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A technique to optimize reactive power using gbest Guided Artificial 

Bee Colony Algorithm 

 

Abstract – Reactive power play an important role in voltage stability and economic 

activities of power system. To maintain power quality and security, voltage at each 

bus should be within its acceptable limit. Reactive power is one of the important 

aspects of active power loss minimization. Optimizing reactive power is a process of 

minimizing total active power loss by handling all the parameters of generation and 

transmission network without violating any specified constraints. The complex non 

linear optimization problem can be solved by classical optimization technique and 

experimental based technique. For handling wide complex network the experiment 

based techniques gives good results over numerical technique in most of the cases. 

This paper presents an application of gbest ABC algorithm to solve reactive power 

optimization problem. Gbest guided ABC algorithm uses swarm intelligence 

techniques. To check the effectiveness and robustness of gbest- guided ABC 

algorithm it is applied on IEEE 30, IEEE57 and IEEE 118 standard test bus system. 

To validate results of gbest – guided ABC algorithm for the application of reactive 

power optimization problem it is compared with existing available literature data. The 

statistical analysis of gbest guided ABC algorithm is also carried out for IEEE 30, 

IEEE57 and IEEE 118 standard test bus system.   

 

Key words – Reactive Power Optimization (ROP), gbest –guided ABC algorithm 

(GABC). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1. Introduction 

Today’s power network is very complex and dynamic in nature. To analyze this highly 

complex power system, power flow study is important. The power flow study is essential for 

power system economics, stability, security, and reliability [1] point of view. In restructured 

power system market economic dispatch has great importance. The Carpentier introduced the 

constrained classical economic dispatch problem [2]. This problem is then called as optimal 

power flow (OPF) [3].  This is multi objective optimization problem such as minimizing fuel 

cost, minimizing active power loss, enhancing voltage stability, maintaining reliability etc. 

Since reactive power is an important factor in achieving voltage stability enhancement 

problem, active power loss minimization hence the study of optimal reactive power flow is 

essential. The reactive power optimization is nothing but minimizing real power loss but not 

at cost of operating and security constraints.  

Normally, any optimization problem can be solved by using numerical technique or 

heuristic techniques. Numerical techniques such as linear, nonlinear, quadratic and mixed 

integer programming are used to solve complex optimization problem. Recently, heuristic 

methods such as Particle Swarm Optimization algorithm, Genetic algorithm, Artificial Bee 

Colony algorithm etc. are mostly used to solve any optimization problem. The reactive power 

optimization problem is also solved by numerical technique such as Newton method [4], 

linear programming [5], mixed integer programming [6], interior point method [7], quadratic 

interior point method [8], quadratic programming [9], and improved interior point method 

[10]. These methods are dependent on some initial guesses. Depending on this the solution 

may convergence or divergence. So, probability of getting solution is very less. Hence, the 

experiment based technique i.e. heuristic techniques are now becoming popular for the 



solving optimization problem. Optimization of reactive power problem is also solved by 

heuristic technique such as Genetic algorithm [11], Adaptive Genetic algorithm [12], Particle 

Swarm optimization [13], GA/SA/TS combined algorithms [14], Cauchy-based evolution 

strategy [15], Improved Hybrid Evolutionary programming [16] and Artificial Bee Colony 

algorithm [17] etc. In this paper an application of gbest - Guided Artificial Bee Colony 

(guided ABC) algorithm used to solve reactive power optimization problem.  

In gbest - Guided ABC algorithm is swarm intelligence based algorithm. The agent of this 

algorithm is natural honey bee. Likewise, GABC, marriage in honeybees [18], bee 

system [19], beehive [20], virtual bee algorithm [21], bee adhoc [22], the bee’s algorithm 

[23], bee colony optimization [24], and ABC [25] are some well known swarm intelligence 

techniques. Between these swarm intelligence based algorithms, ABC algorithm is most 

commonly used. The gbest - Guided ABC algorithm is the modification of ABC algorithm. 

Since ABC algorithm is having problem in finding either local best or global best solutions, 

so this algorithm is modified to GABC algorithm. Same as other nature inspired algorithm, 

food foraging task in GABC is collective effort by each agent. Here GABC is used to solve 

RPO problem. 

2. Mathematical formulation for reactive power optimization problem 

The optimization is a process of achieving the formulated objective function without 

violating boundary conditions for defined problem. In general the mathematical model of any 

optimization problem is formulated as below: 

Maximize / Minimize f(x, u) 

(1) With constraint h(x, u) = 0 

 lowerlimit ≤ g(x, u) ≥ upperlimit 

http://www.sciencedirect.com/science/article/pii/S0142061515004469#b0280


here, f is formulated objective function of the defined problem, h is the equation or equality 

constraint of the defined problem, g is the inequality constraint of the defined problem, x is 

the state variable of the defined problem, u is the control variable of the defined problem, 

lowerlimit  is the lower limit of inequality constraint and upperlimit  is the upper limit of 

inequality constraint. 

2.1 Optimization of reactive power problem 

Optimization of reactive power problem is defined as minimize the active power loss without 

violating security constraint of grid. The mathematical formulation of the objective function 

for optimization of reactive power problem is given below: 

Minimize F(x, u) = Minimize PLoss = ∑ Transmission Lossk

Nb

k=1

 (2) 

where, PLoss is the objective function for optimization of reactive power problem,Nb is total 

number of branches or line in network and Transmission Lossk is active power loss in kth 

branch or line. 

The active power loss: 

PLoss = ∑ G(k)

Nb

k=1

(Vm(FB(k))
2

+ Vm(TB(k))
2

− 2Vm(FB(k))Vm(TB(k))cos (Vaa(FB(k)) − Vaa(TB(k)))) 

(3) 

where,G(k) is conductance of kth line, Vm is the voltage magnitude of  respective bus, Vaa is 

the voltage angle of respective bus voltage, FB(k) is the notation for from bus and TB(k) is 

the notation for to bus. FB(k) and TB(k) specifies the connection between buses. 

2.2 Constraint for optimization of  reactive power problem 



Here two types of constraints one is equality and second is inequality constraints. The 

equality constraint for reactive power optimization is stated as below: 

Pgk − Pdk − |Vk| ∑ |Vi||Yik| cos(θik

Nbus

i=1

+ δi − δk) = 0 (4) 

Qgk − Qdk − |Vk| ∑ |Vi||Yik| sin(θik

Nbus

i=1

+ δi − δk) = 0 (5) 

where, k = 1, 2, 3,……., Nbus  

where, Pgkis the active power fed at kth bus by thermal generator, Pdk is active power load at 

kth bus, Qgkis the reactive power fed at kth  bus by thermal generator, Qdk  is the reactive 

power load at kth  bus, Vk is the kth  bus voltage, Yik  is the admittance of line connected 

between ith to kth bus, θik is admittance angle of line connected between ith to kth bus and 

δkis the kth bus voltage angle and Nbus depicts the total number of buses in network. 

The inequality constraint for reactive power optimization is stated as below: 

Vgeneratork

upper_limit
≥ Vgk ≥ Vgk

lower_limit k = 1, … … … , Ng (6) 

VLk
upper_limit

≥ VLk ≥ VLk
lower_limit, k = 1, … … … , Nl (7) 

Pgk
upper_limit

≥ Pgk ≥ Pgk
lower_limit k = 1, … … … , Ng (8) 

Qgk
upper_limit

≥ Qgk ≥ Qgk
lower_limit, k = 1, … … … , Ng (9) 

Qshk
upper_limit

≥ Qshk ≥ Qshk
lower_limit, k = 1, … … … , Nq (10) 

SLk
upper_limit

≥ SLk, k = 1, … … … , Nb (11) 

Tk
upper_limit

≥ Tk ≥ Tk
lower_limit, k = 1, … … … , Nt (12) 



where, Vgk
upper_limit

represent maximum limit or upper limit of voltage of kth generator bus, 

Vgk
lower_limit is the minimum limit or lower limit of voltage of kth generator bus, VLk

upper_limit
is 

the maximum limit or upper limit of voltage of kth load/PQ bus, VLk
lower_limitis the minimum 

limit of voltage of kth load/PQ bus, Pgk
lower_limit is the minimum limit or lower limit of active 

power of kth thermal generator,Pgk
upper_limit

 is the maximum limit or upper limit of active 

power of kth thermal generator,Qgk
upper_limit

 is the maximum limit or upper limit of reactive 

power of kth thermal generator, Qgk
lower_limit is the minimum limit or lower limit of reactive 

power of kth thermal generator, Qshk
upper_limit

 is the maximum limit or upper limit of reactive 

power fed by kth reactive power compensator,Qshk
lower_limitis the minimum limit or lower limit 

of reactive power fed by kth reactive power compensator, SLk
upper_limit

 is the maximum limit 

or upper limit MVA loading of kth  transmission line,Tk
lower_limitis the minimum limit or 

lower limit of tap ratio of kthtransformer tap,Ti
upper_limit

is the maximum limit or upper limit 

of tap ratio of kth transformer tap, Ng is the total number of generators in the power system 

network, Nl is the total number of load or PQ buses,Nq is the total number of reactive power 

compensators in the power system network and Nt  is the total number of tap changing 

transformers in the power system network. 

2.3 Independent and dependent variables for optimization of reactive power problem 

Independent (control) variables for optimization of reactive power problem are stated as 

below in independent variable vector: 

uT = [Pgi, … … , PNg
, Vg1, … … , VNg

, Qsh1, … … , QNq
, T1, … … , TNt

] (13) 

where, i =  1, 2, 3, … … , Ngbut i ≠ sclack bus  



where, Pg represents active power fed by thermal generator,Vg stand for terminal voltage of 

generator bus or PV bus,Qsh represent reactive power fed by reactive power compensator and 

T stand for  tap ratio of transformer. 

Dependent (state) variables for optimization of reactive power problem are stated as below in 

independent variable vector: 

xT = [Pgi, Qg1, … … , QNg
, VL1, … … , VNPQ

, δk, … … , δNbus
] (14) 

where, i = sclack bus  

k =  1, 2, 3, … … , Nbbut k ≠ sclack bus  

where, Pgi represents active power fed by slack or reference bus generator, Qg  represents 

reactive power fed by thermal generator, VL stand for terminal voltage of load or PQ bus, NPQ 

represents total number of PQ or load buses in power system network and δ stand for voltage 

angle. 

2.4 Final Mathematical model of reactive power optimization problem 

Minimize  

PLoss = ∑ Transmission Lossk

Nb

k=1

 

Subject to constraint 

Pgk − Pdk − |Vk| ∑ |Vi||Yik| cos(θik

Nbus

i=1

+ δi − δk) = 0 

Qgk − Qdk − |Vk| ∑ |Vi||Yik| sin(θik

Nbus

i=1

+ δi − δk) = 0 

Vgeneratork

upper_limit
≥ Vgk ≥ Vgk

lower_limit k = 1, … … … , Ng 



VLk
upper_limit

≥ VLk ≥ VLk
lower_limit, k = 1, … … … , Nl 

Pgk
upper_limit

≥ Pgk ≥ Pgk
lower_limit k = 1, … … … , Ng 

Qgk
upper_limit

≥ Qgk ≥ Qgk
lower_limit, k = 1, … … … , Ng 

Qshk
upper_limit

≥ Qshk ≥ Qshk
lower_limit, k = 1, … … … , Nq 

SLk
upper_limit

≥ SLk, k = 1, … … … , Nb 

Tk
upper_limit

≥ Tk ≥ Tk
lower_limit, k = 1, … … … , Nt 

2.5 Modified fitness function 

The modified fitness function for optimization of reactive power problem is stated below: 

Minimize Modified objective function (MOF) = PLoss + constraints  

MOF = PLoss + λ1(Pg_reference − Pg_reference
lim )

2
+ λ2 ∑(Qgi − Qgi

lim)
2

Ng

i=1

+ λ3 ∑(VLi − VLi
lim)

2

NPQ

i=1

+ λ4 ∑(SLi − SLi
lim)

2

NT

i=1

 

(15) 

where, Pg_reference
lim  represent the lower or upper limits of the active power fed by reference 

bus generator, Qgi
limrepresent the lower or upper limits of the reactive power fed by iththermal 

generator, VLi
limrepresent the lower or upper limits for voltages of ith load bus, SLi

lim represent 

MVA loading limit of ith transmission line, and λ1, λ2, λ3 and λ4 are penalty weights applied 

to dependent variables such as reference bus power, reactive power of generator, load bus 

voltage and MVA loading of transmission line respectively.  

The constraint has great importance in optimization. There are different ways to handle 

constraints. Here penalty weight method is used to handle the constraints. Depending upon 



penalties, optimized solution may diverge or converge. So penalties should be selected 

precisely.  

3. Overview of g-best guided ABC algorithm  

Recently the heuristic methods are mostly used to solve complex scientific and engineering 

problems. There are different types of heuristic technique but swarm intelligence based 

techniques are now widely used to solve complex optimization problem.  

ABC algorithm has great exploration and exploitation ability. That’s why ABC algorithm 

is now widely used in solving complex power system optimization problem like unit 

commitment problem [26], economic dispatch problem [27], optimal power flow [28], 

allocating capacitor banks [29], PMU’s [30] and filter design [31], and optimization  of 

reactive power problem [32] etc. 

ABC algorithm mimics the behavior of food foraging by natural honey bees. The ABC 

algorithm is proposed by Karaboga in 2005. A home of bees is called as hives. In bee colony, 

separate special group of bees are formed. These groups performed different tasks and 

collective efforts of these groups’ results in finding good quality and quantity of food. There 

are mainly two types of bees in a home of natural honey bees i.e. employed and unemployed 

bees. ABC algorithm consist of four main phases such as initialization phase, employed bee 

phase, unemployed or onlooker bee phase and scout bee phase. Decision criteria for deciding 

quality of food source are the quantity, position and easiness in extracting food source. The 

main four phases of artificial bee colony algorithm are as follows:  

3.1 Initialization phase 

The initial food source set is generated randomly in the initialization phase. If we relate bee’s 

behaviour and its application for reactive power optimization, then food source is nothing but 

one solution. This initial food source or solution vector is represented as bellow: 



Xj = {xj1, xj2, … , xjND
} (16) 

where, j = 1,2, … . . NS  

Here, ND represent total number of decision or control variables, Xj is the jth food or solution, 

and NS represents the total number of foods or solutions.Xj is the food or solution consisting 

of total ND  number of control or decision variables. Each decision or control variable is 

generated randomly in between their upper and lower limit and it generated as below: 

xji = xi
lower + rand(0,1) ∗ (xi

upper
− xi

lower) (17) 

where,j = 1,2, … . . NS and i = 1,2, … . . ND  

where,xi
upper

is the upper limit of ith control or decision variable,xi
loweristhe lower limit ofith 

control or decision variable, xjiis the ith control or decision variable of ith solution set.The 

function value or quality of food source is then calculated by putting set of control variables 

into the objective function i.e. f(Xj). Apply greedy selection and memorize the best value. 

Then after find the fitness values of each solution and it is calculated as below: 

fitj = {

1

(1 + fj)
if fj ≥ 0

1 + abs(fj) if fj ≤ 0

 

(18) 

where, fitj  represent fitness value of jth objective function value, fj  for function value of 

jthsolution set. In this phase number of employed bees and onlooker bees are also decided. 

The maximum trail counter number is initialized in this phase and the trail counter of each 

solution is also initialized to zero.  

3.2 Role of employed bees  

Bees which exploit initial food source in a vicinity of the food source are called as employed 

bees. Generally number of employed bees is half to total population of hive. The initial food 



source is exploited by making changes in some control variables. The control variables are 

exploited as below: 

vji = xji + rand(−1,1)(xji − xli) (19) 

where, j ≠ l and l = 1, 2, 3, … … , NS  

where, xji is the ith control variable of jth initial food source or solution set, vij is the change 

in xji  control variable of jth initial food source or solution set and l  should be selected 

randomly. Then after function value and fitness value is calculated. Increase the trail counter 

if the fitness value is not improved else vice versa. Memorize best solution.  

3.3  Role of Unemployed or Onlooker bees 

In a hive, employed bees share information about exploited solution of the food source after 

coming back to hive and unemployed or onlooker bee phase start. The availability of food 

source decides the number of onlooker bees to be sent to exploit available food source. The 

availability of food source is calculated as below: 

Pj =
fitj

∑ fitj
NS

k

 (20) 

Where, Pj  is the availability of jthfood source. The onlooker bees again exploit the food 

source by making some changes in the parameter of employed bee’s food source or solution 

set. The food source is exploited by eq. (19). Once again function value and fitness value is 

calculated. Increase the trail counter if the fitness value is not improved else vice versa. 

Memorize best solution. 

3.4  Role of Scout bees  

Initial food source is exploited first by employed bees and then unemployed or onlooker bees. 

Someway the exploited food source or solution may not improve continuously. This reflects 



amount of food source in particular trajectory is not of good quality i.e. solution is diverged. 

So to avoid this condition, the employed are converted to scout bees and again generate the 

solution randomly in the search trajectory. Trail counter is decision criteria to start scout bee 

mode. If the trail counter of food source reaches its maximum limit, respective solution is 

then rejected and scout bees generate new solution randomly to replace rejected one. The 

scout bees generate solution by equation (17). 

3.5 Proposed  gbest GABC algorithm 

The ABC algorithm has problem in either exploration or exploitation of solution. To improve 

exploration or exploitation capability of ABC algorithm, likewise particle swarm 

optimization more wattage is given to current best solutions parameter. The control parameter 

in gbest guided ABC algorithm is modified by equation stated below: 

vji = xji + rand(−1,1)(xji − xki) + rand(0, 2) ∗ (local_besti − xki) (21) 

Where, j = 1, 2, 3, … … , NS  

i = 1, 2, 3 … ND , k ≠ j, k = 1, 2, 3, … … , NS  

Where, local_besti is the ithbest control variable of jth solution set. The gbest guided ABC 

algorithm use equation (21) in exploiting food source or solution in employed bee mode and 

onlooker bee mode. 

4. Application of g-best guided ABC algorithm for optimization of reactive power 

problem: 

a) Initialization phase 

Initialize population of hive. Select half the population as employed bees and half 

onlooker bees. Initialize maximum trail counter and maximum number of cycles. 

Initialize upper and lower limits for control variable vectors i.e.  Pgk
upper_limit

≥ Pgk ≥

Pgk
lower_limit , Vgeneratork

upper_limit
≥ Vgk ≥ Vgk

lower_limit , Tk
upper_limit

≥ Tk ≥ Tk
lower_limit  and  



Qshk
upper_limit

≥ Qshk ≥ Qshk
lower_limit. Randomly generate initial food source or solutions by 

generating control variables in between upper and lower limit by equation (17) i.e.uT =

[Pg1, … … , PNg
, Vg1, … … , VNg

, Qsh1, … … , QNq
, T1, … … , TNt

]  but except generator 

connected at slack bus. Use control variables and run newton Raphson power flow. Check 

whether constraints satisfies there upper and lower limit or not i.e.VLk
upper_limit

≥ VLk ≥

VLk
lower_limit, Qgk

upper_limit
≥ Qgk ≥ Qgk

lower_limit  and SLk
upper_limit

≥ SLk . Apply penalty 

weight method to differentiate violated and unviolated solutions. Memorize the least 

power loss solution from set of solutions. 

Cycle = 1; 

While (Cycle >= maximum number of cycle) 

For employed bee = 1: number of employed bees 

b) Employed bee phase 

Exploit initial food source by equation (21) by randomly selecting any control variable 

from particular initial solution. Use control variables and run newton Raphson power 

flow. Check whether constraints satisfies there upper and lower limit or not 

i.e. VLk
upper_limit

≥ VLk ≥ VLk
lower_limit, Qgk

upper_limit
≥ Qgk ≥ Qgk

lower_limit  and SLk
upper_limit

≥

SLk . Apply penalty weight method to differentiate violated and unviolated solutions. 

Memorize the least power loss solution from set of solutions. 

End 

For onlooker bee = 1: number of onlooker bees 

c) Unemployed or onlooker bee phase 



Exploit initial food source or solution again by equation (21) by randomly selecting any 

control variable from particular initial solution. Use control variables and run newton 

Raphson power flow. Check whether constraints satisfies there upper and lower limit or 

not i.e. VLk
upper_limit

≥ VLk ≥ VLk
lower_limit, Qgk

upper_limit
≥ Qgk ≥ Qgk

lower_limit  and 

SLk
upper_limit

≥ SLk. Apply penalty weight method to differentiate violated and unviolated 

solutions. Memorize the least power loss solution from set of solutions. 

End  

d) Scout bee phase 

Check incremental trail counter. If trail counter reached the predefined maximum number 

of trail counter then reject the particular initial solution and replace the solution set by 

generating control variables of solution set randomly in between upper and lower limits. 

Cycle = Cycle + 1; 

e) Termination criteria 

If cycle number is equal to the maximum number of cycles then stop the exploitation. 

End 

5. Result and discussion 

This paper presents an application of gbest guided ABC algorithm to solve problem for 

optimization of reactive power. This algorithm is applied on three test system i.e. on IEEE 

30, 57, and 118 bus system to solve optimization of reactive power problem. The 

comparative analysis of results obtained for respective test system reflects the advantage of 

using GABC algorithm. The results are tested in MATLAB 2014a environment.  

 



5.1 IEEE 30 bus test system 

 In IEEE 30 bus test system data is taken from MATPOWER [26]. Here six thermal 

generators, nine reactive power compensators, four transformer taps. The overall active 

power load is 283.4 MW and reactive power load 126.2 MVAr. Six generators are connected 

to bus 1, 2, 5, 8, 11 and 13 respectively. The bus 1 is considered as reference bus. The 

compensators are connected at bus 10, 12, 15, 17, 20, 21, 23, 24, and 29 respectively. The 

transformer branches are (6-9), (6-10), (4-12), and (28-27) respectively. The test system has 

41 transmission lines. The upper and lower limits of the variables are stated below in Table I. 

The base MVA selected is 100 MVA. 

The convergence characteristic for IEEE 30 bus test is shown in Fig. 1. This figure clearly 

shows; the guided ABC algorithm converges at 28th iteration. The results obtained are given 

in Table 2. The control variables for the obtained solution are also stated in Table 2. The 

comparison with the available literature is given in Table 3. The result reported is best in 

compare to all available literature. To check the robustness of guided ABC, 100 trial runs are 

taken. The result of 100 trial runs is plotted and it is shown in Fig. 2. With reference to 

average of 100 trials, the numbers of results obtained below the mean line are more as 

compared to results obtained above of mean line. This proves GABC is good in tracking 

global best solution. The standard deviation for this 100 trial run is given in Table 4. 



 

Figure 1: Convergence characteristics of IEEE 30 bus system 

Table 1: Limits of the variables for IEEE 30 bus system 

Variable Upper limit Lower limit Variable Upper limit Lower limit 

𝑃𝐺1 (𝑝. 𝑢. ) 0.50 2.00 𝑇6−10 (𝑝. 𝑢. ) 0.90 1.10 

𝑃𝐺2 (𝑝. 𝑢. ) 0.20 0.80 𝑇4−12 (𝑝. 𝑢. ) 0.90 1.10 

𝑃𝐺5 (𝑝. 𝑢. ) 0.15 0.50 𝑇28−27 (𝑝. 𝑢. ) 0.90 1.10 

𝑃𝐺8 (𝑝. 𝑢. ) 0.10 0.35 𝑄𝐶10 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑃𝐺11 (𝑝. 𝑢. ) 0.10 0.30 𝑄𝐶12 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑃𝐺13 (𝑝. 𝑢. ) 0.12 0.40 𝑄𝐶15 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑉𝐺1 (𝑝. 𝑢. ) 1.00 1.10 𝑄𝐶17 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑉𝐺2 (𝑝. 𝑢. ) 1.00 1.10 𝑄𝐶20 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑉𝐺5 (𝑝. 𝑢. ) 1.00 1.10 𝑄𝐶21 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑉𝐺8 (𝑝. 𝑢. ) 1.00 1.10 𝑄𝐶23 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑉𝐺11 (𝑝. 𝑢. ) 1.00 1.10 𝑄𝐶24 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑉𝐺13 (𝑝. 𝑢. ) 1.00 1.10 𝑄𝐶29 (𝑀𝑉𝐴𝑅) 0.00 0.05 

𝑇6−9 (𝑝. 𝑢. ) 0.90 1.10    
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Table 2: Control variables for IEEE 30 bus system 

Control Variables GABC Control Variables GABC 

𝑃𝐺2 (𝑀𝑊) 80 𝑄𝐶12 (𝑀𝑉𝐴𝑅) 5 

𝑃𝐺5 (𝑀𝑊) 50 𝑄𝐶15 (𝑀𝑉𝐴𝑅) 4.858283 

𝑃𝐺8 (𝑀𝑊) 35 𝑄𝐶17 (𝑀𝑉𝐴𝑅) 5 

𝑃𝐺11 (𝑀𝑊) 30 𝑄𝐶20 (𝑀𝑉𝐴𝑅) 4.153956 

𝑃𝐺13 (𝑀𝑊) 31.98754 𝑄𝐶21 (𝑀𝑉𝐴𝑅) 5 

𝑉𝐺1 (𝑝. 𝑢. ) 1.097944 𝑄𝐶23 (𝑀𝑉𝐴𝑅) 2.604547 

𝑉𝐺2 (𝑝. 𝑢. ) 1.0900352 𝑄𝐶24 (𝑀𝑉𝐴𝑅) 5 

𝑉𝐺5 (𝑝. 𝑢. ) 1.071557 𝑄𝐶29 (𝑀𝑉𝐴𝑅) 2.067431 

𝑉𝐺8 (𝑝. 𝑢. ) 1.076513 𝑇6−9 (𝑝. 𝑢. ) 1.03117 

𝑉𝐺11 (𝑝. 𝑢. ) 1.1 𝑇6−10 (𝑝. 𝑢. ) 0.918068 

𝑉𝐺13 (𝑝. 𝑢. ) 1.1 𝑇4−12 (𝑝. 𝑢. ) 0.980552 

𝑄𝐶10 (𝑀𝑉𝐴𝑅) 5 𝑇28−27 (𝑝. 𝑢. ) 0.965991 

Power loss (MW) 3.019246043 

 

Table 3: Comparison table for IEEE 30 bus system 

Algorithm Power loss (MW) 

GABC 3.019246043 

ABC [17] 3.09 

SARGA [28] 4.57401 

GS [28] 5.10120 

CLPSO [29] 4.5615 



PSO [29] 4.6282 

EGA–DQLF [30] 3.2008 

 

 

Figure 2: Results of reactive power optimization for hundred trial runs 

Table 4: Statistical data for IEEE 30 bus system 

Algorithm 

Fuel cost ($/h) 

Standard 

Deviation 
Minimum 

Value 

Average 

Value 

Maximum 

Value 

Median 

GABC 3.019246043 3.046138854 3.090193904 3.041918205 0.0199488 

 

5.2 IEEE 57 test bus system 

In IEEE 57 test bus system data is taken from MATPOWER [26]. Here six thermal 

generating units, seventeen transformer taps and three reactive power compensators. Six 

generators are at connected to bus 2, 3, 6, 8, 9, and 12 respectively. The bus 1 is selected as 
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reference bus. The compensators are connected at bus 18, 25, and 53 respectively. The 

transformer branches are T4−18 , T21−20 , T24−25 , 𝑇24−25 , 𝑇24−26 , 𝑇7−29 , 𝑇34−32 , 𝑇11−41 , 

𝑇15−45, 𝑇14−46, 𝑇10−51, 𝑇13−49, 𝑇11−43, T40−56, T39−57, and T9−55 respectively. This 𝑇 stands 

for Transmission line. The base MVA selected is 100 MVA. 

The convergence characteristic for the IEEE 57 test bus system is shown in Fig. 3. This figure 

clearly shows, the GABC algorithm converges at 22th iteration. The results obtained are given 

in Table 5. The control variables for the obtained solution are also stated in Table 5. To check 

the robustness of GABC, 100 trial runs are taken. The result of 100 trial runs is plotted and it 

is shown in Fig. 4. With reference to average of 100 trials, the numbers of results obtained 

below the mean line are more as compared to results obtained above of mean line. This 

proves GABC is good in tracking global best solution. The standard deviation for this 100 

trial run is given in Table 6. 

 

Figure 3: Convergence characteristics of IEEE 57 bus system 
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Figure 4: Results of reactive power optimization for hundred trial runs 

Table 5: Control variables for IEEE 57 bus system 

Control Variables GABC Control Variables GABC 

𝑃𝐺2(𝑀𝑊) 41.23706 𝑇24−25(𝑝. 𝑢. ) 1.1 

𝑃𝐺3(𝑀𝑊) 140 𝑇24−26(𝑝. 𝑢. ) 1.01378 

𝑃𝐺6(𝑀𝑊) 78.56121 𝑇7−29(𝑝. 𝑢. ) 0.984111 

𝑃𝐺8(𝑀𝑊) 316.445 𝑇34−32(𝑝. 𝑢. ) 0.970969 

𝑃𝐺9(𝑀𝑊) 100 𝑇11−41(𝑝. 𝑢. ) 1.037281 

𝑃𝐺12(𝑀𝑊) 410 𝑇15−45(𝑝. 𝑢. ) 0.971975 

𝑉𝐺1 (𝑝. 𝑢. ) 1.071492 𝑇14−46(𝑝. 𝑢. ) 0.971236 

𝑉𝐺2 (𝑝. 𝑢. ) 1.062637 𝑇10−51(𝑝. 𝑢. ) 0.98247 

𝑉𝐺3 (𝑝. 𝑢. ) 1.046926 𝑇13−49(𝑝. 𝑢. ) 0.934971 

𝑉𝐺6 (𝑝. 𝑢. ) 1.028456 𝑇11−43(𝑝. 𝑢. ) 0.936066 

VG8 (p. u. ) 1.03151 T40−56(p. u. ) 1.008966 

VG9 (p. u. ) 1.02084 T39−57(p. u. ) 1.076901 
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VG12 (p. u. ) 1.034725 T9−55(p. u. ) 1.018203 

T4−18(p. u. ) 1.051845 QC18(MVAR) 11.92766 

T4−18(p. u. ) 1.018632 QC25(MVAR) 14.81389 

T21−20(p. u. ) 1.051936 QC53(MVAR) 11.59247 

T24−25(p. u. ) 0.980744   

Power losses (MW) 11.4883822 

 

Table 6: Statistical data for IEEE 57 bus system 

Algorithm 

Fuel cost ($/h) 

Standard 

Deviation 
Minimum 

Value 

Average 

Value 

Maximum 

Value 

Median 

GABC 11.4883822 13.3848426 15.8265669 13.2570702 1.2936065 

 

 

5.3 IEEE 118 bus test system 

In IEEE 118 test bus system data is taken from MATPOWER [26]. Here fifty four thermal 

units, and nine transformer taps. The overall active power load is 4242 MW and reactive 

power load 126.2 MVAr. The test system has 186 transmission lines. The base MVA selected 

is 100 MVA. 

The results obtained are given in Table 7. The control variables for the obtained solution are 

also stated in Table 7. The comparison with the available literature is given in Table 8. The 

result reported is best in compare to all available literature. To check the robustness of 

GABC, 100 trial runs are taken. The result of 100 trial runs is plotted and it is shown in Fig. 

5. With reference to average of 100 trials, the numbers of results obtained below the mean 



line are more as compared to results obtained above of mean line. This proves GABC is good 

in tracking global best solution. The standard deviation for this 100 trial run is given in Table 

6. 

 

Figure 5: Results of reactive power optimization for hundred trial runs 

Table 7: Control variables for IEEE 118 bus system 

Control Variables GABC Control Variables GABC Control Variables GABC 

𝑃𝐺1(𝑀𝑊) 59.1457 𝑃𝐺90(𝑀𝑊) 52.6602 𝑉𝐺61 (𝑝. 𝑢. ) 0.9661 

𝑃𝐺4(𝑀𝑊) 98.6697 𝑃𝐺91(𝑀𝑊) 59.6203 𝑉𝐺62 (𝑝. 𝑢. ) 0.9605 

𝑃𝐺6(𝑀𝑊) 37.5293 𝑃𝐺92(𝑀𝑊) 13.1194 𝑉𝐺65 (𝑝. 𝑢. ) 0.9809 

𝑃𝐺8(𝑀𝑊) 0.4668 𝑃𝐺99(𝑀𝑊) 10.5497 𝑉𝐺66 (𝑝. 𝑢. ) 0.9957 

𝑃𝐺10(𝑀𝑊) 165 𝑃𝐺100(𝑀𝑊) 105.6 𝑉𝐺69 (𝑝. 𝑢. ) 0.999 

𝑃𝐺12(𝑀𝑊) 150.4258 𝑃𝐺103(𝑀𝑊) 42 𝑉𝐺70 (𝑝. 𝑢. ) 0.9715 

𝑃𝐺15(𝑀𝑊) 0 𝑃𝐺104(𝑀𝑊) 94.014 𝑉𝐺72 (𝑝. 𝑢. ) 1.0219 

𝑃𝐺18(𝑀𝑊) 34.5684 𝑃𝐺105(𝑀𝑊) 84.2377 𝑉𝐺73 (𝑝. 𝑢. ) 0.9655 

𝑃𝐺19(𝑀𝑊) 42.6539 𝑃𝐺107(𝑀𝑊) 33.1901 𝑉𝐺74 (𝑝. 𝑢. ) 0.9515 
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𝑃𝐺24(𝑀𝑊) 12.9529 𝑃𝐺110(𝑀𝑊) 42.3264 𝑉𝐺76 (𝑝. 𝑢. ) 0.94 

𝑃𝐺25(𝑀𝑊) 214.1414 𝑃𝐺111(𝑀𝑊) 40.9881 𝑉𝐺77 (𝑝. 𝑢. ) 0.982 

𝑃𝐺26(𝑀𝑊) 203.6137 𝑃𝐺112(𝑀𝑊) 15.221 𝑉𝐺80 (𝑝. 𝑢. ) 1.0244 

𝑃𝐺27(𝑀𝑊) 21.9194 𝑃𝐺113(𝑀𝑊) 0 𝑉𝐺85 (𝑝. 𝑢. ) 0.9886 

𝑃𝐺31(𝑀𝑊) 65.0973 𝑃𝐺116(𝑀𝑊) 42.2212 𝑉𝐺87 (𝑝. 𝑢. ) 1.0155 

𝑃𝐺32(𝑀𝑊) 58.9487 𝑉𝐺1 (𝑝. 𝑢. ) 0.9807 𝑉𝐺89 (𝑝. 𝑢. ) 1.0055 

𝑃𝐺34(𝑀𝑊) 90.8114 𝑉𝐺4 (𝑝. 𝑢. ) 1.0132 𝑉𝐺90 (𝑝. 𝑢. ) 0.9936 

𝑃𝐺36(𝑀𝑊) 91.3301 𝑉𝐺6 (𝑝. 𝑢. ) 0.9996 𝑉𝐺91 (𝑝. 𝑢. ) 0.9857 

𝑃𝐺40(𝑀𝑊) 100 𝑉𝐺8 (𝑝. 𝑢. ) 0.9793 𝑉𝐺92 (𝑝. 𝑢. ) 0.9877 

𝑃𝐺42(𝑀𝑊) 96.1177 𝑉𝐺10 (𝑝. 𝑢. ) 0.9928 𝑉𝐺99 (𝑝. 𝑢. ) 0.9981 

𝑃𝐺46(𝑀𝑊) 116.5559 𝑉𝐺12 (𝑝. 𝑢. ) 0.988 𝑉𝐺100 (𝑝. 𝑢. ) 0.9851 

𝑃𝐺49(𝑀𝑊) 192.5998 𝑉𝐺15 (𝑝. 𝑢. ) 0.9976 𝑉𝐺103 (𝑝. 𝑢. ) 0.9831 

𝑃𝐺54(𝑀𝑊) 80.7583 𝑉𝐺18 (𝑝. 𝑢. ) 0.9922 𝑉𝐺104 (𝑝. 𝑢. ) 0.9936 

𝑃𝐺55(𝑀𝑊) 0 𝑉𝐺19 (𝑝. 𝑢. ) 0.9937 𝑉𝐺105 (𝑝. 𝑢. ) 0.9956 

𝑃𝐺56(𝑀𝑊) 0 𝑉𝐺24 (𝑝. 𝑢. ) 1.0241 𝑉𝐺107 (𝑝. 𝑢. ) 1.0291 

𝑃𝐺59(𝑀𝑊) 76.5 𝑉𝐺25 (𝑝. 𝑢. ) 1.06 𝑉𝐺110 (𝑝. 𝑢. ) 0.9754 

𝑃𝐺61(𝑀𝑊) 78 𝑉𝐺26 (𝑝. 𝑢. ) 1.0093 𝑉𝐺111 (𝑝. 𝑢. ) 0.9424 

𝑃𝐺62(𝑀𝑊) 0.3851 𝑉𝐺27 (𝑝. 𝑢. ) 1.0074 𝑉𝐺112 (𝑝. 𝑢. ) 0.9954 

𝑃𝐺65(𝑀𝑊) 316.7806 𝑉𝐺31 (𝑝. 𝑢. ) 1.0403 𝑉𝐺113 (𝑝. 𝑢. ) 1.06 

𝑃𝐺66(𝑀𝑊) 147.6 𝑉𝐺32 (𝑝. 𝑢. ) 1.0201 𝑉𝐺116 (𝑝. 𝑢. ) 0.9695 

𝑃𝐺70(𝑀𝑊) 7.9261 𝑉𝐺34 (𝑝. 𝑢. ) 1.0311 T8−5(p. u. ) 0.9626 

𝑃𝐺72(𝑀𝑊) 100 𝑉𝐺36 (𝑝. 𝑢. ) 1.0303 T26−25(p. u. ) 0.9391 

𝑃𝐺73(𝑀𝑊) 59.9424 𝑉𝐺40 (𝑝. 𝑢. ) 0.9644 T30−17(p. u. ) 1.0178 

𝑃𝐺74(𝑀𝑊) 87.7513 𝑉𝐺42 (𝑝. 𝑢. ) 0.9567 T38−37(p. u. ) 0.9 



𝑃𝐺76(𝑀𝑊) 56.7542 𝑉𝐺46 (𝑝. 𝑢. ) 1.0071 T63−59(p. u. ) 1.0566 

𝑃𝐺77(𝑀𝑊) 5.3969 𝑉𝐺49 (𝑝. 𝑢. ) 1.0008 T64−61(p. u. ) 1.0362 

𝑃𝐺80(𝑀𝑊) 208.4631 𝑉𝐺54 (𝑝. 𝑢. ) 1.0105 T65−66(p. u. ) 0.9678 

𝑃𝐺85(𝑀𝑊) 99.0974 𝑉𝐺55 (𝑝. 𝑢. ) 0.994 T68−69(p. u. ) 0.9876 

𝑃𝐺87(𝑀𝑊) 31.2 𝑉𝐺56 (𝑝. 𝑢. ) 0.9982 T81−80(p. u. ) 0.9316 

𝑃𝐺89(𝑀𝑊) 215.5064 𝑉𝐺59 (𝑝. 𝑢. ) 0.9548   

Power losses (MW) 73.4556 

  

Table 8: Comparison table for IEEE 118 bus system 

Algorithm Power loss (MW) 

GABC 73.4556 

ABC [17] 119.6923 

PSO [31] 131.908 

IPM [31] 132.110 

DE [32] 128.318 

QEA [33] 122.2227 

Table 9: Statistical data for IEEE 118 bus system 

Algorithm 

Fuel cost ($/h) 
Standard 

Deviation 
Minimum 

Value 

Average 

Value 

Maximum 

Value 
Median 

GABC 73.4556 99.9808 129.319 99.58649 16.717 

 

5.4 Statistical analysis 

To validate results of gbest guided ABC algorithm student t-test and Wilcoxon rank sum test 

[34] is carried out. Since other researcher does not report the result for hypothetical tests, 



these tests are carried out on only gbest guided ABC algorithm. The statistical analysis is 

useful tool in deciding the results are to be retained or reject. This test is carried out 

at α=0.05significance level. In case of Wilcoxon rank sum test, if the statistical value is 

greater than significance level i.e. α,  hypothes is  wil l  be retained  by or  vice versa.  

The results for Wilcoxon rank sum test are provided in Table 10. In case of student t-test, if 

statistical value is greater than 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, result will be accepted else vice versa. The 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

calculated for this analysis is 1.983971519.  

Table 3: Statistical analysis for RPO problem 

Standard IEEE systems 

Standard 

deviation 

Paired t-test 

𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1.983971519 

Wilcoxon rank 

sum test 

IEEE 30 Bus System 0.0199488 35.46778 0.850216995 

IEEE 57 Bus System 1.2936065 30.92146 0.850359749 

IEEE 118 Bus System 16.717 27.65849 0.986315668 

 

6. Conclusion 

In this paper an application of gbest guided artificial bee colony algorithm to solve 

optimization of reactive power problem is discussed. The systems taken for study are IEEE 

30, IEEE 57 and IEEE 118 test bus system. The results for these case studies reflect the 

ability of GABC algorithm to track optimal solution for optimization of reactive power 

problem. 

Apart from reactive power optimization problem, the guided gbest ABC algorithm can be 

important tool for nonlinear complex engineering optimization problem. 
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