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Abstract

This paper presents the NU (Nagoya University) voice con-

version (VC) system for the HUB task of the Voice Conver-

sion Challenge 2018 (VCC 2018). The design of the NU VC

system can basically be separated into two modules consist-

ing of a speech parameter conversion module and a waveform-

processing module. In the speech parameter conversion mod-

ule, a deep learning framework is deployed to estimate the

spectral parameters of a target speaker given those of a source

speaker. Specifically, a deep neural network (DNN) and a

deep mixture density network (DMDN) are used as the deep

model structure. In the waveform-processing module, given

the estimated spectral parameters and linearly transformed

F0 parameters, the converted waveform is generated using a

WaveNet-based vocoder system. To use the WaveNet-based

vocoder, there are several generation flows based on an analysis-

synthesis framework to obtain the speech parameter set, on the

basis of which a system selection process is performed to select

the best one in an utterance-wise manner. The results of VCC

2018 ranked the NU VC system in second place with an overall

mean opinion score (MOS) of 3.44 for speech quality and 85%
accuracy for speaker similarity.

1. Introduction

Every human being has their own speech characteristics. The

capability of handling the speaker characteristics within a

speech signal has great potential to be employed in real-world

applications. Indeed, this so-called voice conversion (VC)

framework has been used in several works, such as, singing

voice conversion [1, 2], body-conducted speech conversion [3],

speech signal recovery [4, 5], and speech modification [6].

The growing interest in VC development motivated many re-

searchers around the world to conceive the 1st Voice Conver-

sion Challenge in 2016 [7]. Following this, we participated in

the 2nd Challenge, i.e., the Voice Conversion Challenge (VCC)

2018 [8]. Our participating system, the NU (Nagoya Univer-

sity) VC system, is elaborated in this paper.

In the development of a VC system, three aspects need to be

considered: the conversion of spectral parameters, the conver-

sion of prosodic parameters, and waveform generation. In the

spectral parameter conversion, many techniques based on sta-

tistical methods have been proposed, such as, codebook-based

conversion [9], Gaussian mixture model (GMM)-based map-

ping [10], and a neural-network based system [11, 12]. On the

other hand, in the handling of prosodic parameters, such as fun-

damental frequency (F0), several methods have been commonly

used including a simple mean/variance linear transformation, a

contour-based transformation [13], GMM-based mapping [14],

and neural network [15]. For waveform generation, approaches

include the source-filter vocoder system [16], the latest direct

waveform modification technique [2], and the use of state-of-

the-art WaveNet modeling [17, 18, 19].

In this paper, we describe the NU VC system, which uses

a neural network architecture for spectral modeling as well as

a WaveNet-based vocoder for waveform modeling and genera-

tion. The NU VC system adopts a neural network design for

spectral parameter conversion, where a structure combining a

deep neural network (DNN) and a deep mixture density net-

work (DMDN) [20] is used to form a cascaded DMDN (CascD-

MDN). In a conventional DNN or DMDN, given a sequence of

source spectral parameters, the target sequence is estimated us-

ing a single Gaussian distribution in a DNN or using a mixture

of Gaussian distributions in a DMDN. In CascDMDN, a se-

quence of estimated source spectral parameters is first inferred

within its first set of hidden layers, which is then fed into the

second set to estimate the target sequence. For the conversion of

prosodic parameters, the NU VC system uses a linear transfor-

mation of framewise F0 values of the source speaker into those

of the target on the basis of their mean and variance statistics.

In the waveform-processing module, the NU VC system de-

ploys the state-of-the-art WaveNet-based vocoder [17, 18, 19]

framework to directly model the waveform. In WaveNet [21],

each waveform sample is conditioned using previous samples

and possible auxiliary features within a stack of dilated convo-

lutional layers. The structure of the dilated convolutions makes

it possible to exponentially increase the receptive field of wave-

form samples efficiently. In addition, in the NU VC system, the

auxiliary features include the voiced/unvoiced (U/V) decision,

continuous F0 values, mel-cepstrum parameters, and aperiodic-

ity features. To obtain the set of refined speech parameters, the

NU VC system carries out direct waveform modification [2] in

several analysis-synthesis flows. Then, a model selection proce-

dure is performed to select the best waveform generation flow in

an utterance-wise manner. In the evaluations carried out at the

VCC 2018, the NU VC system achieved second place with an

average mean opinion score (MOS) of 3.44 for speech quality

and 85% accuracy for speaker similarity.

The rest of the paper is organized as follows. Spectral pa-

rameter conversion models are elaborated in Section 2. The

waveform-processing module is described in Section 3. Exper-

imental results are presented in Section 4. Finally, the conclu-

sion is given in Section 5.

2. Spectral parameter conversion models

In this section, the deep learning structures used to perform

spectral parameter conversion are elaborated. Their graphical

model representations are illustrated in Fig. 1. Moreover, the



overall process described in this section is illustrated in the up-

per diagram of Fig. 2.

2.1. Conversion model with deep neural network (DNN)

Let xt = [xt(1), xt(2), . . . , xt(D)]⊤ and yt =
[yt(1), yt(2), . . . , yt(D)]⊤ be the D-dimensional spectral

feature vector of the source speaker and that of the target

speaker at frame t, respectively. The 2D-dimensional joint

static-delta feature vector of the source and that of the target

are then respectively denoted as Xt = [xt,∆xt]
⊤ and

Y t = [yt,∆yt]
⊤ at frame t, where the delta feature vectors

are denoted as ∆xt and ∆yt.

In the conventional DNN architecture, given an input

source spectral feature vector Xt and the network parameters

λ, a conditional probability distribution function (pdf) of the

target spectral feature vector Y t on the network output layer is

defined as follows:

Ps(Y t|Xt,λ) = N (Y t; fλ(Xt),D), (1)

where N (·;µ,Σ) denotes a Gaussian distribution with mean

µ and covariance Σ. In the above pdf, the network output is

denoted as fλ(Xt) and the diagonal covariance matrix of the

target spectral feature vector is denoted as D, which is inferred

from training data. The DNN spectral conversion model is rep-

resented by the left graph in Fig. 1.

In the training phase, a set of updated network parameters

λ̂ is estimated by backpropagating the following loss function:

λ̂ = argmin
λ

−P (Y |X,λ), (2)

where

P (Y |X,λ) =
T
∏

t=1

Ps(Y t|Xt,λ). (3)

The spectral feature vector sequence of the source speaker

and that of the target speaker are denoted as X =
[X⊤

1 ,X
⊤
2 , . . . ,X

⊤

T ]
⊤ and Y = [Y ⊤

1 ,Y
⊤
2 , . . . ,Y

⊤

T ]
⊤, re-

spectively. Note that in the training phase, a dynamic time

warping (DTW) procedure is performed by aligning the length

of the source spectral feature vector sequence with that of the

target one to obtain a pair of time-aligned features.

In the conversion phase, given the source spectral feature

vector sequence X , the trajectory of the target spectral param-

eters ŷ = [y⊤

1 ,y
⊤

2 , . . . ,y
⊤

T ]
⊤ is computed by the maximum

likelihood parameter generation (MLPG) [22] procedure as fol-

lows:

ŷ = (W⊤
U

−1
W )−1

W
⊤
U

−1
M , (4)

where W is a transformation matrix used to expand a static

feature vector sequence into its joint static-delta feature vec-

tor sequence. The sequence of target mean vectors is denoted

as M = [fλ(X1)
⊤, fλ(X2)

⊤, . . . , fλ(XT )
⊤]⊤, whereas the

sequence of diagonal covariance matrices is denoted as U =
D ⊗ I2D×T with ⊗ denoting the Kronecker delta product.

2.2. Conversion model with deep mixture density network

(DMDN)

The NU VC system uses a DMDN [20] in the spectral parameter

conversion by inferring a mixture of pdfs of the target spectral

feature vector. Given an input source feature vector Xt at frame

t, the conditional pdf of the target spectral feature vector Y t is

Xt

YtD
(y)
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μm,tαm,t
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m = 1...M

Σm,t

Xt

μm,tαm,t

Yt

m = 1...M

Σm,t

DNN DMDN CascDMDN

Xt Xt

D
(x)

Figure 1: Graphical representations of spectral conversion mod-

els using DNN, DMDN, and CascDMDN.

then defined as follows:

Pm(Y t|Xt,λ) =

M
∑

m=1

αm,tP (Y t|µm,t,Σm,t), (5)

where the time-varying target mean vector and diagonal co-

variance matrix are respectively denoted as µm,t and Σm,t

for the mth mixture component. The weight of the mth

mixture component is denoted as αm,t. The total number

of mixture components is M . These time-varying mixture

parameters are taken from the network output fλ(Xt) =

[f
(α1)
λ (Xt), f

(µ1)
λ (Xt)

⊤, f
(Σ1)
λ (Xt)

⊤, . . . , f
(αM )
λ (Xt),

f
(µM )
λ (Xt)

⊤, f
(ΣM )
λ (Xt)

⊤]⊤ as

αm,t =
f
(αm)
λ (Xt)

∑M

n=1 f
(αn)
λ (Xt)

(6)

µm,t = f
(µm)
λ (Xt) (7)

Σm,t = diag [exp (f
(Σm)
λ (Xt))

◦2], (8)

where ◦ denotes a Hadamard elementwise product. The DMDN

spectral conversion model is represented by the middle graph in

Fig. 1.

In the training phase, a set of updated network parameters

λ̂ is estimated by backpropagating the negative log likelihood

derived from the conditional pdf given in Eq. (5) in a similar

manner to the DNN in Eq. (2). On the other hand, in the con-

version phase using the DMDN, given a source spectral feature

vector sequence X , the trajectory of the target spectral param-

eters ŷ is estimated by also using the MLPG [22] procedure as

follows:

ŷ = (W⊤
Σ

−1
W )−1

W
⊤
Σ

−1
µ. (9)

The sequence of the target mean vectors and that of the diagonal

covariance matrices in the above equation are respectively given

by

µ = [µ⊤

m̂1,1
,µ

⊤

m̂2,2
, . . . ,µ

⊤

m̂T ,T ]
⊤

(10)

Σ = diag [Σm̂1,1,Σm̂2,2, . . . ,Σm̂T ,T ], (11)

where the suboptimum mixture component sequence m̂ =
{m̂1, m̂2, . . . , m̂T } is determined as follows:

m̂ = argmax
m

T
∏

t=1

αm1,t. (12)
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Figure 2: Diagram of the spectral conversion flow (top) and the analysis-synthesis flow (bottom) to generate three different speech

parameters, i.e., “cv mcep”, “diff”, and “diff anasyn”, to be fed into the waveform-processing module.

2.3. Conversion model with cascaded DMDN (CascDMDN)

To develop a more flexible spectral parameter model, the NU

VC system employs a cascading structure of the DNN and

DMDN called the cascaded DMDN (CascDMDN). In CascD-

MDN, two sets of hidden layers are used, where the first set is

used to estimate the pdf of the source spectral parameters and

the second one is used to estimate a mixture of pdfs of the target

parameters. Therefore, the conditional pdf of the target spectral

feature vector is defined as follows:

P (Y t|Xt,λ)≃Ps(X̂t|Xt,λ1)Pm(Y t|X̂t,λ2), (13)

where the parameters of the first set are denoted as λ1 and those

of the second one are denoted as λ2. The set of network param-

eters of CascDMDN is denoted as λ = {λ1,λ2}. In the above

likelihood function, the first conditional pdf is similar to that of

the DNN in Eq. (1), while the second one refers to the mixture

output layer of the DMDN as in Eq. (5). The representation of

CascDMDN is given by the right graphical model in Fig. 1.

In the training phase of CascDMDN, a set of updated net-

work parameters λ̂ is estimated by backpropagating the follow-

ing loss:

λ̂ = argmin
λ

−
T
∏

t=1

Ps(Xt|Xt,λ1)P (Y t|fλ1
(Xt),λ2). (14)

Note that not only does the estimation of the source spectral

feature vector in the first set give flexibility in the parameter

inference, such as, for computing spectral differences between

the estimated target and source spectral parameters as shown

in the upper part of Fig. 2, but it also provides an additional

regularization term in model training.

Then, in the conversion phase, given a source spectral fea-

ture vector sequence X , the trajectory of the target spectral pa-

rameters y is estimated in a similar manner to the MLPG of

the DMDN in Eq. (9), where the mixture output layer is de-

noted as fλ2
(fλ1

(X1)). Following the structure of the net-

work, the trajectory of the source spectral parameters x̂ =

[x̂⊤

1 , x̂
⊤

2 , . . . , x̂
⊤

T ]
⊤ can be estimated as in the MLPG of the

DNN in Eq. (4). In addition, the global variance (GV) [16]

postfilter is applied to the converted spectral sequence to allevi-

ate oversmoothed structures.

3. Waveform-processing module

The NU VC system uses a WaveNet-based vocoder [17, 18, 19]

to model the waveform of the target speaker and generate the

converted waveform using estimated speech features. Sev-

eral flows are used in producing the estimated spectral fea-

tures, where the direct waveform modification [2] method is

employed. In addition, a selection procedure is performed to

obtain the best waveform generation flow in an utterance-wise

manner.

3.1. Analysis-synthesis with direct waveform modification

It is well known that vocoder-based waveform generation usu-

ally causes quality degradation in the generated speech owing

to the difficulty of modeling source excitation signals. To avoid

this issue, the direct waveform modification (DiffVC) method

[2] has been proposed to directly filter an input waveform ac-

cording to spectral differences between the target waveform and

the input waveform. However, because the excitation features

are not converted, it is difficult to convert speaker characteris-

tics with a large difference in prosody characteristics, such as

in a cross-gender conversion. Here, we describe an analysis-

synthesis method to obtain refined spectral parameters that is

based on the DiffVC method while making it possible to per-

form F0 conversion within the analysis-synthesis flow, as shown

by the bottom flow in Fig. 2.

The analysis-synthesis procedure produces three different

types of speech features to be fed into the WaveNet vocoder.

The first one is called the “cv mcep” set, which consists of

the GV-postfiltered estimated target spectral parameters (“GV-

PF-ed mcep”) and the input band-aperiodicity features. Fol-

lowing this, the input waveform is then directly filtered (“diff-

waveform”) according to the spectral differences between GV-
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Figure 3: Architecture of the WaveNet vocoder having stacked

residual blocks consisting of dilated convolutional layers to di-

rectly model waveform samples.

PF-ed mcep and the input spectral parameters. Then, by ana-

lyzing diff-waveform according to the original F0 values, the

second feature set, called the “diff” set, which consists of the

modified spectral and band-aperiodicity features, is obtained.

Next, after performing the conversion of the F0 values, the F0-

modified diff-waveform (“diff-conv-F0 waveform”) is synthe-

sized with a vocoder by using diff parameter set. Finally, the

third set of parameters, called “diff anasyn”, is obtained by an-

alyzing diff-conv-F0 waveform according to the converted F0
values. Note that the estimated target spectral parameters are

generated in accordance with Section 2, while the converted F0
values are used by all three types of speech parameter set. Fur-

thermore, we also investigated the use of the estimated input

spectral parameters to compute the spectral differences (“diff-

mcep”), as shown in the upper part of Fig. 2, although it did not

yield significant improvements.

3.2. WaveNet-based waveform modeling and generation

The WaveNet vocoder [21], as illustrated in Fig. 3, is trained

using the conditional pdf of each waveform sample with respect

to their previous samples and possible auxiliary speech features.

The likelihood function of a sequence of waveform samples s =
[s1, s2, . . . , sT ]

⊤ given a sequence of auxiliary features h =
[h⊤

1 ,h
⊤
2 , . . . ,h

⊤

T ]
⊤ is defined as follows:

P (s|h) =
T
∏

t=1

P (st|s1, s2, . . . , st−1,ht). (15)

In modeling the speech waveform, WaveNet uses a stack of

dilated convolutional layers, which makes it possible to expo-

nentially increase the number of receptive fields on the wave-

form samples efficiently. In each step of the layer, there is

a residual block consisting of a 2×1 dilated causal convolu-

tion with a gated activation function, and two 1×1 convolutions

connected to either the next residual block or the skip connec-

tion. All skip connection outputs from the residual blocks are

summed then fed to a post-processing layer. The gated activa-

tion function in a residual block including the auxiliary features

is defined as follows:

tanh (Wf,k ∗ s+Vf,k ∗ h′)⊙ σ(Wg,k ∗ s+Vg,k ∗ h′), (16)

where W ∗s denotes a dilated causal convolution, V ∗h′ denotes

a 1×1 convolution, σ denotes a sigmoid activation function, k

is the layer index, f and g denote “filter” and “gate”, respec-

tively, and h′ denotes transformed auxiliary features with the

same time resolution as the speech waveform. The trainable

convolution filters are denoted as W and V .

The NU VC system uses F0 information, mel-cepstrum pa-

rameters, and band-aperiodicity features as the auxiliary fea-

tures for the WaveNet vocoder, where their time resolution is

adjusted to that of the waveform by simply copying the val-

ues at respective frames. The F0 information includes un-

voiced/voiced (U/V) binary decision and interpolated contin-

uous F0 values. In the training of the model, these auxiliary

features are extracted from the speech waveform. In the wave-

form generation phase, these parameters are obtained by one of

the three different flows described in Section 3.1. Finally, the

converted waveform is generated sample by sample.

3.3. Flow selection with an automatic waveform checker

The WaveNet-based vocoder is capable of generating much

more natural-sounding waveforms than a conventional vocoder.

However, sometimes the converted waveform generated by the

WaveNet vocoder incorporates collapsed segments. This is

most likely caused by the mismatch between the converted aux-

iliary features and the original features used in training the

model. To recap, three different auxiliary features, described

in Section 3.1, are considered in the WaveNet-based vocoder,

i.e., the cv mcep set, diff set, and diff anasyn set, as also shown

in Fig. 2. To select the best flow in the waveform generation,

the NU VC system employs an automatic waveform checker to

perform utterance-based selection.

To select the best waveform generation flow for each ut-

terance, a power-based detector is employed to automatically

detect collapsed segments in WaveNet-generated waveforms.

From the spectrum of a generated waveform, frame-based sum-

mation is performed using the power spectrum of all frequency

bins P and that of the Nyquist frequency components L. Let

P (W ) = [P
(W )
1 , . . . , P

(W )
T ] and P (C) = [P

(C)
1 , . . . , P

(C)
T ]

denote the power summation sequence from all frequency bins

of a WaveNet-generated waveform and that of a conventional

vocoder, respectively. The power summation sequences from

the Nyquist frequency components are respectively denoted as

L(W ) = [L
(W )
1 , . . . , L

(W )
T ] and L(C) = [L

(C)
1 , . . . , L

(C)
T ]. In

the detection, the differences in the maximum power between

the WaveNet-generated waveform and that generated the con-

ventional vocoder are computed as follows:

∆P = max(P (W ))−max(P (C)) (17)

∆L = max(L(W ))−max(L(C)). (18)

The system selects the best waveform generation flow through

the comparison of ∆P and ∆L with an empirical threshold,

where both values will be higher than the threshold for a low-

quality waveform.



4. Experiments and results

4.1. Experimental conditions

The speech database for the HUB task of the VCC 2018 con-

sisted of four source speakers and four target speakers, which

had two female and two male speakers for the source and an-

other two female and two male speakers for the target. In

the training set, each speaker uttered the same set of 81 En-

glish sentences, whereas the evaluation set consisted only of

the four source speakers uttering another set of 35 sentences.

The speech signal sampling rate was 22,050 Hz. The WORLD

[23, 24] package was used in speech analysis. From a speech

signal, 35-dimensional mel-cepstrum parameters including the

0th power coefficient, F0 values, and 513-dimensional aperi-

odicity features, which were coded into two-band aperiodicity

parameters, were used. The frame shift was set to 5 ms.

Following the spectral parameter conversion module de-

scribed in Section 2, the DNN used four hidden layers. On

the other hand, the DMDN used a total of three hidden layers

and 16 mixture components. CascDMDN, which is a combina-

tion of these two structures, used one hidden layer for estimat-

ing source spectral parameters and four hidden layers with 16
mixture components for estimating target spectral parameters.

ReLU activation function was used for the hidden units. For ev-

ery model, the learning rate was set to 0.0006, the weights were

initialized with the Xavier [25] method, the initial biases were

set to zero, the Adam [26] optimization was employed, and an

utterance-size batch was used.

The NU VC system used the WaveNet-based vocoder de-

scribed in Section 3.2 for waveform modeling and generation.

The hyperparameters of the WaveNet vocoder are as follows:

the learning rate was set to 0.001 with a decay factor of 0.5
per 50,000 iteration steps, 20,000 batch-size samples were used

with a total of 200,000 iteration steps, the number of residual

blocks was 30, the dilation sequence was 1, 2, 4, . . . , 512 with

three repetitions, the number of channels for residual blocks

and dilated causal convolution was 512, the number of channels

for skip connection was 256, and the Adam [26] algorithm was

used for optimization. To train the WaveNet model, a speaker-

independent (SI) network was first trained by using all the data

of eight speakers in the HUB task plus the data of four speak-

ers from the SPOKE task, i.e., with another 81 different sets

of utterances, and the data of two speakers from the ARCTIC

database, i.e., “rms” and “slt”, with each having 1132 utter-

ances. The SI-WaveNet model was then fine-tuned by updating

only the output layers using the data of each of the four target

speakers, which resulted in four WaveNet models.

In the waveform generation phase, the three different aux-

iliary features described in Section 3.1 were considered, i.e.,

cv mcep, diff, and diff anasyn, as shown in Fig. 2. The list

of priorities was made heuristically, with the diff anasyn set at

the top followed by the diff set. As described in Section 3.3,

to avoid collapsed segments in the WaveNet-generated wave-

forms, the NU VC system used a flow selection procedure to

rule out waveforms with low quality.

The results of using mel-cepstral distortion to evaluate the

spectral conversion module are given in the objective evalua-

tion results. An internal subjective evaluation was conducted

to assess the performance of the NU VC system with the pro-

vided baseline system, i.e., “sprocket” [27], where the results

are given in the internal subjective evaluation section. Finally,

the last three sections describe the official results of the sub-

jective evaluation in VCC 2018. Note that the results for the

SPOKE task (nonparallel data) are presented in [28].
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Figure 4: Plot of mel-cepstral distortions for DNN, DMDN,

and CascDMDN, measured with the first 10 utterances excluded

from the training dataset.

4.2. Objective evaluation

To compare the several deep learning models presented in Sec-

tion 2, an evaluation of mel-cepstral distortion was performed

for the DNN, DMDN, and CascDMDN for the spectral param-

eter estimation. In this objective evaluation, the first 10 utter-

ances from the training dataset were excluded while training the

models. Then, they were used to compute the mel-cepstral dis-

tortion between the extracted target mel-cepstrum parameters

and the estimated values as follows:

Mel-CD[dB]t =
10

ln 10

√

√

√

√2

34
∑

d=1

(yt(d)− ŷt(d))2, (19)

where yt(d) and ŷt(d) denote the dth dimension of the extracted

mel-cepstrum parameters and that of the estimated values at

frame t, respectively.

The trends of the mel-cepstral distortion averaged over all

16 speaker pairs during 70 training epochs are shown in Fig.

4. It can be observed that CascDMDN is capable of providing

much more stable distortion than the conventional DNN and

slightly more stable distortion than the conventional DMDN.

The flexibility of the CascDMDN structure in providing access

to estimated source spectral parameters makes a good choice for

the spectral conversion model in the NU VC system. The over-

fitting condition observed in this objective evaluation served as

a reference in training the final model using all training data.

4.3. Internal subjective evaluation

In the internal subjective evaluation, two preference tests (natu-

ralness and speaker similarity) were conducted to compare the

performance of the NU VC system with that of the baseline sys-

tem, i.e., sprocket [27]. All 16 speaker pair models for the four

source and four target speakers were used in the evaluation. The

total number of available evaluation utterances was 35. The to-

tal number of listeners was eight and none of them were native

English speakers. In the naturalness test, two audio samples,

one each for the NU and the baseline system, of the same ut-

terance were presented to a listener in a random order. Then,

the listener was asked to select the audio preference according

to naturalness. Meanwhile, in the preference test, in addition to

two generated audio samples, two original audio samples of the

corresponding target speaker randomly taken from the training



Table 1: Result of naturalness preference test in the internal

subjective evaluation of the NU VC system and the baseline

(sprocket) for same-gender and cross-gender conversions.

Naturalness Same-gender Cross-gender

Baseline 68%± 7% 42%± 7%
NU 32%± 7% 58%± 7%

Table 2: Result of speaker identity preference test in the internal

subjective evaluation of the NU VC system and the baseline

(sprocket) for same-gender and cross-gender conversions.

Spk. Identity Same-gender Cross-gender

Baseline 43%± 7% 45%± 8%
NU 57%± 7% 55%± 8%

dataset were presented. The listener was then asked to select

their preference based on the similarity to the target speaker

characteristic. From the 35 evaluation utterances, three were

randomly taken for each speaker pair in each preference test,

resulting in a total of 92 audio samples for each listener.

The results of the internal subjective evaluation are summa-

rized in Tables 1 and 2. It can be observed that the baseline

system achieves a significantly higher preference score in terms

of naturalness for the same-gender conversions, with a score

of 68%, compared with 32% for the NU system. However,

the NU system yields a higher naturalness preference score for

the cross-gender conversions, with a score of 58%, compared

with 42% for the baseline. On the other hand, in the prefer-

ence test for speaker similarity, the NU system achieves higher

preference scores for both same- and cross-gender conversions,

with scores of 57% and 55%, compared with 43% and 45%
for the baseline, respectively. This result is reasonable because

the baseline, i.e., sprocket, uses vocoder-free waveform gener-

ation for same-gender conversions and vocoder-based genera-

tion for the cross-gender conversions. This implies that the use

of a WaveNet-based vocoder can improve the generated wave-

form quality compared with that obtained using the conven-

tional vocoder and gives much higher accuracy than both the

conventional vocoder and the vocoder-free system, i.e., direct

waveform modification.

4.4. Official subjective evaluation

In VCC 2018, to compare the performance of the submitted

systems, an official subjective evaluation was conducted, which

consists of a mean opinion score (MOS) test on the speech qual-

ity and a speaker similarity test. In the MOS test, each listener

was given stimuli of audio samples and asked to evaluate the

naturalness of the speech sounds using a five-point scale (1:

Completely unnatural; 2: Mostly unnatural; 3: Equally natu-

ral and unnatural; 4: Mostly natural; 5: Completely natural).

In the speaker similarity test, each listener was given a pair of

audio samples as stimuli and asked to judge whether they were

produced by the same speaker. Their confidence in the decision

was given on a four-point scale (1: Same, absolutely sure; 2:

Same, not sure; 3: Different, not sure; 4: Different, absolutely

sure). The total number of listeners was 106 (49 female, 57
male).

The results of the official objective evaluation are summa-

rized in Fig. 5. The results show the average MOS in terms of

speech quality, plotted on the x-axis, for every submitted sys-
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Figure 5: Scatter plot of mean opinion score (MOS) for speech

quality and speaker similarity score for the submitted systems

along with baseline (sprocket) [B01], source [S00], and target

[T00] speech. The NU VC system is N17.

tem, including the baseline (sprocket), as well as the original

source and target speakers. The similarity scores (in %), com-

puted by adding up the two confidence scores in each binary

similarity decision, are plotted on the y-axis. The NU VC sys-

tem, denoted as N17, achieves an MOS of 3.44 for speech qual-

ity, compared with 3.57 for the baseline, 4.15 for the top sys-

tem, i.e., N10, and also 3.44 for the closest system, i.e., N08.

On the other hand, for the speaker similarity test, the NU VC

system achieves a similarity score of 85%, outperforming the

baseline (68%) and all other systems except system N10, which

has slightly higher accuracy (86%). Overall, the NU VC system

was placed as the runner-up behind the top system, N10. De-

tails of the official subjective evaluation results are given in the

following sections.

4.5. Detailed results for speech quality

The detailed official results of the MOS for speech quality for

all systems including the baseline, are given in Figs. 6 and

7. The results for same-gender conversions, which consist of

female-to-female (F-F) and male-to-male (M-M) conversions,

are shown in the Fig. 6, whereas, those for the cross-gender con-

versions, i.e., female-tomale (F-M) and male-to-female (M-F),

are shown in Fig. 7.

The NU VC system, denoted as N17, achieves an MOS of

3.24 for the cross-gender conversions and 3.63 for the same-

gender conversions, which place the system in the fourth and

the third places, respectively. The MOSs for each gender con-

version are 3.89 for F-F, 3.38 for M-M, and 3.24 for both F-M

and M-F. Compared with the baseline, it is expected that the

NU system will perform better in cross-gender conversions be-

cause sprocket uses the vocoder-based method in these conver-

sions. The MOSs for the baseline system are 4.10, 3.88, 3.31,

and 3.00 for the above conversions, respectively. However, the

NU system is outperformed by the top system, i.e., N10, which

achieves an MOS of over 4.10 for every gender-type conver-

sion. Overall, compared with the other submitted systems, the
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Figure 6: MOS results for speech quality for same-gender con-

versions, i.e., female-to-female (F-F) and male-to-male (M-M)

conversions. The NU VC system is N17.
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Figure 8: Similarity percentage results for same-gender conver-

sions, i.e., F-F and M-M conversions with two confidence levels

in the binary decision. The NU VC system is N17.

NU system yields a good performance with an average MOS of

3.44 over all speaker pairs, the same as the system N08, slightly

below those of the baseline (3.57) and far behind system N10

(4.15).

4.6. Detailed results for speaker similarity

The official results for the speaker similarity evaluation are

shown in Figs. 8 and 9. The results for same-gender conver-

sions, i.e., F-F and M-M, are shown in Fig. 8, whereas the result

for cross-gender conversions, i.e., F-M and M-F, are shown in

Fig. 9. These figures show the percentage of speaker similarity

decisions, i.e., “same” or “different”, each with two confidence

levels, i.e., “sure” and “not sure”. To measure the final similar-

ity score, the percentage scores of “same” (“sure”) and “same”

(“not sure”) are added together.

The NU VC system (N17) has a total similarity score of

82% (“same” decisions), i.e., 18% “different” decisions for the

same-gender conversions, and a similarity score of 87% for the

cross-gender conversions. The details for each gender conver-

sion are as follows: similarity scores of 82% for F-F conversion,

83% for M-M conversion, 93% for F-M conversion, and 76%
for M-F conversion. In this speaker similarity evaluation, the
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Figure 7: MOS results for speech quality for cross-gender con-

versions, i.e., female-to-male (F-M) and male-to-female (M-F)

conversions. The NU VC system is N17.
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Figure 9: Similarity percentage results for cross-gender conver-

sions, i.e., F-M and M-F conversions with two confidence levels

in the binary decision. The NU VC system is N17.

NU system outperforms the baseline, as shown in both Figs. 8

and 9, where the baseline has the following similarity scores in

the same order: 84%, 53%, 59%, and 60%. Compared with the

top system, i.e., N10, the NU VC system yields similar results:

where our system has a slightly better scores in F-F conversion

(81% for N10) and in F-M conversion (91% for N10), a lower

score in M-F conversion (85% for N10), and a much lower score

in M-M conversion (94% for N10). Overall, the NU VC sys-

tem yields a very good performance with an average similarity

score of 85% over all speaker pairs, outperforming the baseline

(68%) and all of the systems (the closest are N14 with 74%,

and both N05 and N08 with 73%) except for N10, which has a

slightly higher score of 86%.

5. Conclusion

In this paper, the NU (Nagoya University) voice conversion

(VC) system developed for the HUB task of the Voice Con-

version Challenge 2018 has been presented. The NU VC sys-

tem adopts a deep learning architecture to develop a spectral pa-

rameter conversion model by combining a deep neural network

(DNN) and deep mixture density network (DMDN) to form



a cascaded DMDN (CascDMDN). In the waveform modeling

and generation, the NU VC system employs a WaveNet-based

vocoder. The auxiliary features fed into the WaveNet system

are chosen from several analysis-synthesis flows using a model

selection procedure in an utterance-wise manner. The results of

the challenge put the NU VC system in the second place with an

average mean opinion score (MOS) of 3.44 for speech quality

and a similarity score of 85% for speaker identity.
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