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Abstract. In engineering practice not always is possible the measure-
ments of temperature on both side of wall (for example turbine casing or
combustion chamber). On the other hand it is possible measurement both
temperature and heat flux on outside wall. For transient heat conduction
equation the measurements of temperature and heat flux supplemented
by initial condition state Cauchy problem which is ill conditioned. In
the paper the stable solution is obtained for Cauchy problem by using
Laplace transformation and minimisation of continuity in the process
of integration of convolution. Test examples confirm the proposed algo-
rithm of solution of inverse problem. In the numerical calculations the
initial temperature was equal to zero and because of insulation the outer
surface of turbine causing the heat flux was also equal zero.

Keywords: Inverse heat conduction · Cauchy problem · Laplace trans-
formation · Regularization.

1 Introduction

In thermal problems, the coefficients of governing equations such as the thermal
conductivity, density and specific heat, as well as the intensity and location of in-
ternal heat sources, if they exist, and appropriate boundary and initial conditions
should be specified. Such problems are referred to as ‘direct thermal problems’
and may be accurately solved by standard numerical methods since they are
well-posed. However, in many practical applications which arise in engineering,
a part of the boundary is not accessible for heat flux or temperature measure-
ments. For example, the temperature or the heat flux may be serious affected by
the presence of a sensor and, hence, there is a loss of accuracy in measurement
or, more simply, the surface of the body may be unsuitable for attaching a sensor
to measure the temperature or the heat flux. As examples can be inner surface of
turbine casing or combustion chamber. The situation when neither the heat flux
nor temperature can be determined on a portion of the boundary, while both
of them are prescribed on the remaining portion, leads to an ill-posed problem
termed the ‘Cauchy problem’. The Cauchy problem is an ill-posed problem and
it is more difficult to solve both analytically and numerically.
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The Cauchy problem is not new intge literature, see e.g. [1–7]. Due to its ill-
posed character many approximate method were used. In paper [1], the problem
is reduced to a linear integral Volterra equation of II type which admits a unique
solution. The method of fundamental solution was used in paper [2] for solving
the steady Cauchy problem. In papers [3, 4], the finite deference method with
Fourier transform techniques were applied. Legandre polynomials were used in
paper [5] for solvingn 1-D Cauchy problem. The Wavelet-Galerkin and Fourier
transform methods were utilized in paper [6]. The uniqueness of solution to an
ill-posed of Cauchy problem was considered in paper [7].

The purpose of this paper is to propose a stable solution which obtained for
Cauchy problem by using Laplace transformation and minimisation of continu-
ity in the process of integration of splice. Test examples confirm the proposed
algorithm of solution of inverse problem.

2 Fundamental Equation

For region shown on Fig. 1 the governing equation and conditions describing
heat flow are the following:

- heat conduction equation (ρ - denotes densinty, c - relative heat, λ - heat
conduction coefficient):

ρc · ∂T
∂t

=
∂

∂x

(
λ
∂T

∂x

)
, x ∈ (0, δ), t > 0 (1)

- initial condition:

T (x, 0) = T0(x) (2)

- boundary conditions:

T (x = δ, t) = h(t) (3)

−λ∂T
∂x

∣∣∣∣
x=δ

= Q(t) (4)

T (x = 0, t) = f(t) (5)

where the temperature f(t) is unknown.
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Fig. 1. Calculation area

In consideration of the boundary conditions (3) and (4) the problem for-
mulated by [1–4] is Cauchy problem. For the next considerations the following
non-dimensional variables are introduced:

Tmax = max
x∈〈0,1〉,t≥0

(T (x, t)) , ϑ =
T

Tmax
, ξ =

x

δ
, τ =

λ

ρc
· t
δ2

(6)

and now a non-dimensional formulation of the problem is the following:

- heat conduction equation

∂ϑ

∂τ
=
∂2ϑ

∂ξ2
, ξ ∈ (0, 1), τ > 0 (7)

- initial condition
ϑ(ξ, 0) = ϑ0(ξ), ξ ∈ 〈0, 1〉 (8)

- boundary condition at surface ξ = 1

ϑ(1, τ) = h(τ), h = H · Tmax, τ > 0 (9)

−∂ϑ(1, τ)

∂ξ
= q(τ), q =

δ

λ · Tmax
·Q, τ > 0 (10)

- unknown boundary condition at surface ξ = 0

ϑ(0, τ) = χ(τ), τ > 0. (11)

In the consideration of linearity of equations (6-9) for their solution, the
Laplace transformation will be used. Let

Lϑ(ξ, τ) = ϑ̄(ξ, s) =

∞∫
0

ϑ(ξ, τ) · e−sτdτ. (12)
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then the system of equations (6-9) is transformed to the form:
- heat conduction equation with initial condition:

ϑ̄(ξ, s)− s · ϑ(ξ, 0) =
d2ϑ̄

dξ2
, ϑ(ξ, 0) = ϑ0(ξ) (13)

- boundary conditions at surface ξ = 1:

ϑ̄(1, s) = h(s) (14)

−dϑ̄(ξ, s)

dξ
= q̄(s) (15)

- unknown boundary condition at surface ξ = 0:

ϑ̄(0, s) = χ̄(s). (16)

The idea of determination of unknown distribution (14) is based on the solu-
tion of direct problem, namely on solving equation (11) with condition (13) and
(14) and on the next determination relation between unknown function f(t) and
measured temperature h(t).

For simplicity it is assumed ϑ0(ξ) = ϑ0 = const, then the solution of direct
problem has the form:

ϑ̄(ξ, s) = χ̄(s) · cosh
√
s(1− ξ)

cosh
√
s

+

+q̄(s) · sinh
√
sξ√

s · cosh
√
s

+
ϑ0
s
·
(

1− cosh
√
s(1− ξ)

cosh
√
s

)
.

(17)

For ξ = 1:

ϑ̄(1, s) = χ̄(s) · 1

cosh
√
s

+ q̄(s)
tanh

√
s√

s
+
ϑ0
s

(
1− 1

cosh
√
s

)
. (18)

The unknown function χ̄(s) we will searched on the base of known distribu-
tion (9), namely

ϑ̄(1, s) = s · χ̄(s) · 1

s · cosh
√
s

+ q̄(s)
tanh

√
s√

s
+
ϑ0
s

(
1− 1

cosh
√
s

)
= h̄(s).

In this way we have Volterra integral equation of the second kind for deter-
mination of function χ(τ) in the form

L−1 [s · χ̄(s)] ∗ L−1
[

1

s cosh
√
s

]
+ L−1 [sq̄(s)] ∗ L−1

[
tanh

√
s

s
√
s

]
+

+ϑ0

{
η(τ)− L−1

[
1

s cosh
√
s

]}
= h(τ).
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Therefore, the solution in the transformation region is

ϑ̄(ξ, s) = s · χ̄(s) · cosh
√
s(1− ξ)

s · cosh
√
s

+

+s · q̄(s) · 1

s
· sinh

√
sξ√

s · cosh
√
s

+ ϑ0

(
1

s
− 1

s · cosh
√
s

)
, ξ ∈ 〈0, 1〉

(19)

The poles of transform (19) are given by the equations

s = 0 and cosh
√
s = 0 (20)

Therefore, putting
√
s = i · µ we obtain the following equation

cosh
√
s = cosh i · µ = cos µ = 0,

then

µn = (2n− 1) · π
2
, n = 1, 2, ... (21)

In this way

L−1
[

cosh
√
s(1− ξ)

s · cosh
√
s

]
=

= res
s=0

cosh
√
s(1− ξ)

s · cosh
√
s

+

∞∑
n=1

res
s=sn

cosh
√
s(1− ξ)

s · cosh
√
s
· es·τ =

= 1 +

∞∑
n=1

lim
s=sn

(s− sn) · cosh
√
s(1− ξ)

s · cosh
√
s

· esτ =

= 1− 2

∞∑
n=1

2 coshµn(1− ξ)
µn · sinµn

· e−µ
2
n·τ =

= 1− 4

µ

∞∑
n=1

sinµnξ

2n− 1
· e−µ

2
n·τ =

L−1
[

1

s
· sin

√
sξ√

s · cos 2

]
= ξ − 2

∞∑
n=1

(−1)n−1 · sinµnξ

µ2
n

· e−µ
2
n·τ ,

(22)

because

L[q′(τ)] = s · q(s)− q(0) and L−1[sq(s)] = q′(τ) + q0 · δ(τ),
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then the inverse Laplace transformation is equal:

ϑ(ξ, τ) = L−1
[
ϑ̄(ξ, s)

]
= ϑ0

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+

+L−1 [s · χ(s)] ∗

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+

+L−1 [sq(s)] ∗

(
ξ − 8

π2

∞∑
n=1

(−1)n−1
sin(2n− 1)π2 ξ

(2n− 1)2
· e−µ

2
n·τ

)
=

= ϑ0

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+ [χ′(τ) + χ0 · δ(τ)] ∗ η(τ)−

−1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ ·

τ∫
0

[χ′(p) + χ0 · δ(p)] · e−µ
2
n·p · dp+

+ [q′(τ) + q0 · δ(τ)] ∗ η(τ) · ξ−

− 8

π2

∞∑
n=1

(−1)n−1
sin(2n− 1)π2 ξ

(2n− 1)2
· e−µ

2
n·τ ·

τ∫
0

[q′(p) + q0 · δ(p)] · e−µ
2
n·p · dp =

= ϑ0

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+ χ(τ) ·

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1

]
+

+π ·
∞∑
n=1

(2n− 1) · sin(2n− 1)
π

2
ξ · e−µ

2
n·τ ·

τ∫
0

χ(p) · e−µ
2
n·p · dp+

+

∞∑
n=1

sin(2n− 1)
π

2
ξ · e−µ

2
n·τ ·

τ∫
0

q(p) · e−µ
2
n·p · dp

(23)

For series in second bracked in (23), if ξ > 0 then

4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
= 1,

then the square bracket in (23) at function χ(τ) is equal to zero for ξ =
0, ϑ(0, τ) = χ(τ).
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The next consideration is carried out for the case when q(τ) = 0 and ϑ0 = 0,
at that time the solution (23) can be written in the following form

ϑ(ξ, τ) =

τ∫
0

χ(p) · 2
∞∑
n=1

µn · sinµnξ · e−µ
2
n(τ−p) · dp =

=

τ∫
0

χ(p) · ψ(ξ, τ, p) · dp, ξ ∈ (0, 1〉 ,

(24)

where

ψ(ξ, τ, p) = 2

∞∑
n=1

µn · sinµn · e−µ
2
n(τ−p).

From condition (9) on the base (24) we obtained the following equation for
determination of function χ(τ)

ϑ(1, τ) =

τ∫
0

χ(p) · ψ(ξ, τ, p) · dp = h(τ) (25)

or
τ∫

0

χ(p) · ψ(1, τ, p) · dp = h(τ) (25a)

The equation is an integral equation of Volterra kind.

Solution of integral equation (25a)
Function h(t) is the known temperature at the boundary ξ = 1 and in practice

is known from the measurements in time points, with constant time steps τk =
k ·∆τ, k = 0, 1, 2, ..., then equation (25a) takes form:

τk∫
0

χ(p) · ψ(1, τk, p) · dp = h(τk) or

τk∫
0

χ(p) · ψk(1, p) · dp = h(τk) = hk (26)

Since

τk∫
0

χ(p) · ψk(ξ, p) · dp =

k∑
j=1

τj∫
τj−1

χ(p) · ψk(ξ, p) · dp =

k∑
j=0

χj · ψkj(ξ) (27)

equation (26) for succeeding time while instants takes the form:
k = 1 : χ0 · ψ10 + χ1 · ψ11 = h1
k = 2 : χ0 · ψ20 + χ1 · ψ21 + χ2 · ψ22 = h2
k = 3 : χ0 · ψ30 + χ1 · ψ31 + χ2 · ψ32 + χ3 · ψ33 = h3
................................................................

(28)
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Then for χ0 = 0 the system of equation (28) has the following solution

χ1 = (h1/ψ11) χk =

hk − k−1∑
j=1

ψkj(ξ = 1) · ϕj

 /ψkk, k ≥ 2 (29)

Let’s determine the elements ψkj of the matrix [ψ]. These elements ψkj are
essentially dependent from the way of integration of function χ(p); the simplest
way of integration in (27) can be expressed as

τk∫
0

χ(p) · ψk(ξ, p) · dp =

k∑
j=1

τj∫
τj−1

χ(p) · ψk(ξ, p) · dp =

=
k∑
j=1

τj∫
τj−1

[Θ · χj−1 + (1−Θ) · χj ] · ψk(ξ, p) · dp =

=

k∑
j=1

[Θ · χj−1 · rj + (1−Θ) · χj · rj ] = Θ · χ0 · rk1+

+

k∑
j=1

χj [Θ · rkj+1 + (1−Θ) · rkj ] + (1−Θ)χk · rkk =

k∑
j=0

χjψkj

rkj =

τj∫
τj−1

ψk(ξ, p) · dp (30)

χk0 = Θ · rk1, χkj = Θ · rkj+1 + (1−Θ)rkj

j = 1, ..., k − 1, χkk = (1−Θ)rkk, Θ ∈ (0, 1)

The system of equation (28) can be written in the matrix form

[ψ] {χ} = {h} , dim[ψ] = M ×M, dim {h} = M (31)

Since

ψ(ξ, τ, p) = 2

∞∑
n=1

µn · sinµnξ · e−µ
2
n(τ−p)

then for we have τk = k ·∆τ

rkj =

τj∫
τj−1

ψ(ξ, τ, p) · dp = 2

∞∑
n=1

µn · sinµnξ ·
τj∫

τj−1

e−µ
2
n(τ−p) · dp =

= 2

∞∑
n=1

sinµnξ

µn
·
(
e−µ

2
n(τk−τj) − e−µ

2
n(τk−τj−1)

)
=

= 2

∞∑
n=1

sinµnξ

µn
·
(
e−µ

2
n∆τ(k−j) − e−µ

2
n∆τ(k−j+1)

)
(32)



Solution of inverse problem Cauchy type (design) for plane layer 9

It should be noted that rkj = rk+1,j+1. Then ψkj = ψk+1,j+1. This property
allows to reduce the calculation time of the elements of matrix [ψ].

3 Numerical Calculations

In order to test the solution of integral equation (26) we will compare the nu-
merical solution with the analytical solution. The analytical solution to equation
(7) with the initial condition ϑ(ξ, 0) = 0 and the following boundary conditions

ϑ (ξ = 0, τ) = Tb ·
(
1− e−βτ

)
, −∂ϑ (ξ = 1, τ)

∂ξ
= Bi · ϑ (ξ = 1, τ) (33)

has the form

ϑ (ξ, τ) = Tb ·
(

1− Bi

Bi+ 1
· ξ
)(

1− e−βτ
)

+

+2Tb · β · e−βτ ·
∞∑
n=1

wn(ξ) · 1

p2n − β
−

−2Tb · β ·
∞∑
n=1

wn(ξ)− 1

p2n − β
· e−p

2
nτ ,

wn(ξ) = − sin pnξ

pn
·
(

1− Bi

Bi2 +Bi+ p2n

)
,

(34)

where the numbers pn are the following roots of equation

tan pn = − pn
Bi
, n = 1, 2, ..., and pn =

π

2
(2n− 1) as Bi→ 0,

and

lim
τ→∞

ϑ (ξ, τ) = Tb ·
(

1− Bi

Bi+ 1
· ξ
)

Solution (34) is used for the determination of functions h(t) and q(t) given
by formulas (9) and (10).

System (28) is numerically unstable and finding a solution to (31) for rel-
atively low values M leads to solving a system of equation of order M − 1.
Therefore, a regularization is needed. The oscillations of the vector {χ} are ap-
peared at the end of the interval 〈0,M ·∆τ〉, see Fig.2.

Regularization of solution of system of equations (31)
At each segment 〈τj−1, τj〉 , j = 1, ..., M the function χ(τ) in (30) is approx-

imated by the constant Θ = Θj−1 +Θj · (1−Θ), 0 < Θ < 1 , and therefore it is
not differentiable between the segments and has a jump of the first derivative.

Leading the first parabola χj−2,j−1,1 through the following points (τj−2, χj−2),
(τj−1, χj−1), (τj , χj) and the second parabola χj−1,j,j+1 through the points
(τj−1, χj−1), (τj , χj), (τj+1, χj+1) we require that the difference between the
first derivative in common points of the both parabolas must be equal to zero,
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Fig. 2. Oscillations of solution of system of equations (31)

Fig. 3. Idea of parabolic regularization of solution χ(τ)

Fig. 4. Idea of linear regularization of solution χ(τ)
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what in the case uniform net τj−1 and τj τk − τk−1 = h, k = 1, 2, ..., M leads
to the equation on the interval 〈τj−2, τj+1〉

χj−2 − 3χj−1 + 3χj − χj+1 = 0, j = 2, ...,M − 2. (35)

In the case of linear regularization, as shown in Fig. 4, the conditions leading
to the elimination of a jump of the first derivative are

χj−1 − 2χj + χj+1 = 0, j = 1, 2, ...,M − 1. (36)

The dimension of matrix [ψ] is dim[ψ] = (M + 1) × (M + 1), whereas for
not large values M , rank[ψ] = M , then it is sufficient to add condition (35) for
j = M − 1 to the system of equation (28). Let us consider a more general case,
namely, add condition (35) or (36) to system (28) with the internal knot number
M − 3. The system of equation is as follows[

[ψ]
[w]

]
{χ} =

{
{h}
{0}

}
, dim[ψ] = (M + 1)× (M + 1) , (37)

where the matrix [w] in accordance with condition (35) has the form

[w] =

 1 −3 3 −1 ... 0
... ... ... ... ... ...
0 ... 1 −3 3 −1

 , dim[w] = (M − 3)× (M + 1) . (38)

For condition (36) we have the following matrix

[w] =

 1 −2 1 ... 0
... ... ... ... ...
0 ... 1 −2 1

 , dim[w] = (M − 1)× (M + 1) . (39)

The solution of over-determined system of equations (37) can be obtained by
minimization of the functional

J ({χ}) = ‖[ψ] {χ} − {h}‖2 + α2 ‖[w] {χ}‖2 . (40)

If an exact solution
{
χ0
}

is known, then minimization of functional

J
(
{χ} ,

{
χ0
})

= ‖[ψ] {χ} − {h}‖2 + α2
∥∥[w]

(
{χ} −

{
χ0
})∥∥2 (41)

is equivalent to solving the system of equations for each value of the parameter
α which leads to the system of equations[

[χ]
α [w]

]
{χ} =

{
{h}

α [w]
{
χ0
}} =

{
{h}
{0}

}
+

[
[0]

αreg [w]

] {
χ0
}

(42)

or
[ψα] {χ} = {F1}+ [Pα]

{
χ0
}
,

dim [ψα] = dim [Pα] = (M + 1 +M − 2)× (M + 1) .
(43)
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Then
{χ} = [ψα]

+ · {F}+ [ψα]
+ · [Pα]

{
χ0
}

= {Gα}+ [Qα]
{
χ0
}

dim [Qα] = (M + 1)× (M + 1)
(44)

In general case the vector
{
χ0
}

is unknown, then creating the iteration pro-
cess {

χn+1
}

= {Gα}+ [Qα] {χn} , n = 0, 1, 2, ... , (45)

we have {
χn+1

}
=

n∑
j=0

[Qα]
j · {Gα}+ [Qα]

n+1 {
χ0
}

(46)

If the spectral radius ρs of the matrix [Qα] , ρs([Qα]) < 1, then Neumann series
in (46) is convergent.

In the case considered in the paper the spectral radius ρs = 1.
For the determination of the parameter α a modification of L-curve [8] is

used. As a regularization matrix [w] the matrix (36) resulting from condition
(36) is taken. A classic L-curve is presented in Fig. 5, which corresponds to the
matrix [w] = [I]. For the matrix [w] determined according to (39), this curve
has the shape given in Fig. 6. To obtain an explicit relationship with respect to
regularization the parameter α the function

‖[w] {χ}‖
‖[ψ] {χ} − {h}‖

= f(α) (47)

is introduced (see Fig. 7). The corner points in Figures 6 and 7 correspond
the same value of parameter α. This value of parameter α corresponds to the
minimum of the non-dimensional function

‖[α · w] {χ}‖
max (‖[α · w] {χ} − {h}‖)

= f

(
‖[ψ] {χ} − {h}‖

max(‖[ψ] {χ} − {h}‖)

)
, (48)

see Fig. 8. The indicated point of extreme on curve b) (48) correspond the
inflexion of curves

‖{χ}‖
max(‖{χ}‖)

= f

(
‖[ψ] {χ} − {h}‖

max(‖[ψ] {χ} − {h}‖)

)
, (49)

and
α

αmax
= f

(
‖[ψ] {χ} − {h}‖

max(‖[ψ] {χ} − {h}‖)

)
. (50)

For optimal values of regularization parameter α the inverse determination of
temperature at the points ξ = 0 and ξ = 1 and a comparison with exact data
were done. The obtained results confirm the appropriate choice of the curve (48).
This curve can be modified for the obtained relationship

‖[α · w] {χ}‖
max(‖[α · w] {χ} − {h}‖)

(
max

‖[α · w] {χ}‖
‖[ψ] {χ} − {h}‖

)−1
= f(α), (51)
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which is presented in Fig. 9. Noisy data were at level 10%. Conditional number
was calculated as follows

condn([ψ]) =
σmax([ψ])

σmin([ψ])
, σmin > 0 (52)

where in general σ is the singular value of the matrix [ψ].
The solution of inverse problem for different values of regularization parame-

ter α are given in Fig. 10 and 11. The course of temperature show the comparison
of temperature distribution over the time at point ξ = 0.0 and ξ = 1.0 respec-
tively for exact and noisy data and two values of regularization parameters α.

Fig. 5. Classic L - curve (Hansen[8]), in coordinates (‖[ψ] {χ} − {h}‖ , ‖{χ}‖)
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Fig. 6. L - curve in coordinates (‖[ψ] {χ} − {h}‖ , ‖[w] {χ}‖)

Fig. 7. L- curve in coorditates (α, ‖[w]{χ}‖
‖[ψ]{χ}−{h}‖ )
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Fig. 8. Dimensionless distributions of: ‖[α · w] {χ}‖ /max (‖[α · w] {χ}‖) , α/αmax,
‖χ‖ /max ‖χ‖ , condn/condnmax, as function of dimensionless values

Fig. 9. L-curve in coordinates given by (52) after 200 time steps
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Fig. 10. Comparision of solution of inverse problem with given data, boundary ξ =
1.0, for different values of regularization parameter α

Fig. 11. Comparision of solution of inverse problem with exact data, boundary ξ =
0.0, for different values of regularization parameter α
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4 Final Remarks

The consideration given in the paper permits the replacement of the classic L-
curve (Hanson [8]) by it’s modified version, L-w-curve is taken in coordinates
(‖[ψ] {χ} − {h}‖ , ‖[w] {χ}‖), where the matrix of regularization [w] is taken
into account (for [w] = [I], the curve L-w is the same as L-curve). The op-
timal point for L-w-curve is very near to the extremal point on L-αw-curve
in cordinates (‖[ψ] {χ} − {h}‖ , ‖[αw] {χ}‖) (see Fig. 9). The L-R-curve is the

function of parameter α and allows you to track changes of ‖[α·w]{χ}‖
‖[ψ]{χ}−{h}‖ as the

function of parameter α. The optimal point on L-αw-curve corresponds to the
point of inflexion of function ‖{χ}‖ and condition number condn of function
‖[ψ] {χ} − {h}‖, Fig. 8.

The way of regularization (39) tested in the paper allows us to obtain good
solution of the Cauchy problem even if the measurements error is 10.0%. This
is due to fact that the chosen way of regularization to achieve the smoothness
of solution is close to physical distribution.
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