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Abstract— In  this  research  paper,  the  relationship between  

eigenvectors  ( with  { +1, -1 }  components )   of  synaptic  weight  

matrix  W and  the  stable/anti-stable  states  of  Hopfield 

Associataive  Memory  is  established. Also  synthesis of W with 

desired stable/anti-stable states using spectral representation of W 

in  even/odd  dimension  is   discussed  when  the  threshold  vector  

is  a  non-zero  vector.  Freedom in choice of eigenvalues is  

capitalized to improve noise immunity  of  Hopfield  Neural  

Network. Also,  the  problem  of  optimal  synthesis  of  Hopfield  

Associative  memory  is  presented. 

I. INTRODUCTION 

Scientific thinking motivated researchers to arrive at 

mathematical models if natural systems. In one such effort, 

McCulloch-Pitts proposed a model of single neuronal cell. This 

model lacked training ability since the Synaptic weights 

(arising in artificial neuron model) are fixed at certain values. 

Rosenblatt improved McCulloch-Pitts model by allowing 
synaptic weights to vary during the training process. Such a 

model of neuron is called a Perceptron.  He proposed and 
proved the convergence of Learning Law associated with 

perceptron (the so-called Perceptron Learning Law) when the 

patterns belonging to two classes are linearly separable. As a 

natural generalization, Single Layer Perceptron was proposed 

to classify patterns belonging to multiple classes when they are 

linearly separable. Minsky proposed XOR problem, which 

showed that XOR gate cannot be synthesized using a SLP 

(since the patterns are not linearly separable). Werbos proposed 

Multi-Layer Perceptron (using backpropagation algorithm) that 

enables classification of non-linearly separable patterns. 

In an effort to model biological memory, Hopfield proposed 

a neural network which acts as an Associative Memory. Giles 

et.al proved a convergence theorem (by associating energy 

function with network dynamics) that confirms convergence in 

serial mode of operation. This theorem confirmed that the 

associated neural network acts as an associative memory. 

Hopfield naturally proposed the problem of synthesizing an 

artificial neural network with programmed stable states. This is 

the so called “Hopfield Neural Network Synthesis Problem”. 

This research paper is an effort to solve such problem. 

This research paper is organized as follows. In section 2 
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II. REVIEW OF RELATED RESEARCH LITERATURE 

Discrete time Hopfield Neural Network is a homogeneous (no 

external input) nonlinear dynamical system with the initial 

condition being a vector of {+1’s, -1’s} and the state space 

being symmetric, unit hypercube. The Artificial Neural 

Network (ANN) is represented by an undirected, weighted 

graph whose vertices are neuronal nodes and the weights are 

symmetric between the nodes. Each node is associated with a 

real valued threshold. Thus, the Ann is represented by a 

symmetric weight matrix, Wand threshold vector T  . 

 Let Vi(n) represent {+1 or -1} valued state of ‘i’th neuron 

and �̅�(n) represent the state vector of the dynamical system 

(lying on symmetric, unit hypercube). Such an ANN operates 

in the following modes of operation. 

 Vi(n+1) = Sign{∑ 𝑊𝑖𝑗
𝑁
𝑗=1  Vj(n) - Ti} Serial Mode 

   

i.e. �̅�(n +1) = sign{
+1     𝑖𝑓 𝑍 ≥ 0                 
−1      𝑖𝑓 𝑍 < 0                

 

In serial mode of operation, state of only on neuron is updated 

at any time instant, whereas in the fully parallel mode of 

operation, state of all the neurons is updated at any time instant. 

Thus, in the parallel mode of operation, we have 

�̅�(n +1) = sign{�̅��̅�(n) - �̅� } 

All the other nodes of operation are called partial parallel nodes. 

In the above nodes of operations sign(.) is signum functions. 

 

Definition: A state v(n) is called stable state if �̅�(n) = 

sign{�̅��̅�(n) - �̅� } 

Definition: Suppose 𝑈 is a stable state. Then the stable state 

associated with 𝑈 is 𝑈TW𝑈 i.e. quadratic from/energy value 

Similarly, anti-stable values are defined. 

Now, we summarize the synthesis of W (and hence the 

Hopfield Associative Memory) using above two lemmas 

relating eigenvectors with stable/anti-stable states. 

The following result is well known from linear algebra 

Every symmetric matrix has a spectral representation of the 

following form W= PDPT, where ‘P’ is an orthogonal matrix 

whose columns are right eigenvectors that form an orthonormal 

basis. 
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The spectral representation of W can be expressed in the 

following equivalent form 

W=


s

i 1

λi ( if )( if )T - 


N

si 1

μi ( if )( if )T, where if  are the 

right eigenvectors (column vectors) of W corresponding to 

eigenvalues{ λi, μi }. 

It is thus clear that synthesis of W requires orthogonal 

corners of hypercube that constitute right eigenvectors of it. 
Such a problem was attempted by Sylvester, Hadamard who 

provided interesting solution. The detailed explanation of 

synthesis of such orthonormal basis requires the following 

definition. 

Definition: Hadamard Matrix, Hm is of order ‘m’ satisfies 

the following equation ‘Hm x HT
m = n Im’.  

Sylvester construction enables synthesis of Hadamard 

matrices of order n = 2m for an integer ‘m’. Thus, orthogonal 

stable states can be chosen as columns of Hadamard matrix. 

But dimension, of Hn must be a power of two.  
Thus, the columns of normalized Hadamard matrix provide 

the desired orthonormal basis. 
1) It readily follows (from Lemma 1) that any two 

orthonormal vectors of dimension N (lying on the 

hypercube) differ in exactly N/2 places. 

2) Hadamard conjectured that Hadamard matrices of 

dimension 4k, exist for each integer K. But constructing 

Hadamard matrices in a given dimension is a difficult 

problem. 

3) In dimension, N=2m for m≥2, Sylvester provided an 

interesting construction to arrive at Hadamard Matrices. In 

his construction H2 is a Hadamard matrix of dimension 2. 

 

Thus, once the dynamical system reaches a stable state, there 

will be no further change of state. 

One of the important features of Hopfield neural networks is 

that if the diagonal elements of W are all non-negative, in the 

serial mode of operation, the neural networks converge to a 

stable state and in the fully parallel mode of operations, either 

the network converges or a cycle of length almost two is 

reached. This feature leads to the operation of Hopfield neural 

network as an associative memory(Hopfield Associative 

Memory). 

Hopfield formulated the problem of synthesizing a HAM with 

certain stable states, say (𝑢1, 𝑢2,………….,𝑢s,).As an ….. 

In this programming/synthesis solution, the desired corners of 

hypercube are mutually orthogonal. The synaptic weight 

matrix is given by  

W=∑ (𝑢𝑠
𝑖=1 i �̅�i

T
 – I) 

Where I is an N x N Identity matrix 

In this synthesis solution, the threshold vector �̅�≡0̅ (i.e. a zero 

vector).Since �̅�i ‘s are mutually orthogonal, We have  

Wui = (N-S) ui for 1 ≤ i ≤ S 

If N > S, it follows that Sign(W ui)= 𝑢i i.e. 𝑢i is a stable state. 

This approach…… 

 

 

 

 

 

As an effort to solve the synthesis problem, Hopfield 

suggested an outer-product rule to arrive at the synaptic weight 

matrix with desired corners of hypercube as stable states. This 

approach was utilized by other researchers to synthesize the 

desired synaptic weight matrix. But it was shown by Bruck et.al 

that the outer product rule-based synthesis of synaptic weight 

matrix leads to exponentially many spurious stable states. After 

careful examination of logical basis of outer product rule, the 

author utilized spectral representation of synaptic weight matrix 

(using orthogonal corners of hypercube as eigenvectors) to 

arrive at synaptic weight matrix with desired stable states [1]. 

But the results in [1] assumed that the dimension of W is even 

and the threshold vector, T  is zero vector. 

III. TOWARDS OPTIMAL SYNTHESIS OF HOPFIELD NEURAL 

NETWORKS IN EVEN DIMENSIONS 

 Eigenvectors of W with {+1, -1} Components: 

Stable/Anti-Stable States: 

In the synthesis of synaptic weight matrix using outer product 

rule, Hopfield utilized some orthogonal corners of hypercube as 

desired stable states. After understanding the essential idea 

behind Hopfield’s Synthesis approach, the author utilized ‘N’ 

orthogonal corners of hypercube (with N being even) as the 

orthonormal basis of eigenvectors in the spectral representation 

of synaptic weight matrix, W. Detailed results of synthesis in 

even dimension are reported in [1]. The results assumed that the 

threshold vector, T ≡ 0 i.e., a vector of zero elements. 

We now generalize an essential lemma proved in [RaM]. Let 

dH(X, Y): Hamming distance between{X,Y}, where X,Y are 

corners of hypercube. 

Note: If dimension N is even, dH(X, Y) is even, while if 

dimension N is odd, dH(X,Y) is odd.(doubt) 

We briefly summarize the results reported in [1]. In [1], the 

main idea is based on the relationship between corners of 

hypercube that are eigenvectors of W corresponding to positive 

eigenvalues and the stable states. The following Lemma proved 

in [RaM] summarizes the relationship. 

Lemma 2: Let u  be a corner of hypercube that is an 

eigenvector of W corresponding to positive eigenvalue ‘λ’. 

Then u is also a stable state when T ≡ 0 . 

Proof: Refer [RaM].  

We prove a more general lemma in the following discussion.  

 

In [5] motivated by above lemma the concept of ANTI-

STABLE STATE is introduced. 

Definition: V is an anti-stable state of Hopfield neural 

network with synaptic weight matrix, W if and only if 

V  = -Sign(WV ) 

Lemma 3: Let V  be a corner of hypercube that is an 

eigenvector of W corresponding to a negative eigenvalue “-μ”. 

Then V is also an anti-stable state when T ≡ 0 . 

Proof: Follows the same arguments as lemma 2. 

 

 Spectral Representation of W: Hadamard Matrices: 
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Now, we summarize the synthesis of W (and hence the 

Hopfield Associative Memory) using above two lemmas 

relating eigenvectors with stable/anti-stable states. 

The following result is well known from linear algebra 

Every symmetric matrix has a spectral representation of the 

following form W= PDPT, where ‘P’ is an orthogonal matrix 

whose columns are right eigenvectors that form an orthonormal 

basis. 

The spectral representation of W can be expressed in the 

following equivalent form 

W=


s

i 1

λi ( if )( if )T - 


N

si 1

μi ( if )( if )T, where if  are the 

right eigenvectors (column vectors) of W corresponding to 

eigenvalues{ λi, μi }. 

It is thus clear that synthesis of W requires orthogonal 

corners of hypercube that constitute right eigenvectors of it. 
Such a problem was attempted by Sylvester, Hadamard who 

provided interesting solution. The detailed explanation of 

synthesis of such orthonormal basis requires the following 

definition. 

Definition: Hadamard Matrix, Hm is of order ‘m’ satisfies 

the following equation ‘Hm x HT
m = n Im’.  

Sylvester construction enables synthesis of Hadamard 

matrices of order n = 2m for an integer ‘m’. Thus, orthogonal 

stable states can be chosen as columns of Hadamard matrix. 

But dimension, of Hn must be a power of two.  
Thus, the columns of normalized Hadamard matrix provide 

the desired orthonormal basis. 
4) It readily follows (from Lemma 1) that any two 

orthonormal vectors of dimension N (lying on the 

hypercube) differ in exactly N/2 places. 

5) Hadamard conjectured that Hadamard matrices of 

dimension 4k, exist for each integer K. But constructing 

Hadamard matrices in a given dimension is a difficult 

problem. 

6) In dimension, N=2m for m≥2, Sylvester provided an 

interesting construction to arrive at Hadamard Matrices. In 

his construction H2 is a Hadamard matrix of dimension 2. 

H2
m+1 = 









mm

mm

HH

HH

22

22
  for  m ≥ 1. 

Thus, using such construction, we can synthesize 

Hadamard matrices of dimension N=2L for any integer L 

≥1.  

Thus, in view of spectral representation of W, we can 

synthesize Hopfield Associative memory using columns 

of Hadamard matrices in dimension N=2L for any integer 

L ≥1. 

7) From Lemma 1, it readily follows that Hadamard matrices 

exist only if the dimension, N is an even number and 

N=4K, for integer K. 

8) Synthesizing Hopfield Neural Network in other 

dimensions (N≠2m and N=4k for integer k) is a difficult 

problem. Recent results on Hadamard matrices (e.g. Payley 

construction etc.) provide construction procedure in some 

other dimensions. No general method of constructing H4k, 

for every integer k is currently known. 

 

 Non-Zero Threshold Vector: Programming Problem 

Solution: 

 

Now, we consider the HAM synthesis problem in even 

dimension (i.e. N is even) when the threshold vector, T  is a 

Non-Zero vector. As we can expect, the synthesis requires 

constraints on the positive and negative eigenvalues. 

Lemma 3:  Let the threshold vector of Hopfield Associative 

Memory(HAM), T ≠ 0 . Let u  be an eigen vector of W  

corresponding to positive eigenvalue, λ which is also a corner 

of unit hypercube. 

 Then u  is a stable state of HAM if |λ| > 
i

max |Ti| i.e. |λ| > 

|Tmax|, i.e., Maximum of absolute values of components of T . 

Proof: Sign{W u -T } = Sign{λ u -T }  

For u  to be a stable state, we require that Sign{λ u -T } = u . 

We keep in mind that components of vector u  are +1 or -1. We 

thus consider  Sign{λui - Ti}. We effectively have two cases: ui 

= +1 or -1. 

 ui = +1 case: Since λ > 0, if Ti < 0 then, always Sign(λui -

Ti) = ui. 

 ui = +1 case: Since λ > 0, if Ti > 0 then, for Sign(λ ui -Ti) = 

ui, we require that λ > |Ti| for all i. Thus, for two such cases 

λ > Maximum positive component of T . 
 ui = -1 case: Since λ > 0, if Ti < 0 then, for Sign(λ ui -Ti) = 

ui, we require that -λ < Smallest negative component of T
. 

 ui = -1 case: Since λ > 0, if Ti  > 0 then always Sign(λ ui -

Ti) = ui. Thus, for two such cases |λ| > 
i

max |Ti| or 

equivalently |λ| > |Tmax| i.e., Maximum of absolute values 

of components of T Q.E.D . 

 Now, we derive constraints on negative eigenvalues in the 

following lemma. 

 

Lemma 5: Let the threshold vector of Hopfield Neural 

Network, T ≠ 0 . Let V  be an eigenvector of W  

corresponding to negative eigenvalue, -μ which is also a corner 

of unit hypercube. Then V  is an anti-stable state of HAM if  

|μ| > 
i

max |Ti| i.e., |μ|>
i

max {|Ti|} i.e. Maximum of absolute values 

of components of T . 

Proof: Sign{WV - T } = Sign{-μV -T }. For V  to be an 

anti-stable state, we require that Sign{WV - T } = -V . We 

realize that the components of V  are {+1 or -1}. We thus 

consider Sign{-μ vi -Ti} (for all i). We effectively have two 

cases: vi = +1 or -1. 

 vi= +1 case: Since -μ < 0, if Ti > 0, then always Sign{-μvi -

Ti} = -μi . 

  vi = +1 case: Since -μ < 0, if Ti < 0, then, for Sign{-μvi-Ti} 

= -μi, we require that -μ < smallest negative component of 

T .Thus, for two such cases, we require that |μ| > 
i

max |Ti|. 
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Now, we consider the other case: 

 vi= -1 case: Since -μ<0, if Ti > 0, then, for Sign{-μvi-Ti} = 

-vi, we require that μ > Maximum positive component of 

T .   
 vi= -1 case: Since -μ < 0, if Ti < 0, then always Sign{-μvi-

Ti} =-vi. Thus, for two such cases |μ| > 
i

max |Ti| Q.E.D .  

 

 Solution  to  the  Synthesis  Problem:  Choice  of  Eigenvalues: 

 

Using lemmas 3 and 4 with positive/negative eigenvalues 

suitably chosen (to satisfy the specified constrains), we can 

synthesize, W in the following manner  

W=


s

i 1

λi iu  - 


N

si 1

μi iV    

In such synthesis approach (N is even), the synaptic weight 

matrix will be a diagonally dominant matrix with all the 

diagonal elements being equal to the sum of eigenvalues (i.e. 

Trace(W)). Due to diagonal dominance of W, in this case in this 

case, all the corners of hypercube will be stable states (as can 

be readily seen). Thus with ‘N’ desired/ programmed stable 

states, there will be ‘2N-N’ “Spurious” stable states 

(exponentially many). Hence, in such approach, the minimum 
distance between stable states is ONE and hence the synthesis 

approach is a very poor one. Such synthesis procedure 

introduces large number of spurious stable states(as every 

corner of hypercube will be a stable state since W will be 

diagonally dominant matrix).  

Now, we take a closer look at the problems in the above 

Synthesis procedure and improve it to achieve better NOISY 

IMMUNITY properties of resulting associative memory. 

MAIN IDEA: To capitalize the freedom in choice of 

eigenvalues of W. 

Step 1: In even dimension (i.e. N is even), using Sylvester 

construction, arrive at orthonormal basis of corners of 

hypercube (possibly only if N=2m for integer ‘m’). 

Step 2: To avoid the problems in previous Synthesis 

procedure, ensure that the Trace(W)=0 i.e. Sum of eigenvalues 

is zero. For instance, positive, negative eigen values can be 

located symmetrically around zero. In section V, we specify a 

procedure to choose the eigenvalues. As discussed earlier, the 

smallest positive eigenvalue, the smallest negative eigenvalue 

must specify the conditions in lemma 3,4,5. 

IV. SYNTHESIS OF HOPFIELD NEURAL NETWORK IN 

ODD DIMENSION 

 Odd Dimension:  No Orthogonal Corners of 

Hypercube: 

 

In [RaM], it was stated that Hopfield Associative Memory 

Synthesis is NOT possible when N is odd (in fact HAM is 

claimed NOT to exist in odd dimension). This conclusion 

requires clarification. From lemma1, it readily follows that no 

two corners of hypercube are ORTHOGONAL when the 

dimension (of vectors), N is odd. Since the desired corners of 

hypercube that are stable/anti-stable states must be orthogonal 

(in the spectral representation of W), at most ONE CORNER of 

hypercube can be eigenvector corresponding to 

positive/negative eigenvalue. Such a desired corner will be 

stable/anti-stable state of synthesized HNN in odd dimension. 

In the definition of Hopfield and other researchers, all other 

stable/anti-stable states of synthesis W are “Spurious”. This 

restriction in odd dimension may be an advantage in the 

following sense. 

A. Hopfield Associative Memory with ONE DESIRED 

STABLE STATE: 

In some applications of associative memories with 

EXACTLY ONE DESIRED MEMORY it is required to 

synthesize associative memory with i.e. in such applications, 

Hopfield Associative Memory can be synthesized in odd 

dimension (as discussed above). Such a desired memory (stable 

state/anti-stable state) can be chosen to correspond to any 

positive/negative eigenvalue. 

 

 �̅�  as  Programmed  Stable  State: 

 

Also, the desired stable state can be the specific state e = 

[11…..1]T i.e. Column vector all of whose components are 1, 

corresponding to any positive eigen value, with T ≡ 0 . 

Since the set of eigenvectors of W (even when N is odd) must 

form an orthonormal basis; if f  is an eigenvector of W 

different from e , f
T e  = 0 i.e. Sum of positive components of  

f must equal sum of negative components of f . This in turn 

implies that L1- norm ( f ) must be divisible by 2. 

 None  of  the  Eigenvectors  are  Stable  States: 

 

Suppose none of the corners of hypercube is a “desired” 

stable state (programmed as an eigenvector in the spectral 

representation of W). Then, the orthonormal basis of 

eigenvector i.e. columns of orthogonal matrix, P (all of which 

don’t lie on hypercube) leads to the spectral representation of 

W i.e., 

W = P D PT = ∑ 𝜆𝑆
𝑖=1 i �̅�i �̅�i

T - ∑ 𝜇𝑁
𝑖=𝑆+1 i gi �̅�i

T        

Thus, in this case, all the resulting stable states are “spurious 

stable states”. Also, from Lemma 1, it follows that in this case 

XTY ≠ N/2 for any spurious stable states X, Y (as they are not 

orthogonal i.e. XTY ≠ N/2). 

V. HOPFIELD NEURAL NETWORKS ⋮ NOISE 

IMMUNITY PROPERTIES 

 Signed  Eigenvectors: “Maximal  Stable  States: 

 

We first consider the case, where N is odd. We need the 

following definition based on the fact that in the serial mode 

HNN converges to a stable state starting in any initial condition. 

Definition: The domain of attraction of a stable state is the 

set of all initial corners of hypercube that converges to it in 

serial or parallel mode of operation. 

The following lemma follows from Theorem () in [5]. We 

assume positive definite W for convenience. 

Lemma 6: Let the orthonormal basis of eigenvectors of 

weight matrix, W be {�̅�1, �̅�2, …., �̅�N}.  
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Let 𝑓 i̅ = Sign(�̅�i) for 1≤ i ≤ N. Also, let {ℎ̅i ⋮ 1≤ i ≤ N} be the 

stable states reached with initial states of HNN being {𝑓 i̅ ⋮ 1≤ i 

≤ N} respectively. Then, ℎ̅i’s are the stable states of W with the 

associated stable values being the ‘N’ largest ones among all 

possible stable values. We call them ‘N’ maximal stable states. 

The above lemma and theorem () in [5] are based on the 

following well known Rayleigh’s theorem. 

 Rayleigh’s theorem: The local optima of the quadratic form 

associated with a symmetric matrix A on the unit Euclidean 

hypersphere (i.e. X ⋮ XTX = 1) occur at the eigenvectors with 

the corresponding value of the quadratic form being the 

eigenvalues.  

 

 “Desired Stable States” in Odd Dimension: 

 

A. Possible Convention/Notation: 

In the case of Hopfield Associative Memory with ‘odd’ 

number of neurons, {ℎ̅i ⋮ 1≤ i ≤ N} can be considered as 

DESIRED STABLE STATES. 

Note: If ‘W’ is indefinite (i.e. has positive as well as negative 

eigenvalues), then similar Lemma as the above one can be 

proved. Details are provided for brevity. 

Note: With the above notation, determining Desired stable 

states when is odd involves the following steps: 

i) Computing eigenvectors i.e. {�̅�i ⋮ 1≤ i ≤ N}, 

ii) Computing fi = Sign {�̅�i } for 1≤ i ≤ N, and 

iii) Running HNN in serial mode with 𝑓 i̅’s as initial states 

and arriving at ℎ̅i’s. 

Note: Unlike the case when N is even, with N being odd we 

are unable to predict the Hamming distance between the desired 

stable states.  

 

 Even  Dimension:  Energy  Landscape  of  HAM: 

 

Now, we consider the case where N is even. From lemma 1 

and synthesis procedure discussed in Section 3, all the 

programmed stable states i.e. eigenvectors of W that are corners 

of hypercube are at a Hamming distance N/2(i.e. any two 

desired stable states are at a Hamming distance exactly N/2 as 

in the case of SIMPLEX code). 

Also, using Rayleigh’s theorem, the ‘N’ stable values 

corresponding to N desired stable states are the local optimum 

values on the unit hypercube, unit Euclidean hypersphere. 

Now, in the case where ‘N’ is even, the energy landscape has 

a beautiful interpretation. The following lemma uncovers the 

hidden pattern behind the energy landscape when �̅� ≡ 0̅(zero 

vector).  

We explore the energy landscape to improve the error 

correction ability of the Hopfield Associative Memory (HAM).  

Consider the HNN in which the threshold vector �̅� ≡ 0̅(zero 

vector). Hence the energy function associated with network 

dynamics becomes 

    E(n) = �̅�T(n) W �̅�(n) (i.e. quadratic form)  ()       

Consider any programmed/desired stable state (with 

synthesis of W as discussed above) as one among the ‘N’ 

eigenvectors of W.  

Consider all {+1, -1} vectors which are at the same Hamming 

distance from any eigenvector/desired stable state. Let 𝑈 be one 

such vector. 

Lemma 7: The value of Energy associated with all such 

vectors 𝑈(i.e. 𝑈T W 𝑈(a quadratic form)) all such points is a 

constant. 

Proof: The main fact required in the proof is that all {+1, -1} 

vectors at a constant Hamming distance from a 

programmed/desired stable state are arrived at by permuting the 

components of other. In other words, suppose {𝑈, �̅�} are such 

vectors (at a constant Hamming distance from a stable state). 

�̅� = �̅�𝑈, where �̅� is a symmetric permutation matrix with 

QT= Q = I. 

Let �̅� be the orthogonal matrix (whose columns are 

desired/programmed stable states that are also eigenvectors). 

    Thus, the spectral representation of symmetric synaptic 

weight matrix W becomes W = �̅��̅��̅�T, with �̅� being the 

diagonal matrix of real eigenvectors of W. 

Thus, VT �̅� �̅� = �̅�T P D PT �̅�  

       = 𝑈T QT P D PT Q 𝑈 

             = 𝑈T QT W �̅� 𝑈, since �̅� is a symmetric matrix. 

 Fact:  Q: Symmetric, permutation matrix implies that QB = 

BQ, for any matrix B or QTB = B QT 

 VT �̅� �̅� = 𝑈T QT W Q 𝑈  

  = 𝑈T W QT Q 𝑈 

             = 𝑈T W 𝑈        Q.E.D. 

 

 Capitalizing Freedom in Choice of Eigenvalues: Basins 

of Attraction: 

 

Now, we choose the eigenvalues (capitalizing freedom in 

their choice) such that all the corners of hypercube which are at 

a distance of at most dmin from the associated stable states are in 

the domain of attraction of the associated stable states we use 

the fact that from the proof of convergence theorem, in the serial 

mode of operation, the energy function is non-decreasing and 

reaches a local/global maximum once the stable state is 

reached. Using above lemma, if we ensure that the energy 

values corresponding to different initial condition vectors(in 

different domains of attraction) are sufficiently distinct, then the 

desired energy landscape is synthesized. 

Let {𝑈1, 𝑈2, …., 𝑈N} be any one of the many vectors at a 

Hamming distance[dmin =⌊𝑁−2

4
⌋] from the corresponding 

programmed/ desired stable states {�̅�1, �̅�2 ,….., �̅�N}, which are 

also eigenvectors of W. 

Let W = P D PT be the spectral representation symmetric 

synaptic weight matrix W. Let �̅� be the orthogonal matrix 

whose columns are {�̅�1, �̅�2, …., �̅�N}. The columns of �̅� form a 

(normalized) orthonormal basis for ‘N-d’ Euclidean Space, ℝN. 

Also, elements of diagonal matrix D are the eigenvalues.  

   �̂�1 = 
1

√𝑁
 𝑈1 = �̅�𝐶̅1  (�̂�1

T 𝑈1 = 𝐶̅1T C1 = 1)    () 

i.e. �̂�1 lies on N-dimensional Euclidean unit hypersphere. 

�̂�1
T W �̂�1 = C1

T PT P D PT P C1 

                   = ∑ 𝑐𝑁
𝑖=1 i

2 𝜆i, with  ∑ 𝑐𝑁
𝑖=1 i

2 = 1          (10.5) 

Now, we provide an approach to capitalize the freedom in 

choice of eigenvalues. 

From above discussion, we know {U1, …, UN}. Hence, we 

know {�̂�1, �̂�2, ….., �̂�N} as well as the orthogonal matrix �̅�. 

We know 𝑐̅i = PT �̂�i = P �̂�i (since the Sylvester construction 

based Hadamard matrix P is symmetric). 

Let �̂�i
T W �̂�i = Si =   ∑ 𝑐𝑁

𝑗=1 ij
2 𝜆j. 
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We have the following system of linear equations, 

[
 
 
 
𝑐11

2 𝑐12
2 ⋯ 𝑐1𝑁

2

𝑐21
2 𝑐22

2 ⋯ 𝑐2𝑁
2

⋮ ⋮ ⋮ ⋮
𝑐𝑁1

2 𝑐𝑁2
2 ⋯ 𝑐𝑁𝑁

2 ]
 
 
 
 [

𝜆1

𝜆2

⋮
𝜆𝑁

] =  [

𝑆1

𝑆2

⋮
𝑆𝑁

] 

Equivalently, 𝐶̅ 𝜆̅ =  𝑆̅ 
𝐶̅ is a stochastic matrix, since ∑ 𝑐𝑁

𝑗=1 ij
2 = 1, for all ‘i’. 

The elements of vector 𝑆̅ are chosen to be interesting 

sequence of increasing numbers so that the domains of 

attraction corresponding to coding spheres of stable states, 

eigenvectors.(10.6) 

 

 Singular  W: Noise  Immunity  of  HAM: 

 

In the synthesis approach discussed above (in the case where 

N is even or N is odd), it is assumed that the matrix W is NON-

SINGULAR (i.e. none of the eigenvalues is zero). 

In practical applications, it may be needed to program strictly 

less than N stable/anti-stable states when W is an NxN 

matrix.Let us now consider the case where W is singular. Let 

the dimension of null space of W be ‘K’ (i.e. there are ‘K’ 

linearly independent vectors in the null space of W). Let f  be 

a vector in the null space. 

  W f ≡ 0  => W(- f ) = -W f ≡ 0   

i.e. - f  is also in the null space of W. By convention, let Sign(

0 )= e , where e  is a column vector all of whose components 

is ‘1’.  

Further, suppose ‘W’ is a non-negative matrix(W≢ 0 ). Then 

we have that Sign(W e ) = e  i.e. e  is a stable state.  

Hence in this case (i.e. W is a singular non-negative matrix), all 

the corners of hypercube which are in the null space of W are 

in the domain of attraction of stable state ‘ e ’. 

Suppose W is singular, but not a non-negative matrix. 

Further, let e  be in the domain of attraction of stable state h . 

Hence, in this case, all the vectors in the null space of W  are 

in the domain of attraction of h  (stable state). 

Note: Similar results can be derived for the case of anti-stable 

states. Details are avoided for brevity. 

Note: In the case where ‘N’ is even, the Hopfield Associative 

Memory (HAM) can be synthesized with, say “N-S” stable 

states (S>1) and the associated ‘W’ is singular. 

The above results apply in this case. 

 
We are naturally led to singular ‘W’ in the following case 

also. Let 2m< N < 2m+1 for an integer ‘m’. 

To synthesize ‘W’, we use N columns of Hadamard matrix 

H2
m+1 with suitable ‘N’ eigenvalues and remaining eigenvalues 

(2m+1-N) to be zero. 

Thus, such a synthesis approach ensures “good” noise 

immunity properties of associated HAM. 

 

Note: Conversion of Synthesis of W in odd dimension to 

even dimension. 

 

Suppose ’N’ is an odd integer. Then, consider the closest 

integer, M such that M= 2l for some integer with M>N. Then 

synthesize ‘MxM’ singular synaptic weight matrix with ‘M-N’ 

zero eigenvalues and the other ‘N’ eigenvalues being suitably 

chosen with the corresponding eigenvectors being columns of 

Hadamard matrix, H2
l= HM. In this case, the null space of W is 

spanned by the remaining ‘M-N’ corners of hypercube that are 

orthogonal.  

For the sake of completeness, we briefly summarize the 

results of Bruck et.al, relating Hopfield Neural Network with 

the associated Graph-theoretic code. 

Bruck et.al showed that the stable states of HNN are naturally 

related to the codewords of graph theoretic code (which 

correspond to the cuts) associated with graph defining HAM. 

Every codeword is associated with a bi-partite graph where the 

stable state is obtained by placing ‘+1’ for vertices on one side 

of cut and ‘-1’ for vertices on the other side of graph. 

 

VI. FORMULATION OF OPTIMAL SYNTHESIS(OF W) PROBLEM 

Let ‘K’ be the number of desired stable states (K could be 

strictly greater than N). 

Synthesize W with K corners of hypercube as stable states that 

are at maximum possible minimum Hamming distance (dmin). 

In such optimal synthesis problem, the following two 

problems naturally arise. 

1. Given an integer ‘K’, what is the maximum possible 

value of ‘dmin’? 

We conjecture that if K≥N, then maximum possible value of 

dmin = N/2. 

2. Given a required “dmin” value, what is the maximum 

possible value of K? 

VII. CONCLUSION: 

In  this  research  paper,  the  synthesis  of  Hopfield  

Associative  Memory with  desired  stable/anti-stable  states  is  

discussed ( using  spectra  representation  of  W  with   

{+1, -1 }  component  eigenvectors ). The  optimal  synthesis 

of  Hopfield  Neural  Network  is  discussed.  Capitalizing  the  

freedom  in  choice of  eigenvalues,  the  noise  immunity  of  

HAM  is  improved.   
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