
EasyChair Preprint
№ 1602

Negation Scope Resolution: Quantifying Neural
Uncertainty In An Imbalanced Setting

Chris Ghai

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 7, 2019



Negation Scope Resolution: Quantifying Neural Uncertainty In An
Imbalanced Setting

Chris Ghai
Language Technology Group, Department of Informatics / University of Oslo

chrisgh@math.uio.no

Abstract

Negation scope detection is an interesting task
for neural machine learning models, because
of the sequential dependencies in the input
data. Having a neural classifier being able
to untangle negated parts of a sentence from
the non-negated part is useful for downstream
tasks. Additionally, generally in classification
tasks one has to work with quite imbalanced
data sets. Within natural language only a sub-
set of sentences contain negations – thus nega-
tion annotated data might be prone to imbal-
ance in such a way that there are many an-
notated sentences without any negations (pos-
itive sentences) versus sentences with nega-
tions (negative sentences). This paper looks
at how this kind of imbalance affects neu-
ral model performance by comparing models
trained on the full data set, with models trained
on a subset in which the positive sentences
have been filtered out. The results evaluated
on the *SEM 2012 shared task on negation
scope detection show that there does seem to
be a difference in how the classifiers are af-
fected by imbalance, depending on architec-
ture; and how including part-of-speech (PoS)
features helps to reduce this difference.

1 The Task: Introduction & Data

Within Negation Analysis the aim is to be able
to automatically detect cues that lead to nega-
tion(s) within a sentence; scope resolution to re-
late the cue to its arguments; and event identifica-
tion which is the key event of the scope. This can
be useful in itself for example in triggering differ-
ent services in web applications; but it can also be
used as a pre-processing step for Sentiment Anal-
ysis (Lapponi et al., 2012). Negation Analysis can
thus be separated into three sub-problems which
can be solved in a sequential manner. In (1) the
cue is shown in bold. It acts on the scope which
has been underlined, and the key event of the scope

is italicised (and by definition will also always be
underlined).

(1) Some people without possessing genius have
a remarkable power of stimulating it.

Language can however be complicated, and
there are many cases where cues can act on cues,
and scopes be within scopes. The sentence in (2)
shows one such example. Which is quite diffi-
cult to even grasp as a human reader, but show-
cases the complexity of language. The subscripts
correspond to cues which act on the scopes in
braces with the corresponding number as super-
script. The events are also annotated with the sub-
script in front of the word. Here we see how a
word can be both a cue, be within multiple scopes,
and be an event as well.

(2) Mr. Sherlock Holmes, {who 2was}2 usu-
ally {very 2late in the mornings,}2 save2
{upon {those}0}1 not1 {0,1in0{frequent
occasions when he was up all night}0}1}2,
was seated at the breakfast table.

The word infrequent in (2) displays all these
properties, and we also see how the cue can be an
affix of the word; e.g. the in in infrequent. Further-
more cue words can also be multi-token words,
e.g. no more or neither ... nor. This complexity
is difficult to encode in a reasonable way for a ma-
chine learning system to take advantage of, and
thus we will make some welcome simplifications
to adapt the data for neural methods.

As stated, Negation Analysis consists of three
sub-tasks: (a) cue detection, (b) scope resolution
and (c) event identification. The first simplifica-
tion will be to only consider (b) given (a). The
second simplification is to transform the data into
a (sequential) binary classification task – which is
to distribute the sentences with multiple cues (that



have their own scopes) into separate sentences.
We therefore get a copy of each sentence corre-
sponding to how many cues it originally contains.
To illustrate this, we can take (2) and transform it
into (2a)-(2c).

(2a) Mr. Sherlock Holmes, who was usually very
late in the mornings, save upon those not
infrequent occasions when he was up all night,
was seated at the breakfast table.

(2b) Mr. Sherlock Holmes, who was usually very
late in the mornings, save upon those not
infrequent occasions when he was up all night,
was seated at the breakfast table.

(2c) Mr. Sherlock Holmes, who was usu-
ally very late in the mornings, save
upon those not infrequent occasions when he
was up all night, was seated at the breakfast
table.

We have also removed the events in the latter
three examples, because they are not part of our
simplified variant of the task anyway. Lastly, since
we are given (a), we will take the cue information
and use it to solve the task. That means we will
use the gold cue in the data set as features, together
with the sentences (and later PoS tags).

To sum up, the task for a neural classifier will
be to output a vector of binary values of the same
length as the input sentence. For each position in
the vector the classifier must predict whether the
word is within a scope or not. Input to the system
will be the sentences themselves, and additionally
some binary value saying whether the word is (part
of) a cue or not. The details of this are explained
in section 3.

All this said, a model can not be built without
data. The example sentences above have given
a hint about what kind of data we are working
with: the *SEM 2012 negation annotations over
short stories by Sir Arthur Conan Doyle (Morante
and Daelemans, 2012). Conveniently the data has
been compiled into a training, development and
evaluation (held-out) set which permits for reliable
comparisons between systems. Table 1 gives an
overview of the distribution.

The second column denotes the number of
unique sentences in each data set. The third one
is the number of sentences when we have dis-
tributed the sentences as in examples (2a)-(2c).
While the last column is the number of sentences

Data set Unique Distributed Negative

Train 3643 3779 983
Development 787 816 173
Evaluation 1089 1118 264

Table 1: Distribution of the Conan Doyle data set.
Unique is the number of unique sentences. Distributed
is the number of sentences when they have been multi-
plied out as described in examples (2a)-(2c). The Neg-
ative column describes the number of sentences when
we filter out positive sentences from the distributed set.

left when we filter out the positive sentences (i.e.
sentences with no negations) after distributing sen-
tences. Therefore the number of negative sen-
tences comprise about 20-25% of the data, mean-
ing we have quite an imbalanced data set. We will
set out to explore how this affects the uncertainty
of model performance in different settings. By un-
certainty here we mean how the use of Distributed
versus Negative data influences the final predic-
tions of a neural classifier.

2 Related Work

Before describing the experimental setup we will
reference other work on Negation Scope Resolu-
tion, as our latter results in this paper will be com-
pared with these systems. The main inspiration for
our work comes from Fancellu et al. (2016), where
they use a bidirectional long-short term memory
(BiLSTM) network to handle Scope Resolution.
There they use word embeddings, and additionally
create what they refer to as cue embeddings. Both
of the embeddings types are high-dimensional rep-
resentations (vectors) of words or cues, but in the
latter case there will only be a few such vectors;
and in theory only two because a cue is binary –
however in code there will be an additional vector
to represent a pad value. More on this in section 3.

Figure 1 shows this architecture. Ew and Ec de-
note the word and cue embeddings, respectively.
These are concatenated together and fed sequen-
tially into the BiLSTM from both directions. The
softmax layer projects the high-dimensional out-
put from the BiLSTM at each sequential step into
a lower-dimensional probability distribution over
negation or non-negation for each word in the se-
quence, and the final prediction for each word
corresponds to the class with the largest softmax
value at each sequence step.

Fancellu et al. (2016) show in their work that



Figure 1: An example of scope detection using BiL-
STM for the tokens ‘you are no longer invited’. Figure
taken from Fancellu et al. (2016).

neural methods achieve results that are compara-
ble to approaches which combine pre-neural meth-
ods, heuristics and upstream neural systems. In
Lapponi et al. (2017) they use such an approach,
by combining a pre-neural approach to sequence
labelling with a state-of-the-art neural dependency
parser and somewhat carefully engineered lexical
and structural linguistic features. While Fancellu
et al. (2016) report scope tokens (ST, tokens in-
dividually classified correctly to be within some
scope) and scope match (SM, number of correctly
classified full-scopes as defined by human gold
standards) results, Lapponi et al. (2017) also re-
port event tokens (ET, event identification) and full
negation (FN). The latter work also gives a large
overview of results using their system in combina-
tion with different parsers. All results are reported
in F1 scores evaluated on the *SEM metrics, and
thus we will also report all results in F1 scores as
well.

3 Experimental Setup

As mentioned above we will do mostly the same
as Fancellu et al. (2016), however we will describe
some details which are left out in their paper, and
other small differences. Firstly since we are given
cue information and the cue itself is part of the
sentence, in converting the output from the sys-
tem to the *SEM format for further scoring, we do
some post-processing to have the system always
predict cues correctly. This is done by compar-

ing with the gold standard by only looking at the
input word and given cue information. If the cue
and the input word are the same, the prediction is a
non-negation (because cues are not negated them-
selves). However if the cue is only part of the input
word (for instance an affix) then part of the input
word counts as within the scope. If so we look at
whether the input word starts with or ends with the
given cue – and the rest of the word is predicted to
be within the scope. There are also a few cases
(although neither in the development nor evalua-
tion sets) where cues are in the middle of a word,
for example the word “helplessly”, and we have
marked the scope and cue. Notice that the scope
is considered to be in front of the cue; so in such
cases we split the word on the cue and have the
system predict the first part to be within scope.

Secondly, we experiment with using stacked
BiLSTM networks. This means that each of the
horizontal BiLSTM layers in figure 1 are fed into
another BiLSTM layer, before going to a softmax
layer. This is akin to using multiple hidden lay-
ers in a feed-forward neural network, and is con-
sidered a hyperparameter to tune. We also exper-
iment with (and without) dropout regularisation
(Hinton et al., 2012) which has been shown to pos-
sibly give improved results in NLP as well (Zhang
and Wallace, 2015).

While they do not explicitly explain in Fancellu
et al. (2016) how they create the cue embeddings
from the given binary cue information, we will
randomly initialise a cue embedding matrix and
update it during training. This embedding matrix
will in this case be of dimensionalityR3×dc where
dc is the dimensionality of each cue. In our case
dc ended up being 50 after doing a hyperparame-
ter search over a few dimensionality values (same
as (Fancellu et al., 2016), in other words). The
number 3 in the dimensionality (as opposed to the
expected number being 2 because of binary possi-
bility) of the cue embedding comes from the fact
that we also define a padding index for the cues,
meaning that when using the cue embedding to
look up the token in the input data there is a possi-
bility of the “cue” being a padded value along with
a padded “word” (useful for batching).

As for the word embeddings, we will ex-
periment with using 300-dimensional pre-trained
Global Vectors1 (GloVe) trained on the Common

1Courtesy of Stanford NLP, downloaded from
https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/


Crawl data set with 840B tokens. Additionally
we will try 300-dimensional pre-trained fastText2

that were also trained on Common Crawl but on
a subset of 600B tokens. This differs from Fan-
cellu et al. (2016) where they used 50-dimensional
Google word2vec3 embeddings in their experi-
ments with pre-trained embeddings. This was also
tried during hyperparameter search in our exper-
iments, but never yielded considerably better re-
sults than with 300-dimensional embeddings and
were thus left out in later experiments.

Similarly to Fancellu et al. (2016) we look at the
effect of adding PoS / Universal Dependencies4

PoS (UPoS will be used interchangeably with UD
PoS) information as features together with the in-
put text. In our setting they are initialised in the
same way as the cue embeddings, and fine-tuned
during training in the same manner. They have
been chosen to have the same dimensionality as
the cue vectors. Therefore the PoS embeddings
are represented asR(p+1)×dPoS , where dPoS = 50
and (p + 1) is the vocabulary size of PoS tags
(number of unique tags in the training set) plus a
padding index. For our experiments p ended up
being 15–16 (UD PoS) or 42–43 (PoS) depending
on tag scheme and whether the data was filtered or
not. PoS information is conveniently part of the
*SEM 2012 input files, and we use a simple look-
up table to map these to UD PoS tags for the exper-
iments using these tags. UD PoS tags are useful to
look at – since we work on an English data set, this
is a way of showing how adding PoS information
can generalise as aid for other languages.

Since our aim is to study the effect of imbalance
in the data set, we of course experiment with train-
ing models using the full (distributed) data sets
versus using the filtered data sets as described in
table 1 (i.e. the Negative column). In contrast, this
is something Fancellu et al. (2016) did not report
doing experimentation with – instead they only
use filtered data. To get meaningful results for our
experiments we train 10 models for every combi-
nation of full and filtered data sets with both word
embedding types, PoS and UD PoS tags. More
details on this in section 4.

In designing experiments involving neural ar-

2By Facebook Inc. downloaded from
https://fasttext.cc/docs/en/english-vectors.html

3More information about this can be found at at
https://code.google.com/archive/p/word2vec/

4Read more about this at
https://universaldependencies.org/

chitectures, there are very many hyperparameters
to tune and perform optimisation over. To re-
duce this search complexity, we have chosen to
use the Adam optimiser (Kingma and Ba, 2014)
and keep learning rate fixed at 0.001. We also
use early stopping during training to prevent over-
fitting, and stop training when there is no improve-
ment consecutively after 5 epochs. Batch size was
fixed to 64. Other hyperparameters are the number
of stacked BiLSTM layers and the hidden state di-
mensionality of the BiLSTM cells. After doing
a coarse grid search over the remaining hyperpa-
rameters we ended up finding 2 or 3 stacked layers,
and either 300 or 450 hidden state dimensionality
to be optimal. With dropout probability we tested
using a probability of 0 (i.e. no dropout) versus
0.5. Lastly, implementation was done using Py-
Torch5, an open source deep learning framework
for Python.

4 Empirical Results

We summarise the results from our experiments
in table 2. Reported are the results (we remind
that is the F1 score) using the *SEM scorer, along
with the metrics ST and SM on both the develop-
ment (Dev) and evaluation (Eval) set, along with
the standard deviations of the 10 runs. The scores
in each column correspond to the average score
from training 10 similar models (only the ran-
domly initialised weights being different), and the
number in parentheses is the standard deviation
on the same metric. Systems trained on the non-
filtered (NF) and filtered (F) data are grouped to-
gether somewhat in the table. All systems in this
table used GloVe pre-trained embeddings. We re-
port best scores from some of the runs in table
3, where we also include systems using fastText.
Comments on this table is deferred to section 4.1.

Looking at the results in table 2 one can see that
there is considerably higher variation in the scope
match results than for the scope tokens. Since the
task of getting a scope match is much stricter than
for getting a single token correct, this is not sur-
prising. However, looking at the scope tokens re-
sults it might seem like there is larger variation in
the ST results for the models trained on the non-
filtered data set than for the model using the fil-
tered data set when no PoS features are used. On
the other hand, when the model is provided with
PoS / UD PoS information, the models trained on

5See https://pytorch.org/

https://fasttext.cc/docs/en/english-vectors.html
https://code.google.com/archive/p/word2vec/
https://universaldependencies.org/
https://pytorch.org/


System ST-Dev SM-Dev ST-Eval SM-Eval

NF-BiLSTM 83.34 (2.91) 70.68 (5.27) 87.50 (1.58) 74.39 (2.73)
NF-BiLSTM + Dropout 81.45 (3.20) 69.15 (5.83) 87.12 (1.97) 74.02 (3.18)

F-BiLSTM 81.70 (2.06) 66.61 (3.02) 86.60 (1.56) 70.73 (2.91)
F-BiLSTM + Dropout 80.99 (2.91) 66.67 (3.88) 86.27 (2.75) 70.81 (3.89)

NF-BiLSTM + PoS 86.78 (1.26) 75.51 (2.37) 88.91 (0.58) 76.89 (2.68)
NF-BiLSTM + PoS + Dropout 87.00 (0.79) 76.74 (1.69) 89.04 (0.67) 79.52 (0.85)

F-BiLSTM + PoS 85.95 (2.31) 74.43 (4.68) 88.66 (1.18) 76.77 (2.14)
F-BiLSTM + PoS + Dropout 85.21 (2.14) 73.50 (3.68) 87.93 (1.41) 77.02 (2.37)

NF-BiLSTM + UPoS 86.81 (1.37) 75.98 (3.33) 88.39 (1.29) 76.86 (3.67)
NF-BiLSTM + UPoS + Dropout 86.78 (1.72) 75.92 (2.54) 88.38 (1.37) 77.63 (2.61)

F-BiLSTM + UPoS 85.22 (2.02) 74.54 (3.34) 87.88 (1.86) 77.81 (2.16)
F-BiLSTM + UPoS + Dropout 86.30 (1.71) 75.22 (2.23) 88.56 (1.35) 77.11 (2.55)

Table 2: Main results from the experiments looking to analyse the effect of imbalance in the data set. Models
trained on the full set denoted by NF (non-filtered), and the subset denoted by F (filtered). We report scope tokens
(ST) and scope match (SM) on the development (-Dev) and evaluation (-Eval) sets. The score in each column is
the average from 10 runs. Standard deviations based on the same 10 runs in parentheses.

the non-filtered data set seem to have somewhat
lower standard deviation. Furthermore it seems
like dropout in most cases leads to higher vari-
ability as well, which is also not surprising con-
sidering it introduces more stochasticity into the
system. For ST then it looks like PoS / UD PoS
tags help “guide” and stabilise the systems when
it has a lot of “irrelevant” data – or rather, that “ir-
relevant” data becomes useful for the system since
it gets the opportunity to learn patterns stemming
from the combination of words and PoS tags. Fi-
nally by looking at the scores themselves it is clear
that, on average, using the full data set seems to
give a slight boost to overall performance. This is
easily seen by comparing the scores of the two top-
most rows with the two bottom rows within each
group (i.e. the groups being not using PoS/UD
PoS; using PoS; and using UD PoS), in which the
topmost rows (NF-rows) have better scores.

4.1 More Results

We explained that we ran each experiment 10
times. Hyperparameter search was also performed
at a preliminary stage. As such, there are many
results not reported in this paper. We also tried
with fastText embeddings to see if there were any
noticeable differences, and while there were no
significant changes, some of the runs gave decent
results. In table 3 we list some more runs and
compare with some of the (state-of-the-art) results
reported in Lapponi et al. (2017) as well as the

System Run ST SM

Packard et al. (2014) - 88.20 78.70

FLW-BiLSTM+UPoS+E - 88.72 77.77

Stanford-Paris 0 89.65 82.08
Stanford-Paris 6 89.11 82.63

F-BiSLTM+PoS 3 90.22 77.98
F-BiLSTM+UPoS+fT+D 4 89.38 80.86
F-BiLSTM+UPoS+fT+D 8 89.99 82.55

Table 3: Packard et al. (2014) is the best reported sys-
tem using hand-crafted heuristics. FLW is the top-
performing from Fancellu et al. (2016) where they used
external embeddings (E), while Stanford-Paris results
are reported in Lapponi et al. (2017). “fT” is fastText
embeddings, and “D” stands for dropout. Bolded val-
ues are the currently reported best scores, and the un-
derlined values are the next-best scores. All scores are
calculated based on the held-out evaluation set.

best results Fancellu et al. (2016) achieved using
the same architecture but a different setup. Best
result from Packard et al. (2014) is also shown,
where they used hand-crafted heuristics together
with reasoning techniques to parse the structure of
the negative sentence.

The last two rows show a system using fast-
Text embeddings instead, which is included be-
cause of its overall performance with ST and SM.
Particularly interesting is that the use of Univer-



sal Dependencies PoS leads to such results, which
might support the application of UPoS tags in sim-
ilar problems for other languages. These systems
are very much comparable to systems with heuris-
tics built in (Packard et al., 2014), and display that
neural systems are competitive when it comes to
Scope Detection. The results also show the use-
fulness of PoS tags in guiding neural systems.

5 Other Considerations

During experimentation we also tried using pre-
trained word embeddings that were trained on a
PoS-tagged corpus. Specifially one downloaded
from Nordic Language Processing Laboratory6

(NLPL). Then the input to the system had to be
modified to accommodate the vocabulary of the
embeddings - which was trivial because PoS in-
formation is already in the *SEM data sets, so
we only had to concatenate them with the input
words. Surprisingly this did not yield good re-
sults – quite the opposite most systems struggled
to get a score over 80 using such a pre-trained em-
beddings model. We believe that perhaps since
the whole corpus the embeddings were trained on
had to have been PoS-tagged, this has naturally
changed the whole distribution of the language
model in a way which might introduce bias; this
could be dependent on the tagger that was used.

Another thing attempted was to combine a Con-
volutional Neural Network (CNN) with the BiL-
STM in a meaningful manner. Wang et al. (2016)
showed that using a CNN-LSTM architecture im-
proved results within Sentiment Analysis. The
idea is that CNN architectures might be good at
encoding local features within a sentence, while
a Recurrent Neural Network might excel at long-
range dependencies. What we attempted was thus
to run a CNN on the input, with different num-
ber of filters and kernel sizes, to create a sentence
embedding. This was projected into the BiLSTM
model’s hidden state size through a dense layer
(and using tanh activation) and fed into the BiL-
STM as the initial hidden state in both directions.
Although not reported here, such an architecture
achieved about the same results as simply using
a BiLSTM. The idea is interesting, and perhaps
there are other data sets such an architecture works
better on. In this case we chose Occam’s Razor
and decided not to report this earlier. We also

6The embeddings with ID 1 at
http://vectors.nlpl.eu/repository/

note that this CNN-LSTM architecture displayed
the same trend in variability when using full data
versus filtered data.

6 Conclusion and Outlook

With our work we have explored how the use of
an imbalanced data set affects the uncertainty of a
neural model’s performance. We have seen that by
using only word tokens as features the difference
in uncertainty is quite small when looking at to-
kens correctly classified to be within a scope. On
the other hand, if we are able to use PoS / UPoS
features, not filtering the data set will lead to less
uncertainty. Another important find is that not fil-
tering the data seems to give an average increase in
performance. Although we have not proven these
results to be facts, the experiments seem to point
in such a direction. We would therefore recom-
mend future researchers to use the full data set,
especially when provided with PoS information
(though this of course comes with a computational
cost), for scope resolution. We also encourage
more research to be done using neural methods for
Negation Analysis, seeing as they produce models
with great performance without having to do much
feature engineering.

For future work here there are several possi-
bilities that might improve model performance.
Perhaps using character-level convolutions over a
word, together with the word, can help us. Alter-
natively, since the scope detection task is sequen-
tial in nature, it could be useful to try architec-
tures with an inference layer that can exploit this –
for example a BiLSTM-CRF architecture (Huang
et al., 2015). Lastly, an interesting task for fu-
ture work could be to look into multitask learning
for Negation Analysis. It is not unthinkable that
Negation Analysis can be improved through mul-
titask and inductive learning, as it has shown to
work both in general and for other NLP tasks as
well (Caruana (1997), Luong et al. (2015), Dong
et al. (2015)).

References
Rich Caruana. 1997. Multitask learning. Machine

learning, 28(1):41–75.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint

http://vectors.nlpl.eu/repository/


Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 1723–1732.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural networks for negation scope detection.
In Proceedings of the 54th Meeting of the Associa-
tion for Computational Linguistics, page 495 – 504,
Berlin, Germany.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Emanuele Lapponi, Stephan Oepen, and Lilja Øvrelid.
2017. EPE 2017: The Sherlock negation resolution
downstream application. In Proceedings of the 2017
Shared Task on Extrinsic Parser Evaluation, page
21 – 26, Pisa, Italy.

Emanuele Lapponi, Jonathon Read, and Lilja vrelid.
2012. Representing and resolving negation for sen-
timent analysis. In Proceedings of the 2012 ICDM
Workshop on Sentiment Elicitation from Natural
Text for Information Retrieval and Extraction, Brus-
sels, Belgium.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Roser Morante and Walter Daelemans. 2012.
ConanDoyle-neg. Annotation of negation in
Conan Doyle stories. In Proceedings of the 8th
International Conference on Language Resources
and Evaluation, page 1563 – 1568, Istanbul, Turkey.

Woodley Packard, Emily M. Bender, Jonathon Read,
Stephan Oepen, and Rebecca Dridan. 2014. Simple
negation scope resolution through deep parsing: A
semantic solution to a semantic problem. In Pro-
ceedings of the 52nd Meeting of the Association for
Computational Linguistics, page 69 – 78, Baltimore,
MD, USA.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016.
Combination of convolutional and recurrent neu-
ral network for sentiment analysis of short texts.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 2428–2437.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.


