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Abstract: Aspect-based sentiment analysis (ABSA) is a fine-grained entity-

level sentiment analysis task that aims to identify the emotions associated with 

specific aspects or details within text. ABSA has been widely applied to various 

areas such as analyzing product reviews and monitoring public opinion on so-

cial media. In recent years, methods based on graph neural networks combined 

with syntactic information have achieved promising results in the task of 

ABSA. However, existing methods using syntactic dependency trees contain 

redundant information, and the relationships with identical weights do not re-

flect the importance of the aspect words and opinion words' dependencies. 

Moreover, ABSA is limited by issues such as short sentence length and infor-

mal expression. Therefore, this paper proposes a Double Probabilistic Graph 

Convolutional Network (DP-GCN) integrating multi-scale information to ad-

dress the aforementioned issues. Firstly, the original dependency tree is re-

shaped through pruning, creating aspect-based syntactic dependency tree corre-

sponding syntactic dependency weights. Next, two probability attention matrix-

es are constructed based on both semantic and syntactic information. The se-

mantic probability attention matrix represents the weighted directed graph of 

semantic correlations between words. Based on this, semantic information and 

syntactic dependency information are separately extracted via graph convolu-

tional networks. Interactive attention is used to guide mutual learning between 

semantic information and syntactic dependency information, enabling full inter-

action and fusion of both types of information before finally carrying out senti-

ment polarity classification. Our model was tested on four public datasets, Res-

taurant, Laptop, Twitter and MAMS. The accuracy (ACC) and F1 score im-

proved by 0.14% to 1.26% and 0.4% to 2.19%, respectively, indicating its out-

standing performance. 

Keywords: Aspect-based sentiment analysis; Graph neural network; Attention 

mechanism; Syntactic dependency tree. 
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1 Introduction 

Sentiment analysis is an important research direction in the field of natural language 

processing, aimed at identifying the emotional bias in text. Compared to article-level 

sentiment analysis and sentence-level sentiment analysis, ABSA is a more fine-

grained entity-level sentiment analysis task that aims to analyze and differentiate the 

emotional polarity expressed by different aspects in the same sentence. For example, 

in the sentence "The material of this clothes is very good but the price is expensive", 

"material" and "price" are aspect words of two aspects of the clothes. However, the 

emotional polarity of "material" is positive, and the emotional polarity of "price" is 

negative. 

The key to the ABSA task is to establish a dependency relationship between all as-

pect words and their corresponding opinion words in the sentence, distinguishing each 

aspect word and its associated contextual information. In earlier research, Wang [1], 

Tang [2], Ma [3], Chen [4], and Fan [5] proposed various attention mechanisms to 

generate sentence representations specific to aspect words and model the relationship 

between aspect words and context words, achieving good results. For example, Wang 

[1] proposed an attention-based long short-term memory network for ABSA tasks, 

where the attention mechanism can focus on different parts of the sentence when dif-

ferent aspects are inputted. Tang [2] proposed a neural attention model that adds ex-

ternal memory to deep memory networks to capture the importance of each context 

word for inferring the emotional polarity of aspect words. Fan [5] proposed a multi-

granularity attention network model (MGAN) to capture word-level interactions be-

tween aspect words and context words. However, models based on attention mecha-

nisms are prone to mistakenly focusing on context information unrelated to aspect 

words, hence the attention mechanism is easily affected by additional information. 

Recently, with the development of graph neural networks (GNNs), using dependency 

parsers to parse the syntactic structure of sentences and generate syntactic dependency 

trees has gradually become a trend in solving ABSA tasks. Some researchers, such as 

Zhang [6], Liang [7], Wang [8], Li [9], have constructed different graph convolutional 

networks (GCNs) and graph attention networks (GATs), using the syntactic structure 

of sentences on the dependency tree to model the syntactic relationship between as-

pect words and context words. However, existing dependency trees not only contain a 

lot of redundant information but also assign the same weight to the dependency rela-

tionships of each edge in the sentence, resulting in a tree structure that neglects the 

importance of the dependency relationship between aspect words and their corre-

sponding opinion words. In addition, some sentences with short lengths and informal 

expressions can cause models to perform poorly on data that is not sensitive to syntac-

tic information. 

In this paper, we propose a dual-probability graph convolutional network (DP-

GCN) that combines multi-scale information to address the above two problems. For 

the first problem, we first obtain the original syntactic dependency tree of the sen-

tence through the StanfordNLP parser, then reshape and prune the original tree to 

construct a syntactic dependency tree with aspect words as root nodes and with at-

tached syntactic dependency weights. The syntactic dependency tree reshaped in this 
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way can not only clarify the syntactic dependency relationship between aspect words 

and their corresponding opinion words but also reveal the importance of the syntactic 

dependency information of individual words in the sentence with respect to aspect 

words. For the second problem, we extract and combine both linear structural seman-

tic information and tree structural syntactic dependency information, respectively 

constructing probability attention matrices based on semantic and dependency infor-

mation. We use graph convolutional networks to extract both semantic and syntactic 

dependency information, and then use an interactive attention mechanism to guide 

mutual learning between the two types of information. 

The main contributions of this paper are as follows: 

(1) We propose a dual-probability graph convolutional network (DP-GCN) that 

combines multi-scale information. We construct two probability attention matrices for 

semantic and syntactic dependency information, respectively, and send them into two 

graph convolutional networks. We utilize an interactive attention module to interac-

tively learn semantic information and syntactic dependency information. 

(2) We propose a syntactic dependency tree based on aspect words with attached 

dependency weights. The syntactic dependency weight reflects the importance of the 

syntactic dependency information of individual words in the sentence with respect to 

aspect words, making the syntactic dependency tree more suitable for ABSA. 

(3) We conducted extensive experiments on the Restaurant dataset and Laptop da-

taset of SemEval2014 [24], Twitter dataset [25], and MAMS dataset [26] to evaluate 

our model, and the experimental results demonstrate the effectiveness of the DP-GCN 

model. 

2 Related work 

The key to the ABSA task is to establish the relationship between aspect words and 

their corresponding opinion words to distinguish the emotional tendencies corre-

sponding to different aspect words in the same sentence. In earlier methods, feature 

vectors were usually designed manually and combined with machine learning algo-

rithms to capture opinion words related to aspect words [10-13]. However, this ap-

proach cannot model the dependency relationship between aspect words and their 

context. Subsequently, various attention-based models [14-17] emerged, which im-

plicitly model the semantic relationship between aspect words and context words to 

obtain opinion words corresponding to sentences and aspect words, and achieved 

good performance. Huang et al. [13] proposed an attention over-attention (AOA) 

network, which models both aspects and sentences jointly to capture interactions be-

tween aspects and contextual sentences. The AOA network learns representations of 

aspects and sentences together and automatically focuses on important parts of the 

sentences. Wang et al. [14] combined a multi-level interactive bidirectional gated 

recurrent unit (MI-bi-GRU), attention mechanism, and position features to allow their 

model to focus on target and contextual words that are important for sentiment analy-

sis. Li et al. [15] proposed a hierarchical attention position-aware network (HAPN), 

which introduces positional embeddings to learn position-aware representations of 
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sentences and further generates target-specific representations of contextual words. 

Tan et al. [16] argued that expressing conflicting emotions towards an aspect (i.e., 

expressing both positive and negative emotions towards it simultaneously) is a com-

mon phenomenon. They suggested that excluding conflicting opinions is problematic 

and proposed a multi-label classification model with dual attention mechanism to 

address the issue of identifying conflicting opinions in existing models. 

In addition, the pre-trained language model BERT [18] has achieved significant 

performance in natural language processing (NLP) tasks. Currently, many researchers 

[19-21] apply BERT pre-trained models to ABSA tasks, improving the performance 

of models in modeling semantic information of sentences, and better preparing for 

semantic interaction information between context and aspect words. For example, Sun 

et al. [19] construct an auxiliary sentence from the aspect and transform ABSA into a 

"sentence pair" classification task, and use fine-tuning BERT pre-trained models for 

ABSA tasks. Liang [21] proposed a bilingual syntax-aware graph attention network 

(BiSyn-GAT+), which fully utilizes the compositional tree information of a sentence's 

syntax (e.g., phrase segmentation and hierarchical structure) to simulate sentiment 

contexts of each aspect (intra-contexts) and cross-aspect sentiment relations (inter-

contexts) for learning. 

Currently, ABSA research mainly focuses on graph neural networks (GNNs) based 

on dependency trees. These methods explicitly utilize the syntactic structure infor-

mation of sentences by extending graph convolutional network (GCN) and graph 

attention network (GAT) models through syntactic dependency trees, better handling 

the semantic and syntactic dependency relationships between aspect words and con-

text, and proposing some outstanding models. For example, Zhang et al. [6] first ap-

plied GCN to ABSA, proposing a graph convolutional network on sentence depend-

ency tree to solve the sentiment classification problem by utilizing dependency rela-

tionships in syntax information. Liang et al. [7] proposed an interactive graph convo-

lutional network, identifying important aspect words and context words by construct-

ing a heterogeneous graph for each sentence. Tang et al. [22] proposed a dependency 

graph enhanced dual Transformer network (DGEDT), which simultaneously consid-

ers both plane representation learned from Transformers and graph-based representa-

tion learned from corresponding dependency graph to iteratively model in an interac-

tive manner. Specifically, DGEDT utilizes rich structural information by constructing 

a text sequence graph and an enhanced dependency graph, and designs a dual Trans-

former to model the structural information of the two graphs and learn sentence repre-

sentations from two different perspectives. Wang et al. [8] created a unified aspect-

oriented dependency tree structure, where the target aspect is the root node, by adjust-

ing and refining a regular dependency parse tree. They proposed a relation graph at-

tention network (R-GAT) to encode the new tree structure for sentiment prediction. 

Tian et al. [23] explicitly employed dependency types and used an attention mecha-

nism to identify different types of dependencies. Li et al. [9] proposed a dual graph 

convolutional network model that simultaneously considered the complementarity of 

syntactic structures and the relationship of semantics. 
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3 Reshaped syntactic dependency trees and multi-scale 

information 

3.1 Aspect-based syntactic dependency tree corresponding syntactic 

dependency weights 

The syntactic dependency tree obtained by a regular syntactic parser contains the 

dependency relationships of all the words in the sentence, and all dependency rela-

tionships have the same weight. As shown in Figure 1, where there are many redun-

dant dependency relationship types that are irrelevant to the ABSA task. However, the 

key to ABSA is to establish the relationship between aspect words and their opinion 

words. Therefore, reshaping and pruning the obtained syntactic dependency tree is 

necessary to obtain a syntactic dependency tree that is tailored to aspect words. 

 

Fig. 1. Syntactic dependency tree including two aspect items, "food" and "environment", and 

two corresponding opinion words, "good" and "bad," in their context. The arrows in the figure 

indicate the dependency relationships between the two words, and the labels on the arrows 

represent the type of dependency relationship. 

 

Fig. 2. In the figure, "food" is the root node, and all other dependency relationships are direct 

connections with "food". 

Here are the steps to reshape and prune a regular syntactic dependency tree into a 

syntactic dependency tree based on aspect words and corresponding syntactic de-

pendency weights: Firstly, we use a regular parser (StanfordNLP) to obtain the de-

pendency tree of the input sentence. Then, we set the aspect word as the root node and 

generate a dependency tree based on the aspect word. If a sentence contains multiple 

aspects, then a tree based on each aspect will be constructed. Finally, the dependency 

tree is pruned so that words directly dependent on the aspect word have a dependency 

weight of 1 on their edge, the dependency weight of a word that does not have a direct 

dependency relationship with an aspect word is set to the reciprocal of its relative 
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position to the aspect word. Figure 2 shows the aspect-based syntactic dependency 

tree obtained after reshaping and pruning. 

3.2 Multi-scale information 

To address the lack of contextual information, this paper simultaneously uses linear-

structured semantic information and tree-structured syntactic dependency information 

to reveal hidden information in the sentence. 

Positional distance. In linear-structured sentences, the position and relative dis-

tance of each word in the sentence hold important information. By extracting the rela-

tive positional distances between each word and aspect words in the sentence, we can 

emphasize information from words closer to the aspect words and weaken infor-

mation from words farther away from the aspect words. We can then use the position-

al distance to calculate the weights of each word in the sentence based on the aspect 

word. The calculation formula is as follows: 

 𝑝𝑖 = {

1 − (𝑗𝑠 − 𝑖)/𝑛,                 0 ≤ 𝑖 ≤ 𝑗𝑠

0,                                    𝑗𝑠 ≤ 𝑖 ≤ 𝑗𝑠+𝑚

1 − (𝑖 − 𝑗𝑠+𝑚)/𝑛,       𝑗𝑠+𝑚 ≤ 𝑖 ≤ 𝑛
 (1) 

Here, 𝑝𝑖  is the position weight of the i-th word, 𝑗𝑠 and 𝑗𝑠+𝑚 are the start and end in-

dexes of the aspect word. 

Dependency distance. In the syntactic dependency information of a tree structure, 

dependency distance is the shortest distance between a word in a sentence and the 

aspect word in the syntactic dependency tree. Based on the dependency tree we con-

structed, the formula for constructing the dependency distance is shown below. 

Algorithm 1 Dependency distance algorithm based on aspect-based syntactic dependency tree 

Input: index of aspect words (aspect_idx), length of this sentence (n_words), adjacency matrix (adj); 

Output: distances: dependent distance sequence of each word based on the aspect word; 

1: Use StanfordNLP for syntax analysis to get dependency tree and POS tags; 

2: Reshape the dependency tree and transform it into a syntactic dependency tree based on aspect words. 

3: distances = create an array of size n_words, the initial value is -1 

4:         Set distances[aspect_idx] to 0 

5:         Create an empty queue 

6:         Add aspect_idx to queue  

7:         When the queue is not empty, execute the following steps in a loop: 

8:                 Take a node from the left side of the queue 

9:                 Traversing all neighbor nodes and corresponding weights of nodes in the adjacency matrix 

10:                       If weight！= 0 and distances[neighbor]= -1 

11:                      distances[neighbor] = distances[node] + weight  

12:                    Add the neighbor to the queue 

13:         Return distances 

Dependency relationship. Dependency relationships can represent the syntactic rela-

tionships between words in the sentence's tree structure. If a word has a dependency 

relationship with the aspect word, then the corresponding edge in 𝐴rel is set to the 

weight of the dependency for that word. If there is no dependency relationship, then 

the edge is set to 0. Thus, 𝐴rel is constructed for the sentence, as shown in Figure 3. 
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Fig. 3. Adjacency matrix 𝑨𝐫𝐞𝐥 of the dependency relationship. 

Dependency type. The type of dependency relationship is a special and important 

piece of information. This paper first counts all dependency types in the dataset and 

generates a dependency types dictionary. Then, a randomly initialized vector for the 

initial dependency type corresponding to the text sequence S is generated, and a 

BiLSTM is used to obtain a feature vector ℎtype ∈ ℝ𝑛×𝑑 , where n represents the 

length of the dependency type dictionary and d is the word vector dimension of the 

dependency type. Dependency types are embedded, as shown in Figure 4. 

 

Fig. 4. Dependency type dictionary and dependency relationship types of the sentence. 

4 Proposed DP-GCN model 

 

Fig. 5. Double probabilistic graph convolutional network (DP-GCN) integrating multi-scale 

information 

Our proposed DP-GCN model is shown in Figure 5. In the ABSA task, given a sen-

tence 𝑊𝑐 = {𝑤1
𝑐 , 𝑤2

𝑐 ,···, 𝑤𝑟+1
𝑎 ,···, 𝑤𝑟+𝑚,

𝑎 ···, 𝑤𝑛
𝑐}  containing n words, where 𝑊𝑎 =
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{𝑤𝑟+1
𝑎 ,···, 𝑤𝑟+𝑚

𝑎 } is the aspect word sequence. Firstly, the words in the sentence are 

embedded into a low-dimensional vector space using an embedding matrix 𝐸 ∈

ℝ|𝑣|×𝑑𝑒 , where |𝑣| is the vocabulary size and d represents the dimension of the word 

embedding. We use the StanfordNLP syntactic parser to parse the sentence and obtain 

its syntactic dependency information. Next, the obtained dependency type information 

is embedded into the low-dimensional vector space 𝐸 ∈ ℝ|𝑣|×𝑑𝑒 , where |𝑣| is the size 

of the dependency type vocabulary and d is the dimension of the dependency type 

word embedding. Then, BiLSTM or BERT is used as the sentence encoder to extract 

the hidden contextual semantic representation ℎsem and the dependency type repre-

sentation ℎtype. 

The hidden contextual semantic representation ℎsem and the dependency type rep-

resentation ℎtype of the sentence are fused with the multi-scale information. The fused 

representation ℎinput with multi-scale information is obtained by interacting the in-

formation through an interactive attention mechanism. Then, ℎinput is separately fed 

into the semantic probability graph convolutional module (SemPG-GCN) and the 

syntactic probability graph convolutional module (SynPG-GCN). Interacting attention 

is used to guide the communication of semantic information and syntactic dependency 

information during graph convolutions in both modules. Through masking, connec-

tion, and aggregation of aspect nodes, the final aspect representation is formed. Final-

ly, sentiment polarity classification is performed using softmax. Next, we will de-

scribe the details of the DP-GCN model in detail. 

4.1 Interactive Attention. 

The implementation of the interactive attention layer is mainly based on self-attention 

mechanism, which enables the model to simultaneously calculate the attention of 

contextual semantic features and dependency type features. Through the interactive 

attention mechanism, the dependency type features guide the learning of contextual 

features, while the contextual features guide the learning of dependency type features, 

as shown in Figure 6. 

 

Fig. 6. Structure diagram of Interactive Attention. 

4.2 Fusion of Multi-scale Information. 

This paper utilizes and integrates the multi-scale semantic information and multi-scale 

syntactic dependency information mentioned above as inputs to the model. 

Fusing contextual semantic information. The positional distance is incorporated 

into the contextual representation as a weight parameter of the linear structure. This 
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context semantic information fused with the position distance can reflect the semantic 

association between different words and the aspect word in terms of distance. The 

fusion formula is as follows: 

 ℎsem = F(ℎsem) = 𝑝𝑖 · ℎsem (2) 

Here, F is the positional weight function, and 𝑝𝑖  is the positional weight of the i-th 

word. Thus, the closer the distance between words and the aspect word, the greater 

their relevance in the sentence, and the more significant their contribution to the 

judgment of sentiment polarity, since they have a higher weight value. 

Fusing syntactic dependency information. Integrating dependency type and de-

pendency distance information. The dependency distance reflects the importance of 

the syntactic dependency between each word in the sentence and the aspect word, 

which strengthens the words that have a direct syntactic dependency relationship with 

the aspect word and weakens those that do not have a direct relationship with the 

aspect word. The formula for fusing dependency type ℎtype with dependency distance 

is as follows: 

 ℎtype = F(ℎtype) = 𝑇 ∗ ℎtype (3) 

Here, F is the function for element-wise matrix multiplication, T is the dependency 

weight matrix composed of all dependency distances 𝑡𝑖 . The multiplication is per-

formed between the dependency type hidden vector and the corresponding element in 

the dependency weight matrix. 

Fusing semantic information and syntactic dependency information. In this 

paper, interactive attention is used to fuse semantic information and syntactic depend-

ency information, and the result of the fused information is used as the input to the 

model. Figure 6 shows the process of the interactive attention between the multi-scale 

semantic information ℎsem  and the multi-scale syntactic dependency information 

ℎtype to guide each other's learning. 

Here, the multi-scale semantic information ℎsem and the multi-scale syntactic de-

pendency information ℎtype are used as inputs to the interactive attention. According 

to the Transformer model, ℎsem and ℎtype are mapped to query (𝑄sem and 𝑄type), key 

(𝐾sem and 𝐾type), and value (𝑉sem and 𝑉type) matrices through linear layers. The for-

mula for calculating ℎsem using ℎtype is as follows: 

 𝐶sem = softmax (
𝑄type𝐾sem

T

√𝑑
) 𝑉sem (4) 

 ℎ̅sem = LN(ℎsem + 𝐶sem) (5) 

Here, LN is a standardization function. Similarly, ℎsem is used to guide ℎtype, as giv-

en in the following equation: 

 𝐶type = softmax (
𝑄sem𝐾type

T

√𝑑
) 𝑉type (6) 
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 ℎ̅type = LN(ℎtype + 𝐶type) (7) 

Here, ℎ̅sem ∈ ℝ𝑛×𝑑  and ℎ̅type ∈ ℝ𝑛×𝑑  are both outputs of the interactive attention, 

and they use each other's feature information to enhance their own hidden representa-

tion abilities. Finally, the concatenated representation of the interactive semantic and 

syntactic dependency information is used as the input to the model, as shown in the 

following equation: 

 ℎinput = ℎ̅sem ⊕ ℎ̅type (8) 

4.3 Semantic Probabilistic Graph Convolution Module.  

Semantic Probabilistic Graph Convolution (SemPG-GCN). In order to fully focus 

the DP-GCN model on the aspect words and the corresponding opinion words, we use 

the self-attention mechanism to construct a probabilistic attention matrix 𝐴sem about 

the multi-scale contextual semantic hidden representation hsem, which is used as the 

input to the graph convolution. The specific formula is as follows: 

 𝐴sem = softmax (
𝑄𝑊𝑄×(𝐾𝑊𝐾)

T

√𝑑
) (9) 

Here, Q and K are both the multi-scale contextual semantic hidden representation 

ℎsem, while 𝑊𝑄 and 𝑊𝐾  are learnable weight matrices, and d is the dimension of the 

multi-scale contextual semantic hidden representation ℎsem. 

Then, learn semantic information through graph convolutional networks. The spe-

cific formula of graph convolution is as follows: 

 ℎ𝑖
𝑙 = б(∑ 𝐴𝑖𝑗𝑊𝑙ℎ𝑗

𝑙−1 + 𝑏𝑙𝑛
𝑗=1 ) (10) 

Where ℎ𝑖
𝑙  represents the hidden representation of node i in layer l, the initial value of 

the first layer is ℎinput. 𝐴𝑖𝑗 represents the element value in the i-th row and j-th col-

umn of matrix 𝐴sem. 𝑊𝑙 is a learnable parameter matrix, ℎ𝑗
𝑙−1 is the hidden represen-

tation of neighboring nodes of ℎ𝑙  in layer l-1, and 𝑏𝑙  is the bias term of the graph 

convolution. 

4.4 Syntactic probabilistic graph convolutional module. 

Syntactic Probabilistic Graph Convolutional Networks (SynPG-GCN). Nodes 

that have no dependency relationship with the aspect word are assigned 0, resulting in 

many zero elements in the generated adjacency matrix, which leads to the problem of 

missing information. The self-attention mechanism is applied to the matrix to obtain a 

continuous 0-1 probability matrix, which makes the model more robust and advanced. 

 𝐴rela = softmax(𝐴rel ∗ 𝑊 ∗ 𝑈T) (11) 

Where W and U are learnable weight matrices, 𝐴rela is the probabilistic attention ma-

trix of syntactic information, and 𝐴rel is the adjacency matrix of the dependency rela-

tionship. 
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Then, learn syntactic dependency information through graph convolutional net-

works. The specific formula of graph convolution is as follows: 

 ℎ𝑖
𝑙 = б(∑ 𝐴𝑖𝑗𝑊𝑙ℎ𝑗

𝑙−1 + 𝑏𝑙𝑛
𝑗=1 ) (12) 

Where ℎ𝑖
𝑙  represents the hidden representation of node i in layer l, the initial value of 

the first layer is ℎinput, 𝐴𝑖𝑗 represents the element value in the i-th row and j-th col-

umn of matrix 𝐴rela, 𝑊𝑙 is a learnable parameter matrix, ℎ𝑗
𝑙−1 is the hidden represen-

tation of neighboring nodes of ℎ𝑙  in layer l-1, and 𝑏𝑙  is the bias term of the graph 

convolution. 

4.5 Sentiment classification. 

ℎinput  obtains ℎsemPG  and ℎsynPG  through SemPG-GCN and SynPG-GCN. Then, it 

multiplies with the aspect word masking matrix to extract the corresponding parts of 

the aspect word. The mask operation obtains ℎ̅semPG and ℎ̅synPG. They are concate-

nated and sent to the softmax layer to calculate the probability distribution of the in-

put text in positive, negative, and neutral sentiment. The specific operation is as fol-

lows: 

 𝑀𝑖,𝑗 = {
1，𝑖 = 𝑗 = 𝑝
0，otherwise

 (13) 

Where 𝑀𝑖,𝑗 represents the element value in the i-th row and j-th column of the mask 

matrix. If 𝑖 = 𝑗 = 𝑝, which means the current position is the corresponding position 

of the aspect word, then the corresponding element value is set to 1. Otherwise, the 

corresponding element value is set to 0. 

 ℎ̅semPG =  ℎsemPG ∗ 𝑀 (14) 

 ℎ̅synPG =  ℎsynPG ∗ 𝑀 (15) 

 ℎout = [ℎ̅semPG；ℎ̅synPG] (16) 

The probability of ℎout after softmax is: 

 𝑃(𝑎) = softmax(𝑊ℎout + 𝑏) (17) 

Where W and b are both learnable parameters, p(a) is the emotion probability distri-

bution of the aspect word. In the model training process, cross-entropy is used as the 

loss function, and its formula is: 

 𝐽 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑘

𝐾
𝑘=1

𝑁
𝑖=1 log(�̂�𝑖,𝑘) (18) 

Where N denotes the number of samples, K denotes the number of classes, 𝑦𝑖,𝑘 is the 

true label of sample i belonging to class k, and �̂�𝑖,𝑘 is the predicted probability of the 

model that the sample i belongs to class k. 
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5 Experiments. 

5.1 Dataset and Evaluation Criteria. 

This paper verifies the effectiveness of the DP-GCN model by conducting experi-

ments on four publicly available datasets, which are Laptop and Restaurant datasets 

from SemEval2014 [24], Twitter dataset [25], and MAMS dataset [26]. Each sample 

in these four datasets is annotated with a sentiment label of one or more aspect words 

in a sentence, and the sentiment labels have three classifications: Positive, Negative, 

and Neutral. The statistical data for the number of samples in each category of the 

dataset is shown in Table 1. 

Table 1. Experiment Data Statistics 

Dataset 
Positive Neutral Negative 

Train Test Train Test Train Test 

Laptop 994 341 464 169 870 128 

Restaurant 2164 728 637 196 807 182 

Twitter 1561 173 3127 346 1560 173 

MAMS 3380 400 5042 607 2764 329 

This experiment uses two evaluation metrics, accuracy (Acc) and macro-average F1 

score (MF1), to evaluate the effectiveness of the DP-GCN model. 

5.2 Parameter Setting. 

In this experiment, the experimental parameters of Glove and Bert are set as follows 

for the four datasets. The specific experimental parameters are shown in Table 2. 

Table 2. Experimental Hyperparameter Settings 

Experimental parameters Set value 

Num-epoch 

Batch-size 

Number of GCN layers 

Number of LSTM layers 

Number of interaction attention layers 

Dependency type embedding dimension 

BiLSTM hidden layer dimension 

GCN hidden layer dimension 

Max-length 

L2 regularization  

Adam learning rate 

Input/BiLSTM/GCN dropout 

Early-stopping 

50 

16 

2 

1 

2 

40 

50 

50 

85 

10-5 

0.002 

0.7/0.1/0.1 

500 
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5.3 Baseline Methods. 

To comprehensively evaluate the performance of our model (DP-GCN), we compared 

it with the following baseline models on the four datasets: 

1 ATAE-LSTM: Weighted the output of LSTM based on the attention mechanism 

to extract emotional words and features. 

2 IAN: Simultaneously considered information at both the word and sentence lev-

els in the text, and calculated the text representation using an interactive way so that 

the model can better capture the relationship between words and sentences. 

3 RAM: When calculating the sentiment polarity of each aspect, not only the in-

formation of that aspect is considered, but also the information of other aspects is 

taken into account. The memory vector of each aspect is matched with the current 

input word vector sequence to obtain the attention vector of that aspect.  

4 CDT: Used convolution on the dependency tree model to learn sentence features 

representation. 

5 R-GAT: Used bidirectional GAT as the basic model, and employed relation-

aware graph attention mechanism to capture the relationship between words and bet-

ter capture information in the text sequence. 

6 DGEDT: This model is based on a dual-channel LSTM, combined with a dynam-

ic graph augmentation mechanism, which enables the utilization of both sentiment-

embedded information and semantic information present in the text. 

7 DualGCN: Built two graph convolution modules to process semantic information 

and syntactic dependency information. 

8 T-GCN+BERT: Proposed a method that utilized a type-aware graph convolu-

tional network (T-GCN) to explicitly depend on the ABSA type. Attention was used 

in T-GCN to distinguish different edges in the graph. 

9 R-GAT+BERT: Used the pre-trained model BERT as the encoder instead of 

BiLSTM. 

5.4 Experimental Results and Analysis 

We conducted a three-class ABSA experiment on the four datasets from Section 4.1. 

The experimental results are shown in Table 4. The results in Table 4 indicate that our 

model (DP-GCN) has achieved a certain degree of improvement in both ACC and F1-

score on the four public datasets. 

From the experimental results of our model and the baseline model, it can be found 

that the performance of the DP-GCN model is better than models that solely use at-

tention mechanism to capture aspect words and contextual words for modeling, such 

as ATAE-LSTM, IAN, etc. This suggests that the attention mechanism may only 

consider the semantic information of the sentence and cannot effectively capture the 

syntactic dependency information corresponding to the opinion words related to the 

aspect words. When dealing with longer sentences where aspects words and opinion 

words have distant dependencies, it is difficult to effectively identify the relationship 

between them. Models that consider the multiple aspect features of a sentence, such as 

RAM and CDT, introduce additional syntactic dependency information on the basis 

of the attention mechanism. However, the attention mechanism is easily affected by 

additional noise, making it difficult for the model to handle both semantic information 
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and syntactic dependency information effectively. Models that use graph neural net-

works (such as R-GAT, DGEDT, DualGCN) can capture words with long-distance 

dependencies in the context, which can better establish the relationship between as-

pect words and their opinion words. However, when dealing with informal datasets 

such as Twitter, these models have some limitations and do not consider the role of 

semantic information and syntactic dependency information in identifying relation-

ships. 

The DP-GCN model achieved good results in terms of ACC and F1-score on the 

four public datasets, indicating that the fusion of multi-scale information in the model 

input has integrated more semantic and syntactic dependency information of the sen-

tences. The probability graph convolution module combined with an interactive atten-

tion mechanism enables the model to fully consider the semantic and syntactic infor-

mation of the sentences. The enhancement in the model's performance indicates that 

to some extent, the syntactic dependency tree constructed by our model can mitigate 

the issue of the attention mechanism being susceptible to disruptions from noise. 

In addition, the overall performance of the DP-GCN+BERT model proposed in this 

paper is also better than R-GAT+BERT and T-GCN+BERT, further demonstrating 

that the probability attention matrix with weighted syntactic dependency tree, seman-

tic information, and syntactic dependency information has good effects on down-

stream tasks. Compared with the Glove-based DP-GCN model, DP-GCN+BERT 

improved the ACC by 1.27%~2.85% and F1-score by -0.46%~2.61%, and achieved 

better results than the non-BERT models in Table 3. 

Table 3. Experimental results of different models on four public datasets 

Models 
Restaurant Laptop Twitter MAMS 

Acc F1 Acc F1 Acc F1 Acc F1 

ATAE-LSTM 77.20 - 68.70 - - - - - 

IAN 78.60 - 72.10 - - - - - 

RAM 80.23 70.80 74.49 71.35 69.36 67.30 - - 

CDT 82.30 74.02 77.19 72.99 74.66 73.66 - - 

R-GAT 83.30 76.08 77.42 73.76 75.57 73.82   

DGEDT 83.90 75.10 76.80 72.30 74.80 73.40 - - 

DualGCN 84.27 78.08 78.48 74.74 75.92 74.29   

Our DP-GCN 84.76 78.48 79.74 76.20 76.06 76.48 81.96 81.15 

R-GAT+BERT 86.60 81.35 78.21 74.07 76.15 74.88 - - 

T-GCN+BERT 86.16 79.95 80.88 77.03 76.45 75.25 83.68 83.07 

Our DP-GCN+BERT 87.31 81.09 81.01 77.96 76.80 76.02 84.85 83.49 

5.5 Ablation Experiment 

In order to further study the role of a certain module in DP-GCN model, we conduct-

ed extensive ablation experiments. The results are shown in Table 5, and the specific 

experiments are as follows: 

(1) w/o location distance. Remove the location distance information of the model, 

that is, reduce the dependency degree of the position distance in the semantic infor-
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mation. As shown in Table 4, on the Restaurant, Laptop and MAMS datasets, the 

ACC and F1-score have decreased to some extent after removing the position infor-

mation, while on the Twitter dataset, there is little change in ACC and F1-score. This 

suggests that the position information of the words in the sentence has little effect on 

the model's performance in datasets containing a large number of informal expres-

sions. 

(2) w/o dependent type. Remove the dependence type information, and the input 

of the model have only semantic information without the syntactic dependency infor-

mation. The ACC and F1-score on all four datasets have decreased after removing the 

dependent type information, indicating that the dependency type information in the 

sentences can supplement the semantic information to some extent, allowing the 

model to learn more effective information. 

(3) w/o dependent tree. Remove the tree based on the aspect word corresponding 

syntactic dependency weight, use StanfordNLP to generate the syntactic dependency 

tree, and also remove the dependency distance but retain the dependency type. The 

ACC and F1-score have shown a significant decrease on all four datasets after remov-

ing the dependent tree, indicating that reshaping the syntactic dependency tree is ef-

fective for ABSA tasks, and also suggesting that the original syntactic dependency 

tree contains redundant information. 

(4) w/o SemPG-GCN. Remove the semantic information graph convolution mod-

ule, and the ACC and F1-score have significantly decreased on all four datasets, indi-

cating that the graph convolution module of the semantic information is the core 

module of this model, and suggesting that semantic information is essential for ABSA 

tasks. 

(5) w/o SynPG-GCN. Remove the syntactic information graph convolution mod-

ule, and the ACC and F1-score have decreased on all four datasets. From the experi-

mental results, it can be seen that the syntactic information graph convolution module 

can complement the semantic information graph convolution module to some extent, 

and jointly improve the performance of the model. 

Table 4. Experimental results of ablation experiments 

Models 
Restaurant Laptop Twitter MAMS 

Acc F1 Acc F1 Acc F1 Acc F1 

w/o location distance 

w/o dependent type 

83.41 

82.53 

76.25 

73.14 

78.63 

76.48 

75.21 

73.21 

75.95 

74.63 

76.31 

73.69 

81.06 

80.22 

80.26 

80.32 

w/o dependent tree 82.22 74.29 76.30 72.99 73.11 71.52 80.84 79.87 

w/o SemPG-GCN 81.59 73.75 75.79 72.77 74.35 74.28 80.26 80.73 

w/o SynPG-GCN 83.57 73.46 76.30 72.68 75.22 75.12 81.34 80.64 

In summary, deleting distance information and dependency distance information will 

decrease the accuracy of our DP-GCN model, which illustrates the importance of the 

semantic information of the hidden linear structure and the syntactic information of 

the tree structure for the input information of the model. It can solve the problem of 

short sentences and informal expressions to some extent. Deleting the probability 
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attention matrix constructed by the self-attention mechanism of the SynPG-GCN 

module also leads to a decrease in accuracy, indicating that constructing a probability 

matrix about syntactic information through attention mechanisms can alleviate the 

influence of dependency parsing errors. Compared to comments from Restaurant and 

Laptop datasets, comments from Twitter are largely informal and insensitive to 

grammar information. Finally, the dependency tree and probability graph convolu-

tional network that are based on aspect words and weighted dependencies are better 

suited for the MAMS dataset with multiple aspect words, as the relationship modeling 

between aspect words and corresponding opinion words becomes increasingly reliant 

on syntactic information as sentence complexity rises. 

 

Fig. 7. The impact of the number of interactive attention layers on the model 

Interactive attention is a critical module for the exchange of semantic information and 

syntactic dependency information. To explore the impact of the number of interactive 

attention layers on model performance, we investigated the number of interactive 

attention layers by setting the number of layers num-k = {0,1,2,3,4,5}, respectively, 

and obtained the accuracy (ACC) of the four datasets, as shown in Figure 7. 

As shown in Figure 7, the impact of the number of interactive attention layers on 

the model is nonlinear, and too few or too many layers can affect the performance of 

the model. In this experiment, when the number of interactive attention layers was 2, 

the highest accuracy was achieved in all four datasets. This may be because the inter-

active attention introduces different levels of interaction information while maintain-

ing the consistency of the input feature space, which has a positive effect on improv-

ing the model performance. However, too many layers of interaction may introduce 

too much noise, leading to a decrease in model performance. Therefore, to obtain 

better performance in practical applications, it is necessary to adjust the number of 

interactive attention layers according to the specific dataset and task. 

6 Conclusion 

In this paper, we aimed to address the issue of redundant information in the current 

syntactic dependency trees for ABSA tasks. We proposed a tree structure based on 

aspect words corresponding syntactic dependency weights to systematically process 
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ABSA tasks. We also proposed a dual probability graph convolutional network (DP-

GCN) that combines multiscale information, which constructs two probability atten-

tion matrices to accommodate unclear or insignificant syntax and context semantic 

information. We used the interactive attention mechanism to guide the mutual learn-

ing of semantic and syntactic dependency information, thereby enhancing model ex-

pressiveness. Experimental results on datasets indicate that our DP-GCN model out-

performs baseline models. However, our model still has limitations when processing 

datasets with many informal and biased expressions, such as the Twitter dataset. In 

future work, we will consider extracting other useful information related to semantic 

and syntactic information and optimizing the fusion of these two types of information. 

Additionally, we will improve the graph convolutional network model to enhance its 

generalization performance for ABSA tasks. 
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