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Abstract—Numerical simulations are used to analyze the effec-
tiveness of alternate public policy choices in limiting the spread
of infections. In practice, it is usually not feasible to predict
their precise impacts due to inherent uncertainties, especially at
the early stages of an epidemic. One option is to parameterize
the sources of uncertainty and carry out a parameter sweep to
identify their robustness under a variety of possible scenarios.
The Self Propelled Entity Dynamics (SPED) model has used
this approach successfully to analyze the robustness of different
airline boarding and deplaning procedures. However, the time
taken by this approach is too large to answer questions raised
during the course of a decision meeting. In this paper, we use
a modified approach that pre-computes simulations of passen-
ger movement, performing only the disease-specific analysis in
real time. A novel contribution of this paper lies in using a
low discrepancy sequence (LDS) in the parameter sweep, and
demonstrating that it can lead to a reduction in analysis time by
one to three orders of magnitude over the conventional lattice-
based parameter sweep. However, its parallelization suffers from
greater load imbalance than the conventional approach. We
examine this and relate it to number-theoretic properties of the
LDS. We then propose solutions to this problem. Our approach
and analysis are applicable to other parameter sweep problems
too. The primary contributions of this paper lie in the new
approach of low discrepancy parameter sweep and in exploring
solutions to challenges in its parallelization, evaluated in the
context of an important public health application.1

Index Terms—parameter sweep, low discrepancy sequence,
parallel computing, public health, air travel

I. INTRODUCTION

Air travel has been identified as a leading factor in the
spread of several infectious diseases [1], [2] including in-
fluenza, severe acute respiratory syndrome (SARS), tubercu-
losis, and measles. This has motivated calls for limitations
on air travel, for example during the 2014 Ebola outbreak
in West Africa. However, such limitations carry considerable
economic and human costs. Moreover, the benefits of such
travel restrictions are questionable [3].

The goal of Project VIPRA2 is to produce a science-based
analysis of public policy options that can lead to mitigating
the spread of diseases without disrupting air travel [3]–[8].
A major challenge in predicting the consequence of policy

1This material is based upon work supported by the National Science Foun-
dation grant #1640822 on Petascale Simulation of Viral Infection Propagation
Through Air Travel.

2www.cs.fsu.edu/vipra. This project has received recent publicity in over
75 news outlets around the world related to results on Ebola transmission in
planes.

or procedural change arises from the paucity of data in the
early stages of a potential epidemic and due to uncertainties in
human response to policy changes. Project VIPRA uses a new
approach in which sources of uncertainty are parameterized,
and the parameter space is explored to identify vulnerabilities
in a policy under a variety of possible scenarios. Rather than
come up with a precise prediction, the goal is to identify the
different possible outcomes, from which decision makers can
evaluate the robustness of a policy to the different scenarios
that could potentially arise.

In this manuscript, we focus on a critical model in VIPRA –
the Self Propelled Entity Dynamics (SPED) model – which is
used to simulate the movement of passengers in an airplane.
This model can be used to analyze the impact of boarding
and deplaning procedures on the spread of proximity-based
diseases, such as Ebola and SARS. This model is described
further in Section II.

A major limitation of the SPED implementation is that the
simulation time taken is around 20 minutes using thousands
of nodes of a parallel system even for moderate problem
sizes. Consequently, all analysis is now pre-computed, and
this model cannot answer new questions that are raised in the
course of a policy meeting, where a response time in the span
of a few seconds is desirable.

Our solution is to pre-compute the SPED simulation results,
which provides a large set of potential passenger trajectories
while boarding or deplaning. During the course of a decision
meeting, only the disease-specific analysis would then need to
be performed in real time. We describe our proposed use of
SPED in a decision meeting scenario further in Section III.

This scenario assumes that decision meetings are called at
the initial stages of a new disease outbreak. Some analysis
parameters depend on the particular strain of the disease
considered, such as the distance threshold within which a
human may transmit the infection to another human. Experts
may wish to determine the impact of different possible disease-
specific parameters. The same set of passenger trajectories
will be used in different decision meetings. Consequently, this
database of results should cover all conceivable scenarios.
That is, we wish to cover the parameter space dealing with
passenger trajectories very finely.

The computational effort increases exponentially with di-
mensionality, that is, as the model is refined to account for
more factors. In our current work, we report results with five



parameters, in contrast to three parameters in our previous
work [5]. It is computationally expensive to perform this
parameter sweep with the same fine granularity as we could
with three parameters.

Diseases may vary in their sensitivities to the passenger
trajectory parameters, and so it is possible that for a specific
disease, it is sufficient to analyze a coarser subset of the fine
parameter sweep. Ideally, we should be able to start from a
coarse parameter sweep, and make it increasingly fine until the
results show that we have converged to a sufficiently accurate
solution.

The original SPED code uses a lattice-based sweep. That
is, parameters are chosen from a uniform d-dimensional grid.
This has two limitations. First, for a specific number of points,
it does not cover the space efficiently, and second, it does not
permit efficient check of convergence, as explained in Section
IV. Our goal is to propose a novel alternative to this parameter
sweep. Since such lattice-based parameter sweeps are used in
other applications too [9]–[12], the results of our work will
have a broad impact beyond the specific application considered
here.

In Section IV, we also describe our solution, which is to
use a low-discrepancy sequence (LDS). A LDS can cover the
space efficiently and enable an efficient check for convergence.
Traditionally, LDSs have been used for integration, and much
theoretical analysis is focused on that. We propose it for the
parameter sweep, theoretically justify its promise in Section
IV, and empirically demonstrate its effectiveness in Section V.
We show that it can lead to a one to three orders of magnitude
improvement in performance over the conventional parameter
sweep.

The analysis is parallelized by having each core analyze a
few passenger trajectory files, synchronize with other cores to
verify if the computation has converged, and then repeat the
process if the computation has not converged. Load imbalance
can impact the analysis time. Load in the analysis of lattice-
based parameter sweep can be balanced effectively through
a simple cyclic distribution of parameters to core. We show
that this is usually not effective for the LDS-based parameter
sweep due to number-theoretic features of the LDS. We
show alternate approaches that are effective under different
scenarios. We discuss load balancing further in Section VI.

While the focus of this manuscript is on computation, rather
than on the science, we briefly point out a new discovery
enabled by our efficient and large parameter sweep in Sec-
tion VII. We show that the probability distribution for the
number of human interactions (which indicates the potential
for infection spread) is bimodal, and arises from the sum of
two Gaussian distributions. This is a novel observation, and it
gives a direction for epidemiologists to further investigate the
mechanisms responsible for it.

We discuss related work on epidemic modeling and LDS in
Section VIII. We then summarize our conclusions and present
directions for future work in Section IX.

II. SELF-PROPELLED ENTITY DYNAMICS MODEL

A. Modeling Passenger Movement in Planes

The Self-Propelled Entity Dynamics (SPED) model is used
to simulate movement of passengers in airplanes [4], [5]. Its
basic computational structure is similar to Molecular Dynam-
ics, with each passenger and fixed surface treated as a point
particle. Each human, and fixed surfaces such as seats and
walls, exerts a repulsive force on other passengers to prevent
them from coming too close. This repulsion is implemented
using a certain “potential” function, whose parameters can be
varied. Unlike with molecular dynamics, there is no attractive
force; instead passengers come closer toward each other due
to a self-propulsion term. For example, movement toward
the exit is the propulsion term when simulating deplaning.
These forces are used in Newton’s laws of motion and an
ordinary differential equation solved to generate trajectories
for passengers.

In practice, the above idealized propulsion and repulsion
terms are not adequate to model passenger behavior. The above
social-dynamics formulation is, therefore, complemented with
models for behavioral characteristics, such as passengers stop-
ping to collect luggage from overhead bins, in order to make
the simulation realistic. In addition, SPED includes some
randomness in the movement of passengers to account for
realistic variation in human behavior.

Given the inherent variation and uncertainty in human
behavior, a single set of simulation parameters cannot capture
the varieties of movement patterns in humans. Consequently,
the model parameters are varied to generate a large number
of scenarios for passenger trajectories. These trajectories are
analyzed to identify passengers who come close to each other.
If they come closer than a given threshold for a disease,
then it is considered a contact, which is associated with a
non-zero probability of infection transmission, if one of those
passengers was infected.

The VIPRA approach does not assume that the identity of
an infected passenger is known, because then alternate public
health strategies, such as quarantining, can be used. Instead, an
analysis is performed taking, in turn, each of the passengers
as a potential source of the disease. The goal is to identify
boarding or deplaning procedures that will be effective in
reducing the spread of infection when one does not know
which passenger is infected.

SPED Validation Analysis Infection

Fig. 1: SPED workflow

The workflow in the computation is shown in Figure 1. Note
that the workflow includes a validation step before the analy-
sis, for the following reason. While SPED desires to generate
a wide variety of possible scenarios, including extreme cases
that are rare, certain combinations of parameters lead to results
that are clearly unrealistic. Such scenarios are removed during
the validation phase. It is currently integrated with the SPED



simulation for reasons of computational efficiency mentioned
in [5].

B. Prior Result with SPED

Prior work [5] involved sweeping a three dimensional
parameter space (that is, three parameters were varied) with
41 choices for each parameter, leading to a parameter space
of 413 = 68921 parameter combinations. The sequential com-
putational time would be several thousand hours. It was par-
allelized on the Blue Waters system at NCSA. The schematic
for the parallel computation is shown in algorithm 1. Each
parameter combination runs on one core, though a single core
may run more than one parameter combination. The output for
each parameter combination is a file containing the trajectories
of all passengers.

The time taken for one parameter combination, to a large
extent, depends on the number of iterations required for
passengers to deplane, because the simulation stops when all
have deplaned. This varies considerably for different parameter
combinations, and therefore, dynamic load balancing was
performed. This yielded results in around 20 minutes of wall-
clock time using 39681 cores (1241 nodes).

Algorithm 1: Parallel scheme for the SPED simulation
procedure

Initialization
for each process do

Read input (coordinates, input parameters)
Loop over n time steps

for each pedestrian do
Compute desired velocity
Compute forces
Find new positions & velocities
Compute averages, neighbors

End loop
Data analysis

end procedure

The above parallelization was used to analyze the impact of
different policies under a variety of scenarios. For example,
we used the contact information to estimate the number of
new infections generated in flights with different boarding and
deplaning procedures [3].

III. SPED IN A DECISION MEETING SCENARIO

Next, we will discuss some limitations of SPED in a real-
time decision making context and our proposed approach
to deal with it. Decision makers from different domains
typically meet together in a decision meeting. The experts may
propose an evaluation of infection profiles based on infectivity,
probability of infection transmission, and contact threshold.
Computation of the contacts is the major computational bottle-
neck here. The infection profile can be obtained quickly from
formulas once this is computed. In the course of a decision
meeting, a real-time response to queries is required; otherwise,

it has been observed that people get distracted and digress to
other topics.

The current SPED implementation has a couple of com-
putational bottlenecks that make it infeasible for a real-time
response. Even a parallel parameter sweep is limited by
the speed of the slowest simulation, which is the order of
20 minutes. Thus, SPED currently pre-computes answers to
queries too, rather than responding to new queries.

An additional limitation makes even such pre-computations
difficult. The current SPED implementation involves five pa-
rameters, rather than three. Maintaining the same granularity
as with prior results (41 choices per parameter) would require
the order of tens of millions of hours of sequential computation
time. Even with massive parallelism, computer time allocation
limitations make this infeasible. Future versions of SPED are
expected to have more parameters, and given the exponential
relationship between dimension and number of parameter
combinations, this problem can be expected to get worse in
the future.

Our solution to the first problem, of real-time response, is
to separate the computation of passenger trajectories from the
analysis of contacts based on these trajectories. The simulation
of the trajectories accounts for most of the computational time.
These can be pre-computed, exploring the parameter space
exhaustively, so that results are available for analysis of any
disease that we may wish to perform in the future. Massive
parallelism can be used in the pre-computation phase.

In contrast, the analysis phase will occur in a decision
making context, where parallel computing resources will be
limited. Supercomputing centers can sometimes provide ded-
icated reservations for such meetings, however, it would be
wasteful to block a large number of nodes for the duration of
the meeting when the machines will be used only for short
bursts of time.

The current analysis implementation examines all pairs of
passengers at each recorded time step from the pre-computed
trajectories to check for possible interactions. This is inef-
ficient, and so we modified it using a standard technique.
The airplane is covered by a grid, with each cell in the
grid having dimensions of the contact threshold. For any
passenger in a cell, we examined only the local cell and
neighboring ones for possible contact. This resulted in about a
20% decrease in analysis time. While the analysis of a single
file is fast, the number of trajectory files to be examined – each
file corresponding to one parameter combination – is large,
which poses a computational bottleneck; analyzing all the files
sequentially in our example application would take tens of
hours, and even parallelization on 1000 cores would require a
few minutes, which is too long for a real-time response.

We seek to reduce the number of trajectory files that need
to be considered. We observe that diseases may vary in their
sensitivities to the passenger trajectory parameters, and so it is
possible that for a specific disease, it is sufficient to analyze a
coarser subset of the fine parameter sweep. Ideally, we should
be able to start from a coarse parameter sweep, and make it
increasingly fine until results show that we have converged to



a sufficiently accurate solution. That is, although the parameter
sweep in generating the trajectories is fine-scaled in order to
account for all possible contexts in which it may be used, we
may not need the finest granularity in typical situations. The
next section examines this issue in greater detail.

IV. LOW DISCREPANCY PARAMATER SWEEP

A. Covering the Parameter Space

We wish to cover the entire parameter space as efficiently
as possible. Basically, if we select N points, then the gaps
between the points are the uncovered areas. Of course, most
of the area will be uncovered. But, intuitively, we want the
gaps between the points to be uniformly small.

The conventional parameter sweep is lattice based. It does
not cover the space efficiently. For example, we can notice
from Figure 2a that the gap in the horizontal direction is lower
than the gap in the diagonal direction. This problem worsens
in higher dimensions.

Another problem with the lattice-based parameter sweep is
that it is inefficient in checking for convergence, as explained
below. Let us consider a grid with N = Rd points in d-
dimensions. To check for convergence, we check to see if the
output of a lattice stops changing much as we make the lattice
finer. To check if it has converged with N points, we need to
compare it against the results from the next smaller sub-lattice,
which would be approximately of size (R/2)d = N/2d if 2
is a prime factor of R-1, and even smaller otherwise. This
difference in the sizes of consecutive lattices – factor 2d – is
large, and we will not be able to detect a possible convergence
after size N/2d until we reach size N. For example, in 5
dimensions, this is a factor 32 difference. We will, therefore,
analyze a much larger number of trajectory files than we could
with alternative schemes.

Choosing parameters at random can avoid the convergence
problem mentioned above. But, a random sequence does not
cover the parameter space efficiently. For example, Figure 2b
shows clustering of points and sparsely populated regions.

Formally, the deviation from non-uniformity is characterized
by the discrepancy. The most popularly analyzed discrepancy
measure is the star discrepancy. The discrepancy reduces with
the number of points for any reasonable sequence. The rate at
which it reduces varies, though. For a random sequence, the
star discrepancy is proportional to (loglogN)1/2/N1/2.

Given N points in d dimensions, low discrepancy point sets
[13]–[15] cover the space efficiently, with the star discrepancy
proportional to logd−1N/N , which is asymptotically much
better than that of a random sequence. However, the point
set requires the entire set of points to achieve this discrepancy.
Consequently, we cannot use a subset of a point set and check
for convergence. This makes it unsuitable for our application,
because we hope to terminate our analysis after only a small
fraction of points have been analyzed.

LDS can cover the space efficiently and permit a check for
convergence, enabling us to stop quickly once convergence is
reached. Their star discrepancy is proportional to logdN/N
[13]–[15]. We can see from Figure 2c that points avoid

clustering close to each other, thus, covering the space fairly
uniformly. For any value of N, they cover the space efficiently.

B. Choice of Low Discrepancy Sequence

There are several low discrepancy sequences available. We
use a Scrambled Halton Sequence. It corrects certain practical
defects in the Halton LDS. From the perspective of our aims,
it has the following positive feature. In general, points from a
d+1-dimensional LDS may be unrelated to the corresponding
points from a d-dimensional LDS. However, in the Halton
and Scrambled Halton sequences, the first d coordinates of a
d+1-dimensional sequence are identical to the corresponding
coordinates of a d-dimensional sequence, with only the d+1th
coordinate being appended to each point. In the future, if
certain fixed parameters in SPED are made variable, then using
the scrambled Halton sequence will enable us to reuse the
previously computed trajectory files, thus reducing the number
of new trajectory files that need to be computed.

Note that each coordinate of a LDS is in (0, 1). The actual
parameters for the computation have a different range. We
use a standard shift and scaling to map LDS points to our
parameter space. For example, if a parameter range is [a, b]
and the corresponding coordinate of an LDS point is q, then
this point will be mapped to the parameter value a + (b-a)*q.

C. Convergence

LDS has traditionally been used for integration, and much
of the theoretical analysis is focused on that. The Koksma-
Hlawka inequality provides an upper bound for the integration
error using the star discrepancy [13], [14], [16]. The bound is
usually much larger than the actual error. In practice, the error
is often close to N−1 asymptotically, though it may have an
initial phase with a N−1/2 convergence rate [13], [14], [16].
While the latter is asymptotically weaker than the Koksma-
Hlawka inequality, it is often tighter for realistic values of N.

We propose using LDS for a parameter sweep, rather than
for integration. In our convergence analysis, we compare the
results for different values of the number of trajectory files
analyzed (N ) to verify if the solution has converged. We
assume an error roughly proportional to 1/Np, for unknown
p, in view of the results cited above.

This type of problem is a standard one in Grid Convergence
(or Refinement) Analysis in Computational Fluid Dynam-
ics [17], where one uses results with different grid granularities
to verify convergence. The error there is posed as proportional
to hp where h is the grid spacing. Here, h is analogous to 1/N
in our application. Numerical solutions are computed for grids
with granularity h0, h0/2, h0/4, etc.

In an analogous manner, we check for convergence by
computing a quantity of interest using N0 trajectory files,
then 2N0, 4N0, ... trajectory files. The ith check is performed
with 2iN0 trajectory files. We provide the convergence criteria
below. Further justification is provided in Appendix A.

Let us denote by xi the estimate with 2iN0 trajectory files
of a quantity of interest having an unknown exact value x. Let
ei = |xi − xi−1|. ei goes to 0 asymptotically. We check if ei
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Fig. 2: (a) Two-dimensional Lattice. (b) Two-dimensional Random Sequence. (c) Two-dimensional Low Discrepancy Sequence.

is less than 1% of xi. In order to be a little more stringent, we
require ei to satisfy this constraint for two consecutive values
of i.

Next, we need to determine the quantity that needs to be
evaluated. This would depend on the scientific results that we
wish to compute. In this paper, we focus on computing the
histogram of the number of humans who interact with each
other in a trajectory file. Each trajectory file will give us one
number – the number of human pairs who were within the
contact threshold for a disease in one simulation of deplaning.
If the histogram of this number over the entire parameter space
shows large values as being frequent, then we expect that the
disease could be transmitted to many persons. On the other
hand, if low values have high probability, then this would
indicate that the disease is not likely to spread widely.

We wish to check for the convergence of the histogram by
checking if the first four moments of the probability distribu-
tion have converged. In practice, we verify this by checking
for convergence of estimates of the mean, standard deviation,
skewness, and kurtosis. If each of the four has converged,
then we consider the histogram as having converged. Note
that unlike in solutions of differential equations, we don’t
require several digits of accuracy in the result. Models for
human movement are somewhat inaccurate, given inherent un-
certainties in human behavior, and so we just require important
features of the probability distribution to be brought out.

V. EMPIRICAL ANALYSIS OF PARAMATER SWEEP

In this section, we show that the LDS parameter sweep is
much more effective than the conventional lattice sweep.

Our prior work used a granularity of 41 points for each
parameter with 3 parameters. It is not feasible to use such
granularity with 5 parameters due to computational time
limitations as explained earlier. Instead, we use 17 points for
each parameter. This corresponds to 16 intervals between each
value for a parameter. This count has the benefit that subgrids
with 8 intervals (9 points) and 4 intervals (with 5 points) can
be analyzed to see how the smaller subgrid differs from the
larger grid. Use of 32 intervals per parameter would, on the
other hand, be computationally too expensive.

Figures 3a, 3b, and 3c show the histograms for the entire
grid and the next two smaller subgrids respectively. These
figures do not show any apparent convergence.

Algorithm 2: Histogram Convergence Scheme
procedure

Initialization
for each process do

Analyze N0 files
Update local moments
Compute global statistics

i=0
while not converged and files remain unanalyzed do

i++
Analyze (2i − 2i−1)N0 files
Update local moments
Compute global statistics
Check for convergence

end procedure

If we compare Figure 3 with Figure 4a, the latter being the
LDS sweep with 175 trajectories, then we can see that the
large lattice sweep is moving toward the LDS figure, but has
not converged to it yet. For example, the first small peak in
Figure 3c, which is absent in the LDS, is in the process of
being eliminated. The two modes clear in LDS are also being
better defined.

In contrast to the lattice sweep, comparing Figure 4c with
Figure 4a, we can see that the LDS sweep appears to converge
even with fewer than 33,000 trajectory files. The actual con-
vergence criterion that we specified led to convergence with
around 262,000 trajectories, as shown in Figure 4b. These
figures suggest that a less restrictive convergence criterion
could have been as accurate, while leading to a smaller
computational time.

We can make the following observations from these results.
The first is that LDS led to a factor 5 improvement in perfor-
mance over the lattice (around 262,000 trajectory files instead
of 175 ≈ 1.4 million with the lattice), and it also gave much
more accurate results. In order to get more accurate solutions
with Lattice, the next bigger size would be a 335 ≈ 39 million
point lattice. Even if this were accurate, the LDS would have
obtained accurate results with two orders of magnitude fewer
points with the current convergence criterion. If we could
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Fig. 3: Histograms for Lattice Sweep. (a) Histogram for 175 grid. (b) Histogram for the subgrid of size 95. (c) Histogram for
the subgrid of size 55.
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Fig. 4: Histograms for Low Discrepancy Sweep. (a) Histogram for 175 points. (b) Histogram for subset of data of size 262144.
(c) Histogram for subset of data of size 32768.

change the convergence criterion to stop with around 33, 000
trajectory files, then this would be a three orders of magnitude
improvement in performance. This relative advantage increases
with dimension, and thus, our results show that LDS is far
superior to Lattice.

Figure 5 shows the values of the four convergence criteria
(relative differences in certain statistics) as a function of
the number of trajectories. It appears that the skewness and
kurtosis are particularly effective in checking for convergence,
while mean and standard deviation differences are small,
even in the unconverged region. Given that the histogram
converged by 33,000 trajectory files, it appears that a 2%
relative difference threshold for skewness and kurtosis would
have been adequate to indicate convergence.

VI. LOAD BALANCING

A. Parallelization

We first summarize the parallelization scheme for the anal-
ysis, as shown in Algorithm 2, and then discuss the load
balancing issue. The SPED simulation produces one output
trajectory file for each choice of parameter combination. Each
trajectory file from SPED is analyzed sequentially by only one
core, but each core analyzes several files.

All cores will synchronize periodically to check for con-
vergence. Frequent checks for convergence are needed to
ensure that we don’t continue the computation much after
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Fig. 5: Low Discrepancy Sweep: Relative difference in statis-
tics used in convergence check

convergence has taken place. We output the histogram of con-
tact probabilities once the convergence has taken place. The
convergence checks require an Allreduce operation to evaluate
the bin probability based on data from all the processes. Each
process replicates the convergence test to come to the same
conclusion on whether convergence has occurred. Computing
the final histogram requires one Reduce operation.

Synchronization happens during the convergence check, at
exponentially increasing intervals, with the first synchroniza-



tion happening after each process has analyzed N0 = 4 files.
We would like the load to be fairly well balanced between
each synchronization point. The load balance at the later
convergence checks are more important, because they take
more time. However, if the convergence is fast, then the load
imbalance during the first few checks would also matter.

The Lattice sweep does not have convergence checks. A
simple cyclic distribution of parameters to processes gives
good load balance, as shown in Section VI-B. The load for
each parameter combination depends, to a large extent, on the
number of time steps in the passenger movement simulation,
which in turn depends on the values of the parameters. If the
parameters are uniformly distributed across the processes, we
would expect a good load balance. This, indeed, occurs with
the cyclic parameter distribution on Lattice sweep.

If we generate parameters at random, then we can expect
such a random parameter sweep to yield a well-balanced load
on the cores. However, LDS covers the space uniformly, rather
than randomly. Cyclic load balancing is not guaranteed to lead
to uniform load distribution for the LDS. The uniformity of
the load could also depend on the number of processes used
for the following reason. The Halton sequence deals with each
dimension independently. It divides the dimension into smaller
intervals and distributes points uniformly over these intervals.
The number of intervals increases progressively, thereby gen-
erating finer resolutions as the sequence progresses. The ith

dimension divides regions by some power of the ith prime.
The Scrambled Halton sequence just performs some local
permutation of the order in which these regions are filled,
which does not change the above pattern.

If any of the first d primes (where d is the number of
parameters) divides the number of processes, then we may
expect cyclic distribution to lead to some resonance with the
natural period of the LDS, impacting the load balance. For
example, each node on Blue Waters can support 32 processes.
If we use 32 processes per node, then we can expect some
impact on load balance because 2 is the first prime.

In a block distribution, we assign parameters corresponding
to several consecutive points of an LDS sequence to one core.
When we include convergence checks in the computation,
the set of parameters between each convergence check is
distributed in blocks. In some sense, this is like a block-
cyclic distribution with block sizes increasing as the analysis
progresses. If the block size is sufficiently large, then we
expect the load to be well distributed, because parameters
within each block will try to cover the parameter space
uniformly. On the other hand, in the initial stages, the block
sizes will be small, and such uniform coverage may not be
obtained.

We also use a master-worker dynamic load balancing al-
gorithm. The master assigns the next parameter to the next
process that has completed its previous task. If we ignore
the overhead of communicating with the master, then this
algorithm has a theoretical worst case bound of twice the best
case load, though it is usually much better than this bound in
practice [5]. On the other hand, it could suffer from a lack of

scalability when a large number of processes are used. In this
method, the convergence check is performed by the master.
Thus, workers don’t synchronize amongst themselves for a
convergence check.

B. Empirical Results

1) Computational platform: We analyze the load balancing
algorithms on the Blue Waters machine at NCSA. We sum-
marize the computational environment below.

The Blue Waters system is a Cray XE6/XK7 hybrid machine
consisting of around 22,500 XE6 compute nodes all connected
by the Cray Gemini torus interconnect. The XE6 dual-socket
nodes are populated with 2 AMD Interlagos processors with a
nominal clock speed of at least 2.3 GHz and 64 GB of physical
memory. The file systems on Blue Waters are built with the
Lustre file system technology.

The default programming environment, Cray (PrgEnv-cray
5.2.40) compiler suite, was used for compiling the codes. The
MPI library used is cray-mpich/7.2.0. MPI timer routines are
used for timing the code. The compute nodes use a 64-bit
Linux OS. The TORQUE job scheduler was used to submit
the batch jobs. The Cray Application launcher (aprun) utility
was used to launch applications on compute nodes. We used
32 cores per node, running one process per core.

The contact threshold used in all these computations is
1.2 meters, corresponding to Ebola. The simulations involved
deplaning.

2) Results: We define load imbalance as
|MaximumLoad−AverageLoad|/AverageLoad. This is 0
when a load is perfectly balanced. When we use convergence
checks, we replace the maximum load in the above formula
by the sum of the maximum load between each convergence
step.

Figure 6 compares the convergence of Lattice and LDS with
the cyclic distribution for their entire data set in the absence of
convergence checks. We can see that Lattice is well balanced,
as expected. LDS has a poor load balance with 1000 and 1024
processes. The reason for this is that both of these are products
of primes used in the LDS sequence. On the other hand, LDS
has a good load balance with 1003 processes. This number was
chosen so that it is not a multiple of any of the primes used
in the LDS. In fact, LDS performs better than Lattice for this
number, likely due to the number of lattice parameter values
– 17 – dividing 1003. This is not a real defect in the Lattice
sweep, because one would normally not have any reason to
use a multiple of 17 processes. The results of this figure show
that Lattice is easily load balanced through cyclic distribution,
while LDS is not, unless we choose the number of processes
carefully. Of course, this choice would leave some cores on
a node unused, but the improvement in load balance makes
it worthwhile. In addition, even with a poor load balancing
choice, LDS would be much more preferable to Lattice due
to its faster convergence.

While LDS may show good load balance with cyclic dis-
tribution when using a suitable number of processes, it may
not necessarily perform well when we use convergence checks
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Fig. 6: Load imbalance for the processing the Lattice and LDS
sweep outputs

that terminate the computation well before all the data is used;
the previous results show the final impact when each process
analyzes a large number of files whose varying loads could be
smoothed out. This smoothing may not happen when we have
a small number of files analyzed between each convergence
check.

Figure 7, indeed, shows that even with 1003 processes, the
load is not well balanced in the initial stages. Consequently,
computations that lead to quick convergence may not be well
balanced with a cyclic distribution of parameters.
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Fig. 7: Load imbalance for LDS with cyclic distribution

Figure 8 shows load imbalance with the block distribution
of data. Note that the block distribution happens within
each convergence check, and several convergence checks may
occur. The results show that the potential advantages of the
block distribution are not demonstrated when the block sizes
are small. There is a trend toward improved load balance as
the number of trajectories analyzed increases, but it is not
adequate.

Figure 9 shows that the master-worker dynamic load balanc-
ing algorithm yields very good load balance, although it is not
as well balanced as Lattice when the number of trajectories
is small. But for the number of trajectories required in the
problem evaluated in this paper, it has excellent load balance.
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Fig. 8: Load imbalance for LDS with the block distribution
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Fig. 9: Load imbalance for LDS with the dynamic load
balancing

Finally, we show strong and weak scaling results for dy-
namic load balancing in Figures 10 and 11 respectively. These
results include time for communication with the master, unlike
the load balancing results which considered only the load. We
can see the it has excellent weak scaling results. Strong scaling
results show good efficiency until around 4000 processes, with
a sharp drop-off after that.
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Fig. 10: Strong scaling of LDS with dynamic load balancing
until convergence

In summary, LDS tends to have more load imbalance
problems than Lattice, but any inefficiency here is more than
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compensated for with the improved convergence rate. Dynamic
load balancing is effective for LDS, though, unless the number
of processes is very large. Such a large number of processes
will likely be required when the convergence takes a long
time. In that case, it may be worthwhile to use cyclic load
balancing with a carefully chosen number of processes, but
with less frequent convergences than performed currently.
Note that convergence checks for every 2iN0 files can be
replaced by checks every riN0 files, for a suitable value of
r in the theoretical analysis. Using a value of r larger than 2
can lead us to a situation closer to Figure 6 than to Figure 7.

VII. IMPLICATIONS FOR SCIENCE

The efficient LDS parameter sweep has enabled us to obtain
application results that could not be obtained otherwise. In
particular, the bimodal histogram for contacts, as shown in
Figure 4a, has not been seen earlier. This figure also shows that
it fits reasonably as the sum of two Gaussians. This suggests
two different mechanisms at play. Application scientists ought
to explore these further.

VIII. RELATED WORK

In our prior work, we have described the SPED model and
scientific results from it, including the impact of boarding
and deplaning procedures on infection transmission [3]–[8].
However, we had not discovered the bimodal distribution
presented in this paper. Computational optimizations of the
SPED model, and its parallelization, were discussed in [5].
The current manuscript, in contrast, is on issues related to
a low discrepancy parameter sweep, which enables real-time
analysis in the context of a decision meeting.

Conventional models for epidemic spread, such as Wells-
Riley, are based on coarse-scale aggregate statistics, and are
commonly used to predict disease transmission on aircrafts
[18]. Alternatively, at a larger scale, contemporary network
epidemic models, such as the meta-population model [19], are
used to simulate the movements of diseases within networks,
including the air transportation network. The latter models
are at a coarse scale and deal with populations of entire
cities with associated airports. In both cases, they rely on
aggregate analysis, and so cannot account for the consequences

of changes in human interaction patterns due to changes in
boarding or deplaning procedures. In contrast to differential
equation-based models that model aggregate quantities, such
as number of infected individuals, agent-based models track
each individual. EpiSimdemics [20]–[22] is such a model
and has been applied at the scale of the entire nation, using
massive parallelism. It is not feasible to track the continuous
spatial movement of individuals on this scale. Instead, one
looks at certain locations where people could meet, thus,
discretizing the space. A social network model is created, and
diffusion in this network is used to estimate the interactions
between pairs. The advantage of this model is that it can
account for individual movement with a large number of
individuals, unlike conventional models. A limitation is that
space is discretized, thus losing accuracy over a continuous
space model like SPED.

There have been extensive theoretical studies on the prop-
erties of low-discrepancy sequences, also known as quasi-
random sequences, in the context of their application to inte-
gration [13], [16]. This results in quasi-Monte Carlo methods
for integration, which have better asymptotic properties than
conventional numerical integration and also Monte Carlo inte-
gration. These methods have also been shown to be effective in
certain application domains, such as finance, in practice, with
a much better convergence rate than Monte Carlo [14], [15].
We have studied parallel low-discrepancy sequences in [15].
That work is not closely related to the results of the current
manuscript; the current work does not parallelize the low-
discrepancy sequence, nor does it study integration. Rather,
the focus is on parallel computing issues that arise from the
use of a low-discrepancy parameter sweep, which is a novel
topic.

IX. CONCLUSIONS AND FUTURE WORK

We have demonstrated that the LDS parameter sweep can
obtain a substantial reduction in computational effort over
the current approach, and make feasible computation that
was not feasible earlier. We have complemented theoretical
analysis of convergence with empirical results that suggest
rules of thumb to improve the convergence criterion. We have
explored the load imbalance problem with LDS and related
it to the number-theoretical characteristics of LDS. We have
also identified techniques, that can lead to good load balancing
under different applications scenarios.

The LDS sweep has the attractive property that for any
value of N, the parameter space is well covered. However,
if we consider the load as an additional dimension, then the
resulting space is not well covered, which is the cause for
the load imbalance. One direction for future work would be
to identify the sensitivity of load to different parameters, and
then come up with an LDS sweep that would automatically
cover the augmented space of parameters plus load efficiently.
This could lead to better load balance.
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APPENDIX A
JUSTIFICATION OF CONVERGENCE CRITERION

We first explain why we check for convergence with a
geometrically increasing number of trajectories. This follows
the standard practice as with other numerical methods. We
then justify our convergence criteria for the low-discrepancy
sequence (LDS) parameter sweep.

We estimate a quantity with an unknown exact value x
using varying numbers (N) of trajectory files. Let us denote
by xi the estimate with 2iN0 trajectory files. We consider
the error |x − xi| ≈ k/(2iN0)

p, for some unknown p and
k as explained earlier. In the asymptotic region, standard
convergence analysis [17] gives:

x ≈ xi +
k

(2iN0)p
.

From the above, we get:

|xi−xi−1| ≈ k

(
1

(2i−1N0)p
− 1

(2iN0)p

)
=

k

(2iNp
0 )

(2p−1),

which goes to 0 for large i. Note that the form |x − xi| ≈
k/(2iN0)

p is more important than the assumption that we
are in the asymptotic region. If we are not in the asymptotic
region, then |xi − xi−1| would be at most twice the quantity
derived above.

We check for convergence by checking if |xi − xi−1| is
sufficiently small. We could define various metrics for what
constitutes being sufficiently small. We choose a relative error
|xi − xi−1|/xi that is 0.01 (that is, a 1% relative error). We
make this condition more stringent by requiring this condition
to be met in two consecutive convergence checks. There are
two reasons for this more stringent requirement. The first is
that LDS are often not in the asymptotic region for realistic
values of N . The other is that this is a novel application
of LDS, and we wish to be on the safe side. Empirical
analysis later showed that we could have used a less stringent
convergence criterion.


