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Abstract. Action prediction is defined as the inference of an action
label while the action is still ongoing. Such a capability is extremely
useful for early response and further action planning. In this paper, we
consider the problem of action prediction in scenarios involving humans
interacting with objects. We formulate an approach that builds time
series representations of the performance of the humans and the objects.
Such a representation of an ongoing action is then compared to prototype
actions. This is achieved by a Dynamic Time Warping (DTW)-based
time series alignment framework which identifies the best match between
the ongoing action and the prototype ones. Our approach is evaluated
quantitatively on three standard benchmark datasets. Our experimental
results reveal the importance of the fusion of human- and object-centered
action representations in the accuracy of action prediction. Moreover,
we demonstrate that the proposed approach achieves significantly higher
action prediction accuracy compared to competitive methods.

Keywords: Action Prediction · Early Action Classification · Dynamic
Time Warping (DTW) · Soft DTW · Global Alignment Kernel (GAK).

1 Introduction

The capability to foresee and predict future outcomes is a very important human
ability as it enables us to plan our next moves and actions and articulate with the
environment. Likewise, prediction is an important capability of several technical
systems. For example, home assisting robots need to be able to predict user
actions and intentions in order to plan ahead their own actions and provide
fast and accurate assistance to the user [9, 10]. In another example, autonomous
cars [23] need the ability to predict the movement of pedestrians and other
vehicles to plan a safe route and avoid accidents.

? The research work was supported by the Hellenic Foundation for Research and In-
novation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 1592.)
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In this paper, we investigate the specific problem of vision-based action pre-
diction in human-object interaction scenarios. Action prediction is the capability
of inferring the class label of an ongoing (i.e., partially executed, incomplete) ac-
tion [37]. Thus, our input consists of trimmed video recordings, from which time
series of 3D skeletal data can be extracted using a number of methods (e.g.,
[30])3 . The observed part of the action depends on the observation ratio which
is in the range (0, 100%]. An observation ratio of 100% signifies a fully observed
action; in that case, action prediction is equivalent to full action classification.

2 Related work

Vision-based prediction is a rising topic in the field of computer vision [28]. From
pedestrian trajectory prediction [33] to pose prediction [22] to accident antici-
pation [5], prediction has become the focus of several investigations [32]. Ryoo
et al. [37] were the first to define the problem of vision-based action prediction
as “an inference of unfinished activities given temporally incomplete videos”.
Action prediction methods can be on trimmed or untrimmed videos [20].

Action prediction in trimmed videos: Action prediction on trimmed videos
focuses on recognizing the label of a video given incomplete observations at
each point in time [12, 4]. Wang et al. [41] created a teacher-student network
where the teacher part of the network recognizes the action while the student
part takes as input a partial video and predicts the action. The method in [3]
uses a 3D convolutional neural network to extract spatio-temporal features and
perform short-term action prediction by using multiple binary classifiers. In [19]
the action label is predicted by distinguishing video pairs of different classes that
are difficult to discriminate. In [9] everyday actions are predicted by using motion
trajectory prediction and taking into account the objects and their affordances.

Action prediction in untrimmed videos: This is performed on non-trimmed
videos and its goal is to recognize early (a) all the action labels that are present
in a video and (b) their anticipated duration [16, 26, 25]. Since action boundaries
are not known, Liu et al.[20] used a scale selection network to select the right
window size with the use of convolution layers. The method presented in [11]
predicted the future actions with two ways: recursively using an RNN network
and in one-pass by using a CNN network. Recursive prediction of actions can
accumulate errors. For this reason, Ke et al. [17] predicted actions in an one-
shot fashion. The method presented in [13] recognizes the actions of the ongoing
video along with their duration by inferring information about the verbs and the
objects that are present in the scene through aligning video segments.

Video alignment: Video alignment is gaining increasing popularity in the con-
frontation of different tasks. The work in [14] uses a variant of DTW with a

3 In our work the terms “video recordings” and “skeletal data” are used interchange-
ably.
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smoothMin approximation as loss in their network to achieve 3D pose reconstruc-
tion and fine-grained audio/visual retrieval. The work in [15] solves the problems
of action phase classification, action phase progression, and fine-grained frame
retrieval by using temporal alignment and regularization loss. As their temporal
alignment loss they employ Soft Dynamic Time Warping (Soft DTW). DTW
has been used in the past in relevant contexts. The work in [42] uses DTW for
intention prediction based on eye gaze and fixation time-series for autonomous
vehicles. In [2] action prediction is based on time-series of features extracted
from flow with the use of CNN networks. However, DTW has not been used be-
fore for short-term action prediction in the context of human-object interaction
scenarios.

Our contribution: We cast the problem of short-term action prediction as
a problem of time series alignment and comparison. Video recordings of ac-
tions are represented as multidimensional time series through feature extraction
mechanisms. The employed features encode the temporal behavior of both the
action-related humans and objects. Given a time series representation of an in-
complete action, we seek for its best alignment and match with a set of time
series corresponding to prototype executions of a variety of actions. The pre-
dicted action label is the label of the best matching prototype action execution.
For the alignment task, we investigate three DTW variants [38], called OpenEnd-
DTW [39], Soft Dynamic Time Warping [8] and Global Alignment Kernel [7].
Our approach is evaluated quantitatively on the skeletal data of three stan-
dard benchmark datasets, namely MSR Daily Activities [40], CAD-120 [18] and
MHAD [27]. Our results reveal (a) the impact of the used DTW variant and
(b) the importance of the fusion of human- and object-centered action repre-
sentations in the accuracy of action prediction. Moreover, we demonstrate that
the proposed approach achieves significantly higher action prediction accuracy
compared to competitive methods.

3 DTW-BASED ACTION PREDICTION

We assume that a video recording of an action (full or incomplete) can be rep-
resented as an N -dimensional time series through some appropriate feature ex-
traction mechanism (see Sec. 3.1).

Let Q be such a time series representation of an incomplete action. We are
interested in inferring the unknown action label L(Q) of Q. We also consider
a set of C time series P i, 1 ≤ i ≤ C, corresponding to known, prototype ac-
tion executions with labels L(Pi). Our approach compares Q with each of the
time series Pi through Dynamic Time Warping-based alignment (DTW). Let
DTW (X,Y ) denote the DTW alignment cost of time series X and Y . Then,
action prediction can be formulated as:

L(Q) = L
(
arg min1≤i≤C

(
DTW (Q,P i)

))
. (1)
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Essentially, the proposed method predicts that the action label of Q is that of
the prototype action P i which can be aligned with Q at a minimum DTW-based
alignment cost.

3.1 Feature Extraction

Given a video, we represent each of its frames as a multidimensional vector
of action-related features. Depending on the employed scenario, such features
encode the human body pose, the class and the pose of the involved object,
or both. Section 4 presents different sets of extracted features for the standard
benchmark datasets employed in this work.

3.2 DTW-based Time Series Alignment

Dynamic Time Warping (DTW): Let X and Y be two time series with
X = (x1, . . . xl) ∈ Rn×l and Y = (y1, . . . , ym) ∈ Rn×m. We define the distance
matrix D(X,Y ) = [d(xi, yi)]ij ∈ Rl×m, where d(x, y) is the Euclidean distance
between x and y. We also define Π, the set of all path-based alignments of X
and Y , connecting the upper-left to the lower-right of the matrix D. Finally, let
π ∈ Π be one of all those alignments. The inner product 〈π,D(X,Y )〉 yields the
alignment score associated with π.

DTW [38] is a dynamic programming algorithm that estimates the minimum-
cost alignment of two time series. On the basis of the above notation, this is
DTW (X,Y ) = minπ∈ΠD(X,Y ). For the partial alignment, a variant of the
original DTW [38] is employed, called open-end DTW [39]. The alignments can
end at any point at the last column of the D matrix. The alignment score is
normalized by the number of diagonal steps of the calculated optimal alignment
path. Open-end DTW is defined as:

DTWoe(X,Y ) = minj=1,...,mDTW (X,Yj). (2)

Soft DTW: Soft-DTW [8] builds upon the original and popular dynamic time
warping (DTW) measure and considers a generalized soft minimum operator
applied to the distribution of all costs spanned by all possible alignments be-
tween two time series of variable size. Given the following generalized minimum
operator, subject to a smoothing parameter γ ≥ 0,

min γ(π1, . . . , πk) =

{
mini≤k πi, γ = 0,

−γ log
∑k
i=1 e

πi/γ γ > 0,
(3)

the soft-DTW score is defined as:

SDTWγ(X,Y ) = minγ{〈π,D(X,Y )〉, π ∈ Π}. (4)

The original DTW score is obtained by setting γ = 0.

Global Alignment Kernel: Global Alignment Kernel (GAK) [7] measures the
similarity between two multidimensional time series X, Y . On top of D(X,Y ),
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the GAK is computed as:

GAK(X,Y ) =
∑
π∈Π

exp

(
−〈π,D(X,Y )〉

γ

)
. (5)

In comparison to DTW, in order to find the alignment score of two time-
series, instead of using the operators (min, +) on the 〈π,D(x, y)〉 GAK uses
the (+,X) operators. According to [7], the GAK considers the full spectrum of
the 〈π,D(X,Y )〉, π ∈ Π, while the DTW distance considers only the minimum
score.

3.3 Early Fusion of Human and Object Representations

The aforementioned variants of DTW operate on the distance matrix D(X,Y )
of time series X and Y , which, for notational convenience, will be denoted with
D. In the human-object interaction scenario we are considering, this distance
matrix is defined as follows. First, we construct a distance matrix DH which
results from the frame-wise comparison of the part of the representation that
contains the information regarding the human. We also construct an analogous
distance matrix DO which results from the frame-wise comparison of the part of
the representation that contains the information regarding the object with which
the human interacts. Then, the distance matrix D on which DTW operates is
defined as:

D = αHDH + αODO. (6)

In the above equation, αH and αO are weighting factors that may be dataset-
dependent, but have been defined experimentally and commonly for all employed
datasets. If the two compared actions involve objects of the same class, then
αH = αO = 0.5. If the two compared actions involve objects of different classes,
then αH = 0.7 and αO = 0.3. The intuition behind this choice is that the
same action can be performed by using different objects (e.g., reach, move, etc).
Therefore, actions can still be compared, but with giving emphasis on the part of
the representation concerning the humans rather than the objects. If no objects
are present in the scene, then αH = 1 and αO = 0. Finally, in the case that
one of the actions involve an object and the other does not, αH = 3 and αO =
0. Essentially, the two actions are again compared on the basis of the human
performance, but the mismatch on the presence of objects is penalized by a large
αH value.

In the observed scene, several objects may be present. From those, we consider
the one that is closest to and/or manipulated by the actor. One limitation of
this choice is that we cannot take into account actions involving more than
one object. However, ongoing research beyond the scope of this paper indicates
that the extension of our approach towards handling more that one manipulated
objects is feasible. Another limitation and future extension of our work lies in the
need to know the start frame of an action. The generalization of our approach
towards handling unsegmented actions is another topic of ongoing research.
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4 EXPERIMENTS

Datasets: The proposed framework is evaluated on 3 standard datasets with
different characteristics.

MHAD Dataset [27]: Contains 11 actions (jumping in place, jumping jacks, bend-
ing, punching, waving one hand, waving two hands, clapping, throwing a ball, sit
down and stand up, sit down, stand up) performed by 12 subjects. The majority
of the actions do not involve objects (with the exception of the action “throwing
a ball”). The database provides motion capture data containing the 3D positions
of 43 LED markers, which have been processed to obtain 3D skeletal data of 30
joints. The standard evaluation split is used as in [27].
Features: The MHAD [27] dataset contains the 3D positions of skeletal joints.
Based on these 3D positions, we build a human body representation as proposed
in [35] and also used in [29, 21]. Specifically, a human pose is represented as a
30 + 30 + 4 = 64D vector. The first 30 dimensions encode angles of selected
body parts with respect to a body-centered coordinate system. The next 30
dimensions encode the same angles in a camera-centered coordinate system.
The representation is augmented with the 4 angles between the fore- and the
back-arms as well as the angles between the upper- and lower legs.

MSR Daily Activity 3D Dataset [40]: Consists of 16 actions (drinking, eating,
reading a book, speaking on cellphone, writing on paper, using a laptop, using
a vacuum cleaner, cheering up, sitting still, tossing paper, playing a game, lie
down on the sofa, walking, playing the guitar, standing up and sitting down)
performed by 10 subjects. Every subject performs each action twice, once sitting
on a sofa and once standing. We followed the experimental settings of [43, 34].
Features: The dataset contains the 3D skeletal joint positions for all the human
joints. We consider only the 9 upper body joints due to the fact that the data
for the lower body are quite noisy. The 3D upper skeletal joint positions are cal-
culated to be invariant to the body center. The invariant 3D joint positions are
concatenated with the 3D joint angles. The 3D joint angles are represented as a
30D vector. The 30 dimensions encode angles of selected body parts with respect
to a body-centered coordinate system [35] but we are taking into account only
the angles that correspond to the upper body. For the objects in this dataset, we
employed the YoloV4 [6] trained on ImageNet in order to acquire fast and accu-
rate labels and 2D positions of the objects in the scene. We densely annotated
the training part of the MSR-Daily dataset and re-trained the YoloV4 [6] on the
MSR Daily Activities dataset. The invariant 3D upper skeletal joint positions
are 27D and the 3D joint angles that correspond to the upper body are 18D.
The positions of the objects are 2D. Thus, each frame of a video is represented
as a 27 + 18 + 2 = 47D vector.

CAD-120 Dataset [18]: Contains activities performed by 4 subjects, which can
be subdivided into 10 sub-activities. The subjects perform the activities with
different objects. Activities are observed from different viewpoints. The sub-
activity labels are: reach, move, pour, eat, drink, open, place, close, clean, null.
We are experimenting on the sub-activity labels using the standard 4-fold cross
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Fig. 1. Comparison of DTWoe, SDTW and GAK on the MSR (left) CAD-120 (middle)
and MHAD (right) datasets.

Fig. 2. Action prediction results for different representations. (Left) MSR Daily Activ-
ities Dataset, (Middle) CAD-120 Dataset. (Right) Action prediction accuracy of our
method in comparison to state of the art methods on the MSR Daily Activities Dataset.

validation as in [18] Features: We used a set of features based on [18]. Specifically,
to represent human motion we use the location of each of 8 joints (24D), the
distance moved by each joint (8D) and the displacement of each joint (8D). For
representing objects we used their 3D centroid location, the distance moved by
the object’s centroid (1D), the displacement of the object’s centroid (1D) and
the distance between each joint location and the object centroid (8D). In total,
a frame of a sequence is represented as a 53D vector.

Performance metrics: We measure the action prediction accuracy as a func-
tion of the observation ratio, i.e., the percentage of the part of the action that
has been observed and compared to action prototypes. In our experiments, the
observation ratio ranged from 10% to 100% in steps of 10%.

Evaluation of DTW variants: We evaluated the three DTW variants pre-
sented in Sec. 3.2 with respect to their action prediction accuracy on all three
datasets. During testing, every query sequence is compared to all sequences in the
training set. We employed a publicly available [1] implementation of DTWoe and
the implementations of the DTW variants that reside in the Tslearn toolkit [36].
The parameter γ was experimentally set equal to 0.1 for the (MHAD, MSR)
datasets and to 0.01 for the CAD120 dataset. As it can be observed in Fig. 1,
DTWoe outperforms SDTW by a great margin in the MHAD and CAD120
datasets. In turn, SDTW clearly outperforms GAK. This holds true for all three
datasets, regardless of whether they involve humans in interaction with objects
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(MSR, CAD120) or not (MHAD). Moreover, the superiority of DTW over the
rest two variants is dominant especially in lower observation ratios. This shows
the potential of the method for accurate and early action prediction.

Evaluation of alternative representations: We evaluated the impact of ac-
tion representations on action prediction. More specifically, we investigated three
different experimental conditions, (a) representations that involve only the joints
of the human actor (b) representations that involve only the class and the motion
of the involved objects and (c) their early fusion, as presented in Sec. 3.3. Fig-
ure 2 (left, middle) shows the results we obtained in the MSR and the CAD120
datasets4, respectively. As it can be verified, the early fusion of the actor and
object representations outperforms any of the individual representations in pre-
dictive power, by a vast margin (from a minimum of 10% to a maximum of
40%).

Comparison to the state of the art: Figure 2 (right) presents a comparison
of our approach to other competitive methods on the MSR dataset. Specifically,
we are comparing to the work of Reily et al. [34] and to that of Alfaifi et al. [3].
As it can be observed, we outperform [34] at all observation ratios and [3] for all
observation rations greater than 40%.

To the best of our knowledge, there are no reported quantitative results for
action prediction on the CAD120 dataset. We only report action classification
results from the very recent method of Mavroudi et al. [24] that achieves an
action classification accuracy of 90.4%) which can be compared to the action
prediction results of our method in the case of an observation ratio of 100%.

Similarly, there are no reported quantitative results for action prediction on
the MHAD dataset. For action classification, the very recent method of Qin
et al. [31] achieves an accuracy of 100%, compared to the action classification
accuracy of 96% of our method, for an observation ratio of 100%. Interestingly,
an action prediction accuracy of more than 90% is achieved by our method,
even when a small portion of the activity has been observed (observation ratio
of 20%).

5 SUMMARY

We approached the problem of predicting the actions of humans interacting
with objects as a problem of aligning fused, frame-based action representations
of humans and objects. Specifically, actions are represented as multidimensional
time-series. Then, their alignment and the assessment of their similarity is per-
formed with a DTW-based approach. On this task, three DTW variants have
been evaluated in three well-known datasets. We also investigated and assessed
quantitatively the importance of the fusion of human- and object-based action
representations. The obtained results suggest that DTWoe outperforms all tested
variants and that the proposed fusion of representations increases considerably

4 MHAD is not included in this investigation as the vast majority of its actions do not
involve human-object interactions.
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the predictive capability of our framework, which performs considerably better
than recently published competitive action prediction methods.
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