,x,a) | true⟩
⟨cnfg(p(rdr10(y),n),p(rdr11(y),n),p(wtr19,n),sem,x,a) | true⟩
⟨cnfg(p(rdr10(y),n),p(rdr11(y),n),p(wtr20,n),sem,x,a) | true⟩
⟨cnfg(p(rdr11(y),n),p(rdr10(y),n),p(wtr19,n),sem,x,a) | true⟩
⟨cnfg(p(rdr11(y),n),p(rdr10(y),n),p(wtr20,n),sem,x,a) | true⟩
⟨cnfg(p(rdr11(y),n),p(rdr11(y),n),p(wtr19,n),sem,x,a) | true⟩
⟨cnfg(p(rdr11(y),n),p(rdr11(y),n),p(wtr20,n),sem,x,a) | true⟩

For R1, the initial configuration, and the above eight constrained terms, our framework generates the
LCTRS R∀

1 in Fig. 3 and the following APR problem of R1 to verify the race-freeness of exclusive

8 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

R∀
1 =R1 ∪

cnfg(p1, p2, p3,sem,x, f)→success

cnfg(p(rdr10(y),n),p(rdr10(y),n),p(wtr19,n),sem,x,a)→error
...

cnfg(p(rdr11(y),n),p(rdr11(y),n),p(wtr20,n),sem,x,a)→error

Figure 3: the LCTRS R∀

1 generated by our framework of the reduction to APR problems.

control w.r.t. s in Program 3:

⟨cnfg(p(rdr7,0),p(rdr7,0),p(wtr18,0),sem(2,1,3),0,0) | true⟩ ⇒ ⟨success | true⟩

Another example—the sleeping barber problem [16]—to verify the race-freeness of semaphore-
based exclusive control can be seen in the appendix.

5 A Simplified Proof System for APR Problems

In this section, we propose a simplified variant of the proof system DCC [4] for all-path reachability of
ordinary LCTRSs and a certain class of APR problems.

In [4], LCTRSs have been extended by adding the theory of equality for non-theory symbols to the
usual built-in theory specified by Σtheory, I, and J . The proof system DCC for APR problems is intended
for the extended LCTRSs. Structural-equivalence formulas such as tℓ = tr take the place of unification
used at case analysis steps of proving APR problems. Let us consider the following rule in DCC:

⟨tℓ | φℓ∧¬(∃⃗x. (tℓ = tr)∧φr)⟩ ⇒ ⟨tr | φr⟩ (tℓ = tr)∧φr is satisfiable
(subs)

⟨tℓ | φℓ⟩ ⇒ ⟨tr | φr⟩

where Var(tr,φr)\Var(tℓ,φℓ) = {⃗x}. A term tℓγℓ ∈ J⟨tℓ | φℓ⟩K with γℓ respecting φℓ is in J⟨tr | φr⟩K if there
is some substitution γr such that trγr = tℓγℓ and γr respects φr, i.e., tℓ and tr are unifiable and their unifier
respects φℓ∧φr. To remove such a term from J⟨tℓ | φℓ⟩K, the formula ¬(∃⃗x.(tℓ=tr)∧φr) is conjunct to φℓ.

Since this paper uses the original definition of LCTRSs [10], we cannot use DCC as it is. Our
approach to the simplification is mainly to restrict APR problems to some class. On the other hand, the
restriction makes some side conditions of proof rules hold, and we simplify the formulation of the proof
system.

APR problems for runtime-error verification handled in this paper have the singleton set ⟨success |
true⟩ of destinations, and success is a normal form. Therefore, there is no need to consider constraints
of structural equivalence such as tℓ = tr in subs: The application of subs relies on tℓ = success; if tℓ =
success, then the demonically valid problem ⟨tℓ | φℓ∧ false⟩ ⇒ ⟨tr | φr⟩ is inferred and proved by axiom;
otherwise, the application of the rule is redundant because J⟨tℓ | φℓ ∧¬(∃⃗x. tℓ = tr ∧ φr)⟩K = J⟨tℓ | φℓ⟩K.
Thus, “tℓ = success” is enough for APR problems handled in this paper and we do not have to consider
structural equivalence in the side condition of rules in DCC.

From the above observation, we define a class of APR problems whose destination is a constant.

Definition 5.1 (constant-directed APR problem) An APR problem ⟨tℓ |φℓ⟩⇒⟨tr |φr⟩ is called constant-
directed if tr is a constant normal form and φr is satisfiable.

M. Kojima & N. Nishida 9

In the following, w.l.o.g., we deal with constant-directed problems of the form ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩.5
The proof system DSTEP in [4] is defined for constant-directed problems as follows.

Definition 5.2 (a simplified version of DSTEP) Given an LCTRS R, the proof system DSTEP(R) con-
sists of the following proof rules:

φℓ is unsatisfiable
⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩

(axiom)
tℓ = c

⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩
(subs)

⟨t1 | φ1⟩ ⇒ ⟨c | true⟩ . . . ⟨tn | φn⟩ ⇒ ⟨c | true⟩ ⟨tℓ | φℓ⟩ is R-derivable J⟨tℓ | φℓ⟩K∩NFR = /0 6
(der)

⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩
where ∆R(⟨tℓ | φℓ⟩) = {⟨ti | φi⟩ | 1 ≤ i ≤ n⟩} for some n > 0.

Note that ⟨tℓ | φℓ⟩ is R-derivable and J⟨tℓ | φℓ⟩K∩NFR = /0 if and only if J⟨tℓ | φℓ⟩K is runnable w.r.t. →R.
For our problem ⟨tℓ | φℓ⟩ ⇒ ⟨success | true⟩ of the LCTRS R∀, tℓ has sort cnfg, and by the construction
of R∀, every term cnfg(. . .) with sort cnfg can be reduced to success.7 For this reason, in our setting, the
side condition J⟨tℓ | φℓ⟩K∩NFR = /0 always holds.

Theorem 5.3 Let R be an LCTRS. For a constant-directed APR problem ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩ of R,
R |=∀ ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩ if and only if ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩ ∈ νD̂STEP.8

Proof (Sketch). This theorem holds for DSTEP in [4]. The rules in Definition 5.2 are just reformulations
of those in [4] for constant-directed problems. Therefore, this theorem holds. □

Given a finite set G of constant-directed APR problems, let us consider the following rule circ of
DCC for circularity, which is reformulated for constant-directed problems:

⟨c′ | φℓ∧ (∃⃗x. (tℓ = t ′ℓ)∧φ ′
ℓ)⟩ ⇒ ⟨c | true⟩ ⟨tℓ | φℓ∧¬(∃⃗x. (tℓ = t ′ℓ)∧φ ′

ℓ)⟩ ⇒ ⟨c | true⟩
(circ)

⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩
where {⃗x} = Var(t ′ℓ,φ

′
ℓ) and ⟨t ′ℓ | φ ′

ℓ⟩ ⇒ ⟨c′ | true⟩ is a freshly renamed problem in G. The problem
⟨t ′ℓ | φ ′

ℓ⟩ ⇒ ⟨c′ | true⟩ does not have to be constant-directed, and may perform as a lemma to prove a
main problem. On the other hand, it is difficult to implement a function to automatically find such a
lemma. For this reason, for the present, we deal with constant-directed problems only. Constants with
sort cnfg in our APR problems are unique, i.e., success, and thus, we assume that c′ = c (= success).
Then, ⟨c′ | φℓ∧ (∃⃗x. (tℓ = t ′ℓ)∧φ ′

ℓ)⟩ ⇒ ⟨c | true⟩ can be proved by subs, reformulating circ as follows:

⟨tℓ | φℓ∧¬(∃⃗x. (tℓ = t ′ℓ)∧φ ′
ℓ)⟩ ⇒ ⟨c | true⟩

(circ)
⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩

The above reformulation still contains structural-equivalence formula tℓ = t ′ℓ. To drop the formula, we
focus on the following property.

5It is clear that a constant-directed problem ⟨tℓ | φℓ⟩ ⇒ ⟨c | φr⟩ is equivalent to the constant-directed problem ⟨tℓ | φℓ ∧
(∃⃗x. φr)⟩ ⇒ ⟨t | true⟩, where {⃗x}= Var(φr)\Var(tℓ,φℓ).

6The original definition of der uses “validity of φℓ →
∨

j∈{1,...,n}∃y⃗ j. φ j” where {y⃗ j} = Var(t j,φ j) \Var(tℓ,φℓ). This
condition implies that for any instance of ⟨tℓ | φℓ⟩, there exists at least one rewrite rule that is applied to the instance [4]. For
this reason, the condition is equivalent to J⟨tℓ | φℓ⟩K∩NFR = /0.

7It is clear that if φℓ is satisfiable and tℓ is rooted by cnfg (i.e., tℓ ̸∈ {success,error}) if and only if ⟨tℓ | φℓ⟩ is R∀-derivable.
8For a set RULES of rules, νR̂ULES stands for the greatest fixed point of R̂ULES which stands for the functional of RULES.

10 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

Proposition 5.4 Let ⟨s | φ⟩,⟨t | ψ⟩ be constrained terms, and {⃗x} = Var(t,ψ) such that Var(s,φ)∩
{⃗x}= /0. If J⟨s | φ⟩K ⊆ J⟨t | ψ⟩K, then φ ∧¬(∃⃗x. (s = t)∧ψ) is unsatisfiable.

By the above proposition, if J⟨tℓ | φℓ⟩K ⊆ J⟨t ′ℓ | φ ′
ℓ⟩K, then the problem ⟨tℓ | φℓ∧¬(∃⃗x. (tℓ = t ′ℓ)∧φ ′

ℓ)⟩ ⇒
⟨c | true⟩ can be proved by axiom. By forcing J⟨tℓ | φℓ⟩K ⊆ J⟨t ′ℓ | φ ′

ℓ⟩K as a side condition, we remove the
APR problem from the premise of circ. To distinguish such a new rule with the original one, we call it
weak circ.

Definition 5.5 (a proof system DCC−) Let R be an LCTRS, and G a finite set of constant-directed APR
problems. Then, the proof system DCC−(R,G) consists of DSTEP(R), together with

∃⟨t ′ℓ | φ ′
ℓ⟩ ⇒ ⟨c | true⟩ ∈ G such that J⟨tℓ | φℓ⟩K ⊆ J⟨t ′ℓ | φ ′

ℓ⟩K (weak circ)
⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩

Since DCC− is a weaker reformulation of DCC, the soundness proof [4, Theorem 3] for DCC ensures
soundness of DCC−.

Theorem 5.6 (soundness of DCC−) Let R be an LCTRS, and G a finite set of constant-directed APR
problems. Suppose that for each problem ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩ ∈ G, there exists a proof tree T under
DCC−(R,G), each circ node of which has a der node as an ancestor. Then, R |=∀ ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩
for all problems ⟨tℓ | φℓ⟩ ⇒ ⟨c | true⟩ ∈ G.

In proving an APR problem, as for cyclic proofs [2], it is enough to construct a single proof tree under
DCC(R,G) or DCC−(R,G) such that

• G includes the APR problem and all der nodes in the tree,

• the root node is the APR problem, and

• for each (weak) circ node, the tree includes a der node, the conclusion of which is the same as the
(weak) circ node.

Example 5.7 Consider the LCTRS R∀
1 in Fig. 3 and the following APR problem in Example 4.2 again:

⟨cnfg(p(rdr7,0),p(rdr7,0),p(wtr18,0),sem(2,1,3),0,0) | true⟩ ⇒ ⟨success | true⟩

Since the second and third arguments of sem are incremented during the reduction, we cannot rely
on circularity in proving the demonical validity of the above problem. For this reason, we prove the
demonical validity of the following generalized APR problem:

(1) ⟨cnfg(p(rdr7,0),p(rdr7,0),p(wtr18,0),sem(2,d, t),x,0) | d > 0∧ t = d +2⟩ ⇒ ⟨success | true⟩

Since the size of proof trees for the above problem is very large, we show how to infer sub problems in
applying DCC− rules to some problems obtained from the above generalized problem. By applying der
to the above generalized problem, we obtain the following APR problems:

(1.1) ⟨cnfg(p(rdr9(y1),0),p(rdr7,0),p(wtr18,0),sem(2,d, t),x,0) | d > 0∧ t = d +2⟩⇒⟨success | true⟩
(1.2) ⟨cnfg(p(rdr7,0),p(rdr9(y2),0),p(wtr18,0),sem(2,d, t),x,0) | d > 2∧ t = d +2⟩⇒⟨success | true⟩
(1.3) ⟨cnfg(p(rdr7,0),p(rdr7,0),p(wtr19,0),sem(1,d, t),x,0) | d > 0∧ t = d +2⟩⇒⟨success | true⟩
(1.4) ⟨cnfg(. . . ,p(wtr18, t),sem(1,d, t ′),x,0) | d > 0∧ t = d +2∧2= 0∧ t ′ = t +2⟩⇒⟨success | true⟩
(1.5) ⟨cnfg(. . . ,p(wtr19,0),sem(1,d, t),x,0) | 0= d ∧0 ̸= 0∧d > 0∧ t = d +2⟩⇒⟨success | true⟩
(1.6) ⟨success | true⟩⇒⟨success | true⟩

M. Kojima & N. Nishida 11

By applying axiom, (1.4) and (1.5) are proved. By applying subs, (1.6) is proved. We apply der to
(1.1)–(1.3) again. Let us focus on (1.1). Repeating the application of der, we obtain (1) again. The
second occurrence of (1) can be proved by weak circ with the first occurrence of (1). In this way, we can
construct a proof tree for (1) under DCC−(R∀

1 ,{(1)}). Therefore, Theorem 5.6 ensures the race-freeness
of exclusive control in Program 1.

Finally, we show a sufficient condition for J⟨tℓ | φℓ⟩K ⊆ J⟨t ′ℓ | φ ′
ℓ⟩K in weak circ.

Proposition 5.8 Let ⟨s | φ⟩,⟨t | ψ⟩ be constrained terms, and {⃗x} = Var(t,ψ) such that Var(s,φ)∩
{⃗x}= /0. If there exists a substitution γ such that Ran(γ|Var(ψ))⊆ T (Σtheory,Var(φ)), s = tγ , and φ ⇐⇒
ψγ is valid, then J⟨s | φ⟩K ⊆ J⟨t | ψ⟩K.

6 Conclusion

In this paper, we proposed a framework to reduce the non-occurrence of a specified runtime error to an
APR problem and also proposed a simplified variant of the proof system DCC. We have implemented
DCC− in Crisys2, a tool based on RI of LCTRSs, by restricting and relaxing the side conditions of
inference rules for RI to those for DCC−. The tool succeeded in automatically proving the APR problems
shown in this paper.

The examples in this paper are very simple, e.g., the simple reader-writer problem. Our future work
is to apply the framework in this paper to more practical programs such as in-vehicle embedded systems.
To this end, it would be necessary to increase the functions of concurrent programs that can be handled,
such as interruption processing, and we will apply the framework to verification of various runtime
errors. Furthermore, we will compare our method with model checking regarding the non-occurrence of
runtime errors.

Acknowledgements We gratefully acknowledge the anonymous reviewers for their useful comments
and suggestions to improve the paper.

References

[1] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,
doi:10.1145/505863.505888.

[2] James Brotherston (2005): Cyclic Proofs for First-Order Logic with Inductive Definitions. In Bernhard
Beckert, editor: Proceedings of the 14th International Conference on Automated Reasoning with An-
alytic Tableaux and Related Methods, Lecture Notes in Computer Science 3702, Springer, pp. 78–92,
doi:10.1007/11554554 8.

[3] Andrei-Sebastian Buruiană & Ştefan Ciobâcă (2018): Reducing Total Correctness to Partial Correctness
by a Transformation of the Language Semantics. In Joachim Niehren & David Sabel, editors: Proceed-
ings of the 5th International Workshop on Rewriting Techniques for Program Transformations and Evalua-
tion, Electronic Proceedings in Theoretical Computer Science 289, Open Publishing Association, pp. 1–16,
doi:10.4204/EPTCS.289.1.

[4] Ştefan Ciobâcă & Dorel Lucanu (2018): A Coinductive Approach to Proving Reachability Properties in
Logically Constrained Term Rewriting Systems. In Didier Galmiche, Stephan Schulz & Roberto Sebastiani,
editors: Proceedings of the 9th International Joint Conference on Automated Reasoning, Lecture Notes in
Computer Science 10900, Springer, pp. 295–311, doi:10.1007/978-3-319-94205-6 20.

https://doi.org/10.1145/505863.505888
https://doi.org/10.1007/11554554_8
https://doi.org/10.4204/EPTCS.289.1
https://doi.org/10.1007/978-3-319-94205-6_20

12 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

[5] Carsten Fuhs, Cynthia Kop & Naoki Nishida (2017): Verifying Procedural Programs via Constrained Rewrit-
ing Induction. ACM Transactions on Computational Logic 18(2), pp. 14:1–14:50, doi:10.1145/3060143.

[6] Yoshiaki Kanazawa & Naoki Nishida (2019): On Transforming Functions Accessing Global Variables into
Logically Constrained Term Rewriting Systems. In Joachim Niehren & David Sabel, editors: Proceedings
of the 5th International Workshop on Rewriting Techniques for Program Transformations and Evaluation,
Electronic Proceedings in Theoretical Computer Science 289, Open Publishing Association, pp. 34–52.

[7] Yoshiaki Kanazawa, Naoki Nishida & Masahiko Sakai (2019): On Representation of Structures and Unions
in Logically Constrained Rewriting. IEICE Technical Report SS2018-38, IEICE. Vol. 118, No. 385, pp.
67–72, in Japanese.

[8] Misaki Kojima (2022): Runtime-Error Verification of Programs with Exclusive Control by Reducing to All-
Path Reachability in Constrained Rewriting. Master’s thesis, Graduate School of Informatics, Nagoya Uni-
versity. In Japanese.

[9] Misaki Kojima, Naoki Nishida & Yutaka Matsubara (2020): Transforming Concurrent Programs with
Semaphores into Logically Constrained Term Rewrite Systems. In: Informal Proceedings of the 7th Inter-
national Workshop on Rewriting Techniques for Program Transformations and Evaluation, pp. 1–12.

[10] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In Pascal Fontaine,
Christophe Ringeissen & Renate A. Schmidt, editors: Proceedings of the 9th International Symposium
on Frontiers of Combining Systems, Lecture Notes in Computer Science 8152, Springer, pp. 343–358,
doi:10.1007/978-3-642-40885-4 24.

[11] Naoki Nishida & Sarah Winkler (2018): Loop Detection by Logically Constrained Term Rewriting. In
Ruzica Piskac & Philipp Rümmer, editors: Proceedings of the 10th Working Conference on Verified Soft-
ware: Theories, Tools, and Experiments, Lecture Notes in Computer Science 11294, Springer, pp. 309–321,
doi:10.1007/978-3-030-03592-1 18.

[12] Enno Ohlebusch (2002): Advanced Topics in Term Rewriting. Springer, doi:10.1007/978-1-4757-3661-8.

[13] Uday S. Reddy (1990): Term Rewriting Induction. In Mark E. Stickel, editor: Proceedings of the 10th
International Conference on Automated Deduction, Lecture Notes in Computer Science 449, Springer, pp.
162–177, doi:10.1007/3-540-52885-7 86.

[14] Andrei Stefanescu, Ştefan Ciobâcă, Radu Mereuta, Brandon M. Moore, Traian-Florin Serbanuta & Grigore
Rosu (2014): All-Path Reachability Logic. In Gilles Dowek, editor: Proceedings of the Joint International
Conference on Rewriting and Typed Lambda Calculi, Lecture Notes in Computer Science 8560, Springer,
pp. 425–440, doi:10.1007/978-3-319-08918-8 29.

[15] Andrei Stefanescu, Ştefan Ciobâcă, Radu Mereuta, Brandon M. Moore, Traian-Florin Serbanuta &
Grigore Rosu (2019): All-Path Reachability Logic. Logical Methods in Computer Science 15(2),
doi:10.23638/LMCS-15(2:5)2019.

[16] Andrew S. Tanenbaum (2001): Modern operating systems, 2nd Edition. Prentice Hall.

[17] Andrew S. Tanenbaum & Albert S. Woodhull (2006): Operating systems — design and implementation, 3
edition. Pearson Education.

[18] Sarah Winkler & Aart Middeldorp (2018): Completion for Logically Constrained Rewriting. In Hélène
Kirchner, editor: Proceedings of the 3rd International Conference on Formal Structures for Compu-
tation and Deduction, LIPIcs 108, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 30:1–30:18,
doi:10.4230/LIPIcs.FSCD.2018.30.

A Missing Proofs

Theorem 4.1 (1) ⟨s0 | φ0⟩ ⇒ ⟨success | true⟩ is demonically valid w.r.t. R∀ if and only if (2) s ̸→∗
R u for

any ground term s ∈ J⟨s0 | φ0⟩K and any ground term u ∈
⋃n

i=1J⟨ui | φi⟩K.

https://doi.org/10.1145/3060143
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/3-540-52885-7_86
https://doi.org/10.1007/978-3-319-08918-8_29
https://doi.org/10.23638/LMCS-15(2:5)2019
https://doi.org/10.4230/LIPIcs.FSCD.2018.30

M. Kojima & N. Nishida 13

Proof. We first show the only-if part. Assume that (1) holds but (2) does not. Then, there exist ground
terms s ∈ J⟨s0 | φ0⟩K and u ∈

⋃n
i=1J⟨ui | φi⟩K such that s →∗

R u. By the construction of R∀, it is clear
that R ⊆ R∀ and u →R∀ error, and hence s →∗

R∀ u →R∀ error. Since success is a normal form of R∀,
success does not occur in any rewrite sequence of s →∗

R∀ u →R∀ error. This implies that (1) does not
holds, contradicting the assumption that (1) holds.

Next, we show the if part. Assume that (2) holds but (1) does not. Then, there exists a finite
execution path that starts with s ∈ J⟨s0 | φ0⟩K and ends with error, i.e., s →∗

R∀ error. It follows from the
construction of R∀ that there exist a natural number i ∈ {1, . . . ,n} and a ground term u ∈ J⟨ui | φi⟩K such
that s →∗

R∀ u →R∀ error. Neither normal forms success nor error of R∀ occurs in any rewrite sequence
for s →∗

R∀ u, i.e., s →∗
R u. This contradicts the assumption that (2) holds. □

Proposition 5.4 Let ⟨s | φ⟩,⟨t | ψ⟩ be constrained terms, and {⃗x} = Var(t,ψ) such that Var(s,φ)∩
{⃗x}= /0. If J⟨s | φ⟩K ⊆ J⟨t | ψ⟩K, then φ ∧¬(∃⃗x. (s = t)∧ψ) is unsatisfiable.

Proof. We proceed by contradiction. Assume that J⟨s | φ⟩K ⊆ J⟨t | ψ⟩K and φ ∧¬(∃⃗x. (s = t)∧ψ) is
satisfiable. Let γ be a substitution such that (a) Dom(γ) = Var(s,φ), (b) JφγK = ⊤, (c) J¬(∃⃗x. (sγ =
t)∧ψ)K =⊤. Then, γ respects φ , and hence sγ ∈ J⟨s | φ⟩K. Let γ ′ be a substitution such that Dom(γ ′) =
Var(s,φ , t,ψ) and γ ′|Var(s,φ) = γ . We make a case analysis depending on whether sγ ′ = tγ ′ holds or not.

• Consider the case where sγ ′ = tγ ′. It follows from (c) that Jψγ ′K =⊥, and hence tγ ′ /∈ J⟨t | ψ⟩K.

• Consider the remaining case where sγ ′ ̸= tγ ′. By definition, it is clear that tγ ′ /∈ J⟨t | ψ⟩K.

In both cases above, we have that tγ ′ /∈ J⟨t |ψ⟩K, and hence sγ /∈ J⟨t |ψ⟩K. This contradicts the assumption
that J⟨s | φ⟩K ⊆ J⟨t | ψ⟩K. □

Proposition 5.8 Let ⟨s | φ⟩,⟨t | ψ⟩ be constrained terms, and {⃗x} = Var(t,ψ) such that Var(s,φ)∩
{⃗x}= /0. If there exists a substitution γ such that Ran(γ|Var(ψ))⊆ T (Σtheory,Var(φ)), s = tγ , and φ ⇐⇒
ψγ are valid, then J⟨s | φ⟩K ⊆ J⟨t | ψ⟩K.

Proof. Let s′ be a term in J⟨s | φ⟩K. Then, there exists a substitution θ such that Dom(θ) = Var(s,φ)
and θ respects φ , i.e., Ran(θ |Var(φ))⊆ Val and JφθK =⊤. Then, there exists a substitution γ ′ such that
Dom(γ ′) = Var(tγ,ψγ), sθ = tγγ ′, and Ran(γ ′|Var(ψγ) ⊆Val. It follows from the validity of φ ⇐⇒ ψγ

that Jψγγ ′K =⊤, and hence, γ ′ respects ψγ . Therefore, tγγ ′ ∈ Jt | ψK, i.e., sθ ∈ Jt | ψK. □

B Example: Sleeping Barber Problem

Program 2 is a pseudo code for the sleeping barber problem with N seats [16]. In the following, We
let N = 2. Let us consider a configuration with two processes, the first of which executes barber in
Program 2, and the second of which executes customer in Program 2. Program 2 is transformed into
the LCTRS R2 =Rbbr∪Rcstmr in Fig. 4 and 5, together with the following initial term:

cnfg(p(bbr8,0,0,0),p(cstmr18,0,0,0),sem(0,1,3),sem(0,1,3),sem(1,1,3),2,0)

14 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

Program 2: a program of the sleeping barber problem with N seats

1 semaphore Customers = 0;

2 semaphore Barber = 0;

3 semaphore accessSeats = 1;

4 int NumberOfFreeSeats = N;

5

6 void barber(void){

7 while(true){

8 down(Customers);

9 down(accessSeats);

10 NumberOfFreeSeats ++;

11 up(Barber);

12 up(accessSeats);

13 }

14 }

15

16 void customer(void){

17 while(true){

18 down(accessSeats);

19 if(NumberOfFreeSeats > 0){

20 NumberOfFreeSeats --;

21 up(Customers);

22 up(accessSeats);

23 down(Barber);

24 }else{

25 up(accessSeats);

26 }

27 }

28 }

For R2 and the initial term, the following LCTRS and APR problem for the race-freeness of all the
semaphores in Program 2 are generated:

R∀
2 =Rbbr∪Rcstmr∪

cnfg(p1, p2,sbar,scus,sseat, frst, f)→success

cnfg(p(bbr10,nbar,ncus,nseat),p(cstmr19,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr11,nbar,ncus,nseat),p(cstmr19,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr12,nbar,ncus,nseat),p(cstmr19,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr10,nbar,ncus,nseat),p(cstmr20,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr11,nbar,ncus,nseat),p(cstmr20,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr12,nbar,ncus,nseat),p(cstmr20,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr10,nbar,ncus,nseat),p(cstmr21,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr11,nbar,ncus,nseat),p(cstmr21,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr12,nbar,ncus,nseat),p(cstmr21,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr10,nbar,ncus,nseat),p(cstmr22,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr11,nbar,ncus,nseat),p(cstmr22,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr12,nbar,ncus,nseat),p(cstmr22,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr10,nbar,ncus,nseat),p(cstmr25,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr11,nbar,ncus,nseat),p(cstmr25,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error
cnfg(p(bbr12,nbar,ncus,nseat),p(cstmr25,nbar,ncus,nseat),sbar,scus,sseat, frst, f)→error

and

⟨cnfg(p(bbr8,0,0,0),p(cstmr18,0,0,0),sem(0,1,3),sem(0,1,3),sem(1,1,3),2,0) | true⟩
⇒ ⟨success | true⟩

As for Example 5.7, the generalization of the above APR problem is necessary for the use of circularity:

⟨cnfg(p(bbr8,0,0,0),p(cstmr18,0,0,0),sem(0,db, tb),sem(0,dc, tc),sem(1,ds, ts),2,0) | φ2⟩
⇒⟨success | true⟩

where φ2 = db > 0∧ tb = db + 2∧ dc > 0∧ tc = dc + 2∧ ds > 0∧ ts = ds + 2. The proof system DCC−

succeeds in proving the above APR problem.

M. Kojima & N. Nishida 15

Rbbr =

cnfg(p(bbr8,nbar,0,nseat), pcus,sbar,sem(scus,dcus, tcus),sseat, frst,0)
→cnfg(p(bbr9,nbar,0,nseat), pcus,sbar,sem(scus −1,dcus, tcus),sseat, frst,0) [scus ̸= 0]

cnfg(p(bbr8,nbar,0,nseat), pcus,sbar,sem(scus,dcus, tcus),sseat, frst,0)
→cnfg(p(bbr8,nbar, tcus,nseat), pcus,sbar,sem(scus,dcus, tcus +2),sseat, frst,0) [scus = 0]

cnfg(p(bbr8,nbar,ncus,nseat), pcus,sbar,sem(scus,dcus, tcus),sseat, frst,1)
→cnfg(p(bbr9,nbar,0,nseat), pcus,sbar,sem(scus,dcus, tcus),sseat, frst,0) [ncus = dcus ∧ncus ̸= 0]

cnfg(p(bbr9,nbar,ncus,0), pcus,sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(p(bbr10,nbar,ncus,0), pcus,sbar,scus,sem(sseat −1,dseat, tseat), frst,0) [sseat ̸= 0]

cnfg(p(bbr9,nbar,ncus,0), pcus,sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(p(bbr9,nbar,ncus, tseat), pcus,sbar,scus,sem(sseat,dseat, tseat +2), frst,0) [sseat = 0]

cnfg(p(bbr9,nbar,ncus,nseat), pcus,sbar,scus,sem(sseat,dseat, tseat), frst,1)
→cnfg(p(bbr10,nbar,ncus,0), pcus,sbar,scus,sem(sseat,dseat, tseat), frst,0) [nseat = dseat ∧nseat ̸= 0]

cnfg(p(bbr10,nbar,ncus,nseat), pcus,sbar,scus,sseat, frst,0)
→cnfg(p(bbr11,nbar,ncus,nseat), pcus,sbar,scus,sseat, frst+1,0)

cnfg(p(bbr11,0,ncus,nseat), pcus,sem(sbar,dbar, tbar),scus,sseat, frst,0)
→cnfg(p(bbr12,0,ncus,nseat), pcus,sem(sbar,dbar +2, tbar),scus,sseat, frst,1) [tbar ̸= dbar +2]

cnfg(p(bbr11,0,ncus,nseat), pcus,sem(sbar,dbar, tbar),scus,sseat, frst,0)
→cnfg(p(bbr12,0,ncus,nseat), pcus,sem(sbar +1,dbar, tbar),scus,sseat, frst,0) [tbar = dbar +2]

cnfg(p(bbr12,nbar,ncus,0), pcus,sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(p(bbr8,nbar,ncus,0), pcus,sbar,scus,sem(sseat,dseat +2, tseat), frst,1) [tseat ̸= dseat +2]

cnfg(p(bbr12,nbar,ncus,0), pcus,sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(p(bbr8,nbar,ncus,0), pcus,sbar,scus,sem(sseat +1,dseat, tseat), frst,0) [tseat = dseat +2]

Figure 4: LCTRS Rbbr representing the first process executing barber in Program 2

16 On Reducing Non-Occurrence of Specified Runtime Errors to All-Path Reachability Problems

Rcstmr =

cnfg(pbar,p(cstmr18,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(pbar,p(cstmr19,nbar,ncus,0),sbar,scus,sem(sseat −1,dseat, tseat), frst,0) [sseat ̸= 0]

cnfg(pbar,p(cstmr18,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(pbar,p(cstmr18,nbar,ncus, tseat),sbar,scus,sem(sseat,dseat, tseat +2), frst,0) [sseat = 0]

cnfg(pbar,p(cstmr18,nbar,ncus,nseat),sbar,scus,sem(sseat,dseat, tseat), frst,1)
→cnfg(pbar,p(cstmr19,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0) [nseat = dseat ∧nseat ̸= 0]

cnfg(pbar,p(cstmr19,nbar,ncus,nseat),sbar,scus,sseat, frst,0)
→cnfg(pbar,p(cstmr20,nbar,ncus,nseat),sbar,scus,sseat, frst,0) [frst > 0]

cnfg(pbar,p(cstmr19,nbar,ncus,nseat),sbar,scus,sseat, frst,0)
→cnfg(pbar,p(cstmr25,nbar,ncus,nseat),sbar,scus,sseat, frst,0) [frst ≤ 0]

cnfg(pbar,p(cstmr20,nbar,ncus,nseat),sbar,scus,sseat, frst,0)
→cnfg(pbar,p(cstmr21,nbar,ncus,nseat),sbar,scus,sseat, frst−1,0)

cnfg(pbar,p(cstmr21,nbar,0,nseat),sbar,sem(scus,dcus, tcus),sseat, frst,0)
→cnfg(pbar,p(cstmr22,nbar,0,nseat),sbar,sem(scus,dcus +2, tcus),sseat, frst,1) [tcus ̸= dcus +2]

cnfg(pbar,p(cstmr21,nbar,0,nseat),sbar,sem(scus,dcus, tcus),sseat, frst,0)
→cnfg(pbar,p(cstmr22,nbar,0,nseat),sbar,sem(scus +1,dcus, tcus),sseat, frst,0) [tcus = dcus +2]

cnfg(pbar,p(cstmr22,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(pbar,p(cstmr23,nbar,ncus,0),sbar,scus,sem(sseat,dseat +2, tseat), frst,1) [tseat ̸= dseat +2]

cnfg(pbar,p(cstmr22,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(pbar,p(cstmr23,nbar,ncus,0),sbar,scus,sem(sseat +1,dseat, tseat), frst,0) [tseat = dseat +2]

cnfg(pbar,p(cstmr23,0,ncus,nseat),sem(sbar,dbar, tbar),scus,sseat, frst,0)
→cnfg(pbar,p(cstmr18,0,ncus,nseat),sem(sbar −1,dbar, tbar),scus,sseat, frst,0) [sbar ̸= 0]

cnfg(pbar,p(cstmr23,0,ncus,nseat),sem(sbar,dbar, tbar),scus,sseat, frst,0)
→cnfg(pbar,p(cstmr23, tbar,ncus,nseat),sem(sbar,dbar, tbar +2),scus,sseat, frst,0) [sbar = 0]

cnfg(pbar,p(cstmr23,nbar,ncus,nseat),sem(sbar,dbar, tbar),scus,sseat, frst,1)
→cnfg(pbar,p(cstmr18,0,ncus,nseat),sem(sbar,dbar, tbar),scus,sseat, frst,0) [nbar = dbar ∧nbar ̸= 0]

cnfg(pbar,p(cstmr25,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(pbar,p(cstmr18,nbar,ncus,0),sbar,scus,sem(sseat,dseat +2, tseat), frst,1) [tseat ̸= dseat +2]

cnfg(pbar,p(cstmr25,nbar,ncus,0),sbar,scus,sem(sseat,dseat, tseat), frst,0)
→cnfg(pbar,p(cstmr18,nbar,ncus,0),sbar,scus,sem(sseat +1,dseat, tseat), frst,0) [tseat = dseat +2]

Figure 5: LCTRS Rcstmr representing the first process executing customer in Program 2

	Introduction
	Preliminaries
	Logically Constrained Rewriting
	All-Path Reachability

	LCTRSs Modeling Programs with Semaphores
	Reducing Non-Occurrence of a Runtime-Error to an APR Problem
	A Framework of Reduction to APR Problems
	A Case Study: Race-Freeness of Semaphore-based Exclusive Control

	A Simplified Proof System for APR Problems
	Conclusion
	Missing Proofs
	Example: Sleeping Barber Problem

