
EasyChair Preprint
№ 5434

Detection of Objects Through Hierarchical
Version of Fast Region-Based Convolutional
Neural Networks

Arindam Chaudhuri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 30, 2021

Detection of objects through hierarchical version of fast region-

based convolutional neural networks

FirstName Surname†
 Department Name

 Institution/University Name

 City State Country

 email@email.com

ABSTRACT

In object detection there is high degree of skewedness for objects'

visual separability. It is difficult towards distinguishing certain

categories demanding dedicated classification. The training for the

deep convolutional neural networks (CNNs) is performed through

N-way classifiers. Considerable work needs to be done for

leveraging structures in hierarchical category. We present here

hierarchical fast region-based CNNs (Hrch Fast RCNNs) where

deep CNNs are embedded considering hierarchy as categorical.

The easy classes are separated through classifiers in coarse

category. The difficult classes are classified by classifier in fine

category. The training in Hrch Fast R-CNN is achieved by initial

training of the components which follows fine-tuning globally

using multiple group discriminant analysis. The regularization is

done using consistency in coarse category. For large-scale

recognition tasks, scalability is done considering conditional

execution of classifiers in fine category and compression in layer

parameters. Using CIFAR100 datasets as benchmark we obtain

good results. We build four different Hrch Fast R-CNN where

standard CNNs top-1 error are reduced significantly.

CCS CONCEPTS

• Computing Methodologies • Artificial Intelligence • Computer

Vision

KEYWORDS

Object detection, CNN, Recognition, Classification, Scalability

1 Introduction

The image classification [1] and object detection [2], [3] tasks have

shown a high degree of accuracy [1], [4] from convolutional neural

networks (CNN). Most of the available techniques [2], [3], [5], [6]

work in multi-stage slow and inelegant pipelines. The complexity

arrives from detection which requires accurate object localization

leading to: (a) processing of numerous candidate object locations

and (b) achieving precise localization for candidate object locations

which provide only rough localization. The solutions for the stated

problems often struggle to achieve good speed, accuracy and

simplicity.

The region-based convolutional neural network (R-CNN) [2] has

reached brilliant accuracy in detection of objects through deep

CNN towards object classification. However, it has certain

drawbacks [2], [3], [5], [6]: (a) the training is performed through

pipeline with multiple stages (b) there is space and time complexity

involved and (c) detection of objects happen slowly. R-CNN works

slowly as each object’s CNN forward pass happens without sharing

of computation. By sharing computation, the spatial pyramid

pooling networks (SPNN) [5] speeds up the R-CNN. The input

convolutional image’s feature map is computed by SPPN. Then

each object is classified through feature vector taken from shared

feature map. Considering an object, extraction of features through

max-pooling feature-map’s portion within the object with fixed

output size. As in spatial pyramid pooling, concatenation and

pooling are performed for multiple sizes output. SPPN enhances R-

CNN considerably at test time. Due to fast object feature extraction,

training time is also reduced.

In this paper, hierarchical version of fast region-based CNN (Hrch

Fast R-CNN) is proposed towards object detection that

hierarchically learns to classify objects and refine them. This work

looks towards the development of Hrch Fast R-CNN which

integrates deep CNNs alongwith category hierarchy. The algorithm

streamlines the process for training towards CNN-based object

detectors [2], [5]. The image classification task is decomposed into

two steps. The weighted coarse component R-CNN classifier

separates classes which are easy. The complex classes are directed

towards weighted fine components which takes care of classes with

confusion. Hrch Fast R-CNN is build considering R-CNN building

block through module design principle. The building blocks are

considered to be as one of the top ranked single R-CNN. The

coarse-to-fine classification is followed here. Then fine category

classifiers predictions are integrated as possibilistic means which

∗Article Title Footnote needs to be captured as Title Note
†Author Footnote to be captured as Author Note

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

WWW’19, May, 2019, San Francisco, USA

© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

https://doi.org/10.1145/1234567890

mailto:email@email.com

WWW’19, May, 2019, San Francisco, USA F. Surname et al.

takes care of the inherent data uncertainty. The proposed

architecture is evaluated through CIFAR100 dataset [7]. Hrch Fast

R-CNN achieves less error with respect to memory footprint

increase as well as time of classification. The schematic

representation of the Hrch Fast R-CNN based prediction system is

given in Figure 1.

Figure 1: Prediction framework through Hrch Fast R-CNN

This paper is presented as: section 2 presents the motivation for this

work. The Fast R-CNN architecture and training is given in section

3. The Hrch Fast R-CNN is highlighted in section 4. This is

followed by Hrch Fast R-CNN detection in section 5. The section

6 places the experimental results. Finally, in section 7 conclusions

are given.

2 Motivation for this Work

The motivation for this work is taken from the success achieved in

designing CNN hierarchically with respect to the integration of

category hierarchy and linear classifiers. CNN models are

continuously upgraded through enhancement of their components

such as pooling layers [8], activation units [9], [10] and nonlinear

layers [11]. These developments have improved CNN training and

learning processes. This work improves the performance of CNN

model considerably. The hierarchical model is built layer-wise

considering the building block as the basic CNN model. Several

building blocks are placed to form the hierarchical version of deep

CNN.

There exit a wide variety of structures with categorical hierarchy

[12]. The classification with linear classifiers having high number

of classes is generally performed through classifiers’ taxonomy.

Here the classifiers are verified with respect to test image which

scales in sub-linear manner against number of classes [13], [14].

The hierarchy learning is either pre-specified [15], [16], [17] or

achieved in top-down and bottom-up manner [18], [19], [20], [21],

[22], [23], [24]. The hierarchical classifiers in [25] and [26] have

reached considerable speedup bearing some accuracy loss. The

initial work on category hierarchy for CNN is available in [27]. [28]

achieves good accuracy considering training images subset that are

re-labeled with internal nodes in class tree hierarchy. [29] uses

CNN hierarchy with scalability and has good classification

performance over CNN.

3 Fast R-CNN Architecture and Training

This section presents Fast R-CNN architecture adopted from [30]

as the baseline method with subtle variations. The Fast R-CNN

architecture is highlighted in Figure 2. The entire image and

objects' set forms the input towards Fast R-CNN network. The

convolutional feature map is produced through the processing of

the entire image alongwith various convolutional and max pooling

layers. Considering the feature map, a fixed length feature vector is

extracted for each object's region of interest (RoI) pooling layer.

The sequence of fully connected (𝑓𝑦_𝑐𝑡) takes each feature vector

as input. From 𝑓𝑦_𝑐𝑡 the output is fed in 2 sibling output layers

producing softmax probability estimates. The softmax probability

are estimated with respect to OB object classes considering catch-

all background class as well as another layer that has 4 real valued

numbers as output. For each of the OB classes, 4 values' set are

encoded considering bounding box positions which are refined.

The max pooling is used for RoI pooling layer in order to convert

its features into small feature map considering fixed 𝐻𝑡 × 𝑊ℎ

fixed spatial extent. Here 𝐻𝑡 and 𝑊ℎ are the hyper parameters of

layers not dependent on any specific RoI. RoI is just a rectangular

window with convolutional feature map. A 4-tuple
(𝑟𝑤, 𝑐𝑚, ℎ𝑡, 𝑤ℎ) defines an RoI where (𝑟𝑤, 𝑤ℎ) is the top left with

ℎ𝑡 and 𝑤ℎ as its height and width respectively. The ℎ𝑡 × 𝑤ℎ

window is divided by RoI max pooling into 𝐻𝑡 × 𝑊ℎ sub-window

grids having ℎ𝑡/𝐻𝑡 × 𝑤ℎ/𝑊ℎ size (approx). Then sub-window

values are max-pooled into each grid cell output. Towards each

feature map channel independent pooling is applied. RoI layer has

1 pyramid level. It is a special case of spatial pyramid pooling layer

in SPNN [5]. 6 pre-trained ImageNet [31] networks (with 8 max

pooling layers and between 8 and 18 convolutional layers) are

used to perform the experiments. There are 3 transformations for

Fast R-CNN network with pre-trained network initialization. RoI

pooling layer replaces the last max pooling layer. It is configured

as 𝐻𝑡 × 𝑊ℎ . This is followed by 1000 -way ImageNet

classification training for network’s last fully connected and

softmax layers. There are 𝐴 + 1 categories for fully connected and

softmax layers as well as bounding-box regressors which are

category specific. The network is updated to absorb 2 data inputs.

Fast R-CNN uses backpropagation to train all network weights.

Below spatial pyramid pooling layer, weight updation is not

possible as SPP layer's backpropagation is not effective. This

inefficiency is spread across receptive field spanning the entire

input image starting from each RoI. The training inputs are large as

the forward pass processes the entire receptive field. The feature

sharing is used during training. For each image, RoIs are sampled

hierarchically through 𝐼 and then 𝑅/𝐼 images for Fast R-CNN

training stochastic gradient descent (SGD) mini-batches. In

forward and backward passes, computation and memory are shared

for RoIs from same image. Taking small 𝐼 reduces the computation

of mini-batch. It slows convergence of training as same image RoIs

are correlated. Significant results are achieved using 𝐼 = 2 and

Detection of objects through Hrch Fast R-CNN WWW’19, May, 2019, San Francisco, USA

𝑅 = 128 with less SGD iterations. Here the training process is

synchronized through fine-tuning which optimizes softmax

classifier and bounding box regressors [2], [5].

Figure 2: Architecture of Fast R-CNN

In Fast R-CNN 2 sibling output layers are used. The initial output

is discrete probability distribution per RoI considering 𝐴 + 1

categories which is 𝑝𝑟𝑜𝑏 = (𝑝𝑟𝑜𝑏0, … … , 𝑝𝑟𝑜𝑏𝐴) . For fully

connected layer, 𝑝𝑟𝑜𝑏 is calculated for softmax considering 𝐴 + 1

outputs. The 2nd sibling layer has the following bounding-box

regression offsets outputs for 𝐴 object classes as 𝑣𝑎 =

(𝑣𝑥
𝑎, 𝑣𝑦

𝑎, 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎) . The parameterization for 𝑣𝑎 is given in [2].

Here 𝑣𝑎 specifies translation (scale-invariant) and height shift (log-

space) with respect to the object. For each training RoI labeling is

done considering ground-truth class 𝑢 and ground-truth (with

bounding-box regression) for 𝑣. For each labeled RoI, there is a

joint classification (for training) and bounding-box regression with

respect to multitask loss 𝐿:

 𝐿(𝑝, 𝑢, 𝑣𝑢, 𝑠) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑣𝑢, 𝑠) (1)

For the true class 𝑢 , log loss is 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢 . 𝐿𝑙𝑜𝑐 is

second task loss which is specified considering true bounding-box

regression target tuples such that 𝑠 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑤ℎ, 𝑠ℎ𝑡) with

predicted tuple𝑣𝑎 = (𝑣𝑥
𝑎, 𝑣𝑦

𝑎, 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎) for class 𝑢. When 𝑢 ≥ 1

[𝑢 ≥ 1] = 1 else 0 is the iverson bracket indicator function.

Background class with catch-all convention is marked as 𝑢 = 0.

𝐿𝑙𝑜𝑐 is ignored with background RoIs having no ground-truth

bounding box. The loss (bounding-box regression) is:

 𝐿𝑙𝑜𝑐(𝑣𝑢, 𝑠) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑣𝑖

𝑢 − 𝑠𝑖)𝑖∈{𝑥,𝑦,𝑤ℎ,ℎ𝑡} (2)

In equation (2) the smooth function is:

 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = {

0.5𝑥2 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑤

 (3)

In 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥), loss 𝐿2 in R-CNN and SPPN [5] is more outliers’

sensitive than robust loss 𝐿1 . The loss 𝐿2 needs to be carefully

tuned in terms of learning rates to prevent gradients exploding with

unbounded training as regression targets. This sensitivity is

eliminated through equation (3). In equation (1) the balance

between 𝐿1 and 𝐿2 is controlled by 𝜆 . With 𝜆 = 1 ground-truth

regression targets 𝑠𝑖~𝑁(0,1). The class-agnostic object network is

trained using the loss factor [31]. The localization and classification

are separated by 2-network system. The images (𝑁 = 2) selected

uniformly at random are used from SGD minibatch created at fine

tuning. The dataset is permuted to perform the iterations. From each

image 64 RoIs are sampled considering mini-batches of 𝑅 = 128

size. 25 % of RoIs are taken from objects which have intersection

over union (IoU) overlap having ground-truth bounding box ≥ 0.5

[2]. The examples marked with foreground object class as 𝑢 ≥ 1

make the RoIs. The rest RoIs are sampled considering objects with

maximum IoU at ground truth in [0.1, 0.5) [5]. These form

examples (background) and are marked as 𝑢 = 0 . A 0.1 low

threshold acts as hard mining heuristic [33]. The training images

are flipped horizontally considering probability 0.5. Augmentation

of data is not used. Derivatives are routed through RoI pooling layer

using backpropagation. All images are treated independently at

forward pass since it assumes only one image per mini-batch (𝑁 =

1) with 𝑁 > 1 . Let 𝑥𝑖 ∈ ℝ as 𝑖𝑡ℎ activation input towards RoI

pooling layer. Also assume 𝑦𝑟𝑗 as the layers’ 𝑗𝑡ℎ output from 𝑟𝑡ℎ

RoI. The RoI pooling layer computes 𝑦𝑟𝑗 = 𝑥𝑖∗(𝑟,𝑗) with 𝑖 ∗

(𝑟, 𝑗) = argmax𝑖′∈ℛ(𝑟,𝑗)𝑥𝑖′ . ℛ(𝑟, 𝑗) denotes input set’s index for

sub-window considering the max pooling of output unit 𝑦𝑟𝑗 .

Several different outputs 𝑦𝑟𝑗 are assigned single 𝑥𝑖 . The partial

derivative of loss function is computed through RoI pooling layer’s

backwards function considering each input variable 𝑥𝑖 as:

𝜕𝐿

𝜕𝑥𝑖
= ∑ ∑ [𝑖 = 𝑖 ∗ (𝑟, 𝑗)]𝑗𝑟

𝜕𝐿

𝜕𝑦𝑟𝑗
 (4)

The partial derivative
𝜕𝐿

𝜕𝑦𝑟𝑗
 accumulates if 𝑖 is selected as argmax

considering 𝑦𝑟𝑗 through max pooling for each mini-batch RoI 𝑟

and for pooling output unit 𝑦𝑟𝑗. Using the backwards function of

layer over RoI pooling layer, the partial derivatives
𝜕𝐿

𝜕𝑦𝑟𝑗
 are

calculated. Considering softmax classification and bounding-box

regression for fully connected layers, an initialization is done

through zero-mean Gaussian distributions. Here standard

deviations are taken as 0.01 and 0.001 for both cases with 0 as the

bias initialization. For weights learning rate is 1 per layer and for

biases learning rate is 2 per layer considering all layers. The global

learning rate is 0.001. Trainval SGD is executed for 30000 mini-

batch iterations when training on VOC07 or VOC12. Then the

learning rate is lowered to 0.0001 and training is done for next

10000 iterations. SGD is executed for more iterations, when

training is done on larger datasets. For weights and biases the

momentum is 0.9 and parameter decay is 0.0005. Brute-force

learning and using image pyramids are used to achieved scale

invariant object detection. These approaches used here are taken

from [5]. During training and testing for brute-force approach each

image is being processed at predefined pixel size. Using training

data, network learns scale-invariant object detection. From an

image pyramid, approximate scale-invariance to network is

provided by multi-scale approach. Each object proposal is scale

normalized approximately through image pyramid at test time.

Each time when an image is sampled, pyramid scale is randomly

sampled at multi-scale training. The detection considers small

amount of running forward pass when objects are assumed to be

precomputed as Fast R-CNN network is fine-tuned. The network

input is image or image pyramid as well as 𝑅 objects list towards

score. 𝑅 is typically taken as 2000, though cases are there when it

WWW’19, May, 2019, San Francisco, USA F. Surname et al.

is about 45000 at test time. Using image pyramid, each RoI is

placed to scale such that scaled RoI is near to 2242 pixels [5].

Considering each test RoI 𝑟, the output of forward pass is posterior

probability distribution 𝑝𝑟𝑜𝑏 with predicted bounding-box set

offsets relative to 𝑟 for each 𝐴 classes which gets its refined

bounding-box prediction. For each object class 𝑘 through

estimated probability 𝑃𝑟𝑜𝑏(𝑐𝑙𝑎𝑠𝑠 = 𝑘|𝑟) ≜ 𝑝𝑘 , a detection

confidence is assigned to 𝑟 . Then for each class using R-CNN

algorithm [33], non-maximum suppression is performed

independently.

The time spent for calculating convolutional layers is greater than

fully connected layers considering whole-image classification. The

processing time for number of RoIs is large enough for detection.

It is about 50 % of the forward pass time required for calculating

fully connected layers [33]. By compressing the large fully

connected layers with truncated SVD, easy acceleration is

achieved. Each layer is parameterized by 𝑢 × 𝑣 weight matrix 𝑊

which is approximately factorized as 𝑊 ≈ 𝑈 ∑ 𝑉𝑇
𝑡 . Here 𝑈 is

𝑢 × 𝑡 matrix constituting 𝑊′𝑠 first 𝑡 left-singular vectors, t is

𝑡 × 𝑡 diagonal matrix with 𝑊′𝑠 top 𝑡 singular values and 𝑉 is 𝑣 × 𝑡

matrix constituting 𝑊′𝑠 first 𝑡 right-singular vectors. The

parameter count is reduced from 𝑢𝑣 to 𝑡(𝑢 + 𝑣) through truncated

SVD. This works well when 𝑡 is less than 𝑚𝑖𝑛(𝑢, 𝑣) .

Corresponding to 𝑊 , single fully connected layer network is

compressed by replacing 2 fully connected layers with no in

between non-linearity. With no biases, the weight matrix ∑ 𝑉𝑇
𝑡 is

used for first few layers and with original biases linked with 𝑊, 𝑈

is used for second few layers. As the RoIs number grows, good

speedups are achieved through this compression.

4 Architecture of Hierarchical Fast R-CNN with

Training

In this section architecture of Hrch Fast R-CNN is presented. Based

on the success of Fast R-CNN, Hrch Fast R-CNN is discussed in

this section. The image dataset has images {𝑥𝑖 , 𝑦𝑖}𝑖 with 𝑥𝑖 and 𝑦𝑖

representing image data and label respectively. The dataset

{𝑆𝑗
𝑓

}
𝑗=1

𝐶𝑡
 contains 𝐶𝑡 fine categories of images. The category

hierarchy with 𝐴 coarse categories {𝑆𝑎
𝑐𝑡}𝑎=1

𝐴 is used to form the

learning process. Hrch Fast R-CNN emulates category hierarchy

structure with coarse categories making up the fine categories.

As shown in Figure 3 end-to-end classification happens here. It

consists of 5 components: (a) high-level feature extraction layer (b)

low-level feature extraction layer (c) weighted coarse component

independent layers {𝐵𝑎}𝑎=1
𝐴 (d) weighted fine component

independent layers {𝐹𝑎}𝑎=1
𝐴 and (e) possibilistic averaging layer.

The extraction layers are present on the leftmost side of figure 2.

They take raw image pixel as input and extract the high-level

features followed by the low-level features. The configuration of

extraction layers is kept same as the preceding layers with respect

to the building block net. The weighted coarse component

independent layers assign weight factor to each of the 𝐴 layers and

gives the coarse prediction based on the best weight achieved. The

weighted fine component independent layers assign weight factor

to each of the grouped 𝐴 layers and gives the fine prediction for

each group based on the best weight achieved. Both these layers

reuse rear layers’ configuration considering the CNN’s building

block such that {𝐵𝑖𝑎
𝑓

}
𝑎=1

𝐶𝑡
with respect to image 𝑥𝑖 . To reach the

prediction {𝐵𝑖𝑎}𝑎=1
𝐴 with respect to the coarse categories an

intermediary layer is placed which transforms fine towards coarse

predictions through function 𝐹: [1, 𝐶𝑡] ⟼ [1, 𝐴].

Figure 3: Hrch Fast R-CNN architecture

The probabilities in weighted coarse category probabilities provide:

(a) the weight factor towards combining predictions which the fine

category components make and (b) considering the threshold

conditional executions of fine category components are enabled for

which the coarse probabilities are quite large. The independent

layers are represented considering weighted fine category

classifiers set {𝐹𝑎}𝑎=1
𝐴 where weighted fine category predictions

are made by each classifier. Each weighted fine category

component classifies small categories set accurately. As such from

here fine prediction is produced with respect to partial categories

set. When the partial set do not have probabilities of other fine

categories, they are taken as zero. From the building block Fast R-

CNN, the layer configurations are copied. However, in final

classification layer the filter numbers are taken as partial set size.

Common layers are shared for both weighted coarse category and

fine category components. This is because of the reasons stated

here. The preceeding layers in deep networks [34] respond towards

low-level features (class-agnostic) for example corners and edges

but class-specific features are extracted from rear layers. The

preceding layers is shared by both coarse and fine components as

for both coarse and fine classification tasks low-level features are

useful. The floating-point operations network execution memory

footprint is considerably reduced. The Hrch Fast R-CNN

parameters are also decreased which is vital towards the network’s

training. Finally, there is a possibilistic averaging layer where fine

category and coarse category predictions are received and

converted to possibilistic measures through equation (5). Then a

weighted average is produced as the final prediction result. The

possibilistic measures handles the inherent uncertainty in data

better than probabilistic values.

 𝑝𝑜𝑠𝑠𝑏(𝑥𝑖) =
∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖)𝐴

𝑎=1

∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝐴
𝑎=1

 (5)

In equation (5) 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎) is the possibility of coarse category 𝑎

considering image 𝑥𝑖 which is predicted through coarse category

Detection of objects through Hrch Fast R-CNN WWW’19, May, 2019, San Francisco, USA

component 𝐵 and 𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖) is the prediction achieved through

fine category component 𝐹𝑎. Considering the building block Fast

R-CNN, layer configurations for both coarse and fine category

components are reused. The flexibility in modular design gives the

best module Fast R-CNN as the building block.

As the fine category components are inserted into Hrch Fast R-

CNN the parameters in rear layers increases linearly with respect

to the coarse categories. This increases training complexity as well

as overfitting risk considering the same training data amount.

Within stochastic gradient descent mini-batch, training images are

routed probabilistically towards various fine category components.

To ensure parameter gradients larger minibatch are required in fine

category components which are estimated through quite large

number of training samples. The training memory footprint is

increased by large training mini-batch but training process is

considerably slow. Hrch Fast RCNN training is decomposed into

several steps as shown in the Algorithm below.

Algorithm: Hrch Fast R-CNN training algorithm

Procedure: Hrch Fast R-CNN training

 Step A: Pre-train Hrch Fast R-CNN

 Step A.1: Initialize weighted coarse category components

 Step A.2: Pre-train weighted fine category components

 Step B: Fine-tune the complete Hrch Fast R-CNN

Hrch Fast R-CNN is sequentially pre-trained for coarse and fine

category components. First a building block Fast R-CNN 𝐹𝑝 is pre-

trained through training set. There is a resemblance in building

block Fast R-CNN with preceding and rear layers in coarse

category component. As a result of this for initialization purpose,

the weights of 𝐹𝑝 are placed into coarse category component. Fine

category components {𝐹𝑎}𝑎 can be independently pre-trained in

parallel. Each 𝐹𝑎 specializes towards classification of fine

categories considering coarse category 𝑆𝑎
𝑐𝑡.

Thus, pre-training of each 𝐹𝑎 uses images {𝑥𝑖|𝑖 ∈ 𝑆𝑎
𝑐𝑡} considering

coarse category 𝑆𝑎
𝑐𝑡 . The initialization is done for the shared

preceding layers which are kept fixed now. All rear layers are

initialized for each 𝐹𝑎 except last convolutional layer through

writing learned parameters from pre-trained model 𝐹𝑝.

5 Hierarchical Fast R-CNN Detection

Once Hrch Fast R-CNN is trained the detection is performed. This

section highlights this issue. The complete Hrch Fast R-CNN is

fine-tuned when coarse and fine category components are

appropriately pre-trained. Every fine category component is

directed towards classifying fixed fine categories subset, when

learning is done for category hierarchy and associated mapping 𝑃0.

The coarse categories semantics predicted through coarse category

component must remain consistent coarse category component

during fine-tuning. The consistency term in coarse category is

included in order to regularize the multiple group discriminant loss.

The mapping 𝐹: [1, 𝐶𝑡] ⟼ [1, 𝐴] which is fine-to-coarse in nature

paves a way towards specification of target coarse category

distribution {𝑡𝑎} . Here 𝑡𝑎 is placed as fraction for all training

images within coarse category 𝑆𝑎
𝑐𝑡 with assumption that

distribution for coarse categories over training dataset is near to that

in trained mini-batch such that:

 𝑡𝑎 =
∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)

∑ ∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)
𝐴
𝑎′=1

 ∀𝑎 ∈ [1, 𝐴] (6)

For fine-tuning Hrch Fast R-CNN final loss function is:

 𝐿𝑜𝑠𝑠 = −
1

𝑛
∑ log(𝑝𝑜𝑠𝑠𝑏𝑦𝑖

)𝑛
𝑖=1 +

𝜆

2
∑ (𝑡𝑎 −

1

𝑛
∑ 𝐵𝑖𝑎

𝑛
𝑖=1)

2
𝐴
𝑎=1 (7)

Here training mini-batch size is 𝑛 and regularization constant 𝜆 =

20. As fine category components are added into Hrch Fast R-CNN,

rear layers with parameters, memory footprint and execution time

variables are linearly scaled with coarse categories. In order to scale

Hrch Fast R-CNN to large-scale visual recognition, layer parameter

compression techniques and conditional execution are used. It is

not required to test all fine category classifiers for given image

because they have weights 𝐵𝑖𝑎 which are not significant as shown

in equation (7). The final predictions are negligible here. Hrch Fast

R-CNN classification is accelerated through conditional executions

of top weighted fine components. Thus 𝐵𝑖𝑎 is given a threshold

using 𝐵𝑡 = (𝛽𝐴)−1 and reset 𝐵𝑖𝑎 = 0 when 𝐵𝑖𝑎 < 𝐵𝑡 . The

evaluation is not done for fine category classifiers with 𝐵𝑖𝑎 = 0.

With Hrch Fast R-CNN rear layers parameter in classifiers of fine

category is directly proportional to the number of coarse categories.

In order to reduce memory footprint compression of layer

parameters is done at test time.

The product quantization approach is chosen to compress the

parameter matrix 𝑊 ∈ 𝑅𝑚×𝑛 by partitioning as segments having

width 𝑠 horizontally such that 𝑊 = [𝑊1, … … , 𝑊(𝑛/𝑠)]. K-means

then clusters rows into 𝑊𝑖∀𝑖 ∈ [1, (
𝑛

𝑠
)]. A compression factor of

32𝑚𝑛

(32𝑘𝑛+
8𝑚𝑛

𝑠
)
 is achieved through storing cluster indices which are

near at 8-bit integer matrix 𝐼 ∈ 𝑅𝑚×(𝑛 𝑠⁄) with cluster centers in

floating number matrix 𝐶 ∈ 𝑅𝑘×𝑛 . The hyperparameters for

parameter compression are (𝑠, 𝑘).

6 Results from Experiments

The results from experiments are presented in this section. Hrch

Fast R-CNN is evaluated on the benchmark dataset CIFAR100 [7],

[35]. Hrch Fast R-CNN is implemented through Caffe [36]. Back

propagation [1] is used to train the network. NVIDIA Tesla V100

card is used to simulate all the test experiments.

There are 100 classes of natural images in CIFAR100 dataset. The

dataset is composed of 50000 and 10000 images for training and

testing respectively. The pre-processing of the dataset is done using

contrast normalization (globally) and ZCA-cor whitening. For

training the image patches of 30 × 30 size is flipped and cropped

randomly. A 4 stacked layer NIN network is adopted which is

denoted as CIFAR100-NIN and placed in the building block of

Hrch Fast R-CNN. The preceeding layers from 𝑐𝑜𝑛𝑣1 to 𝑝𝑜𝑜𝑙1 are

shared by components from weighted fine category. These are

responsible towards 10% and 35% of total parameters and

WWW’19, May, 2019, San Francisco, USA F. Surname et al.

floating-point operations respectively. The rest of the layers are

considered as independent layers. In order to construct the category

hierarchy, 10000 images are chosen at random and taken as heldout

set considering the training set. There is a visual similarity for the

fine categories considering the similar categories which are coarse.

Pre-training is done for rear layers for fine components category.

The learning rate considered initially as 0.05. This decreases by

factor 10 for every 6000 iterations. With mini-batches of 256 size,

fine-tuning is done with respect to 20000 iterations. The learning

rate considered initially as 0.005 here. This decreases by factor 10

for every 10000 iterations. 10view testing [1] is used towards

evaluation. Six 30 × 30 patches (with 5 corner patches and 1

center patch) alongwith their reflections (horizontal) and

predictions (average) are extracted. Hrch Fast R-CNN achieves

lower testing error than CIFAR100-NIN.

Figure 4(a): Testing error (10-view) against number of coarse

categories with CIFAR100 dataset

When the category hierarchy is constructed, the clustering

algorithm adjusts the coarse category number. When the

hyperparameter 𝛾 is varied, the coarse categories can be made

overlapping or disjoint. Their impacts are investigated on the

classification error. The experiments are performed with 5, 10, 16

and 20 coarse categories with varying the values of 𝛾. Figures 4(a)

and 4(b) show that considering 10 coarse categories (overlapping)

superior are achieved with 𝛾 = 6 . The coarse category optimal

number and 𝛾 depend on the dataset. They are also impacted

through within categories inherent hierarchy.

Figure 4(b): Overlapping coarse categories with respect to fine

category occurrences

In comparison with building block net, the shared layers usage

results in sublinear computational complexity and memory

footprint of Hrch Fast R-CNN considering fine category classifiers

number. Hrch Fast R-CNN consumes less than four times memory

as building block net with no compression of parameters

considering 10 fine category classifiers with respect to CIFAR100-

NIN. Table 1 highlights the significance of classification error,

memory footprint and net execution time. Using the pre-trained

building block net, Hrch Fast R-CNN is built with coarse category

and all fine category components which use independent preceding

layers initialization. The central cropping is used with single-view

testing where there is a slight increase in error. The memory

footprint and testing time is considerably reduced through shared

layers.

By varying hyperparameter 𝛽 the fine category components

number which are executed are affected considerably. The trade-

off exists between time of execution time and error of

classification. For fine category when more components are

executed higher accuracy is achieved through large 𝛽 values. As

shown in Table 1, there is slight error increase when conditional

executions are enabled through 𝛽 = 6. Hrch Fast R-CNN achieves

3 times testing time as compared with building block net. The fine

category Fast R-CNNs with independent layers from 𝑐𝑜𝑛𝑣2 to

𝑐𝑜𝑛𝑣6 are compressed and memory footprint reduces from 448

MB to 269 MB with slight error increase. As highlighted in Table

1 Hrch Fast R-CNN memory footprint is nearly 2 times in

comparison to the building block model. As a result of this it is

mandatory to compare strong baseline with identical complexity for

Hrch Fast R-CNN.

Model Top-1, Top-5 Mem (MB) Tim (s)

Base: CIFAR100-NIN 33.96 186 0.04

Hrch Fast R-CNN w/o SL 33.69 1350 2.37

Hrch Fast R-CNN 33.34 455 0.27

Hrch Fast R-CNN + CE 33.19 448 0.10

Hrch Fast R-CNN + CE + PC 31.05 269 0.10

Table 1: Testing errors, memory footprint and testing time - building block nets

and Hrch Fast R-CNN: Comparative analysis on CIFAR100 dataset (mini-batch

size (for testing) = 100; SL = Shrd. lyrs., CE = Cond. exec., PC = Param. comp.)

CIFAR100-NIN is adapted with doubled filters for all

convolutional layers. This results in increase of memory footprint

by more than 3 times. This is denoted as CIFAR100-NIN-double.

The error is higher than Hrch Fast R-CNN but lower than building

block net.

Method Error

Model averaging (2 CIFAR100-NIN nets) 36.05

CIFAR100-NIN-double 34.24

Base: CIFAR100-NIN 33.96

Hrch Fast R-CNN (no fine tuning) 33.34

Hrch Fast R-CNN (fine tuning without CCC) 33.05

Hrch Fast R-CNN (fine tuning with CCC) 31.86

Table 2: Testing errors (10-view) on CIFAR100 dataset (CCC

= coarse category consistency)

Detection of objects through Hrch Fast R-CNN WWW’19, May, 2019, San Francisco, USA

Conceptually Hrch Fast R-CNN differs from model averaging [1].

With model averaging full category sets are classified for all

models. There is an independent training for each model. As

different initializations are used the predictions are different. Partial

category sets are classified for each classifier in fine category in

Hrch Fast R-CNN. To make comparison between Hrch Fast R-

CNN and model averaging, 2 CIFAR100-NIN networks are trained

independently followed by their prediction average which is treated

as final prediction. Table 2 shows that Hrch Fast R-CNN achieves

lower error. It is noted that Hrch Fast R-CNN bears orthogonality

towards model averaging. There is a considerable performance

enhancement for Hrch Fast R-CNN ensembles. Hrch Fast R-CNN

is fine-tuned using multiple group discriminant analysis in order to

verify the coarse category consistency term effectiveness in

equation (7) (loss function). Table 2 shows that higher testing error

for Hrch Fast R-CNN is fine-tuned considering consistency in

coarse category. There is a considerable performance improvement

for Hrch Fast R-CNN using CIFAR100 datasets.

Before concluding this section, we throw some light on the design

evaluation of Hrch Fast R-CNN. In this direction, several

experiments were performed in order to achieve the optimal

performance for Hrch Fast R-CNN. However, there remains certain

questions which needs to be discussed. Some of these aspects have

been addressed here and the rest of them form the future scope of

work. The first question is: Does training using multi-tasking is

helpful? The multi-task training is always useful because there is

no need to manage sequentially-trained tasks pipeline. It potentially

improves accuracy results as there is an influence among the tasks

considering the shared representation which CNN use over here.

The classification loss is one such measure which the baseline

network uses during training. Another useful measure used here is

the multi-task loss. It is observed here that there is an improvement

of pure classification accuracy with respect to only classification

training through multi-task training. The second question is: Is

brute-force scale invariance always useful here? The brute-force

scale invariance is achieved here through both single scale and

multi scale (using image pyramids). The scale of the image is

specified as its shortest side length. It has been observed that both

single and multi-scale has produced good results here. There are

certain instances where single scale has shown the best tradeoff

between speed and accuracy considering the very deep models.

The third question is: Is more training data required to verify the

results? As a rule of thumb, when trained with larger datasets, the

performance of the object detector improves. The same verdict is

true here. Here as and when the training data volumes are increased

the object detection performance grows considerably. Further the

heterogeneity in the training data helps the networks to generalize

its learning capability appreciably. The fourth question is: Is using

more object proposals always better? Generally, the object

detectors use two proposal types viz object proposals with sparse

set and dense set. Here dense set proposals have worked well. This

has considerably improved Hrch Fast R-CNN object detection

accuracy. As the proposals play here a pure computational role,

increasing their number per image has produced good results.

7 Conclusion

In this work, we presented Hrch Fast R-CNN which is the

hierarchical updated version of Fast R-CNN. It improves deep

CNN architecture considerably. The computational system

comprises of extraction layers, weighted coarse and fine

component layers and possibilistic averaging layer. The

possibilistic averaging layer converts fine category and coarse

category probabilistic predictions into possibilistic measures which

is weighted average and considered as final prediction result. The

possibilistic measures effectively address inherent uncertainty in

data. The experimental results with CIFAR100 dataset provide new

insights. This fact is highlighted using four variant building block

nets. Hrch Fast R-CNN architecture can be further extended with

more than five levels. This will improve the experimental results in

terms of object detection accuracy as well as accelerated the overall

process considering the theoretical viewpoint. The future work

looks towards developing Hrch Fast R-CNN with more layers and

verifying the results with other image datasets such ImageNet, MS-

COCO, MNIST, VisualQA etc.

REFERENCES

[1] Krizhevsky, I. Sutskever and G. Hinton, 2012 ImageNet classification with deep

convolutional neural networks, Advances in Neural Information Processing

Systems, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf

[2] R. Girshick, J. Donahue, T. Darrell and J. Malik, 2014 Rich feature hierarchies

for accurate object detection and semantic segmentation, IEEE Conference on

Computer Vision and Pattern Recognition,

https://dl.acm.org/citation.cfm?id=2679851

[3] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, 2014

OverFeat: Integrated recognition, localization and detection using convolutional

networks, arXiv: 1312.6229, https://arxiv.org/pdf/1312.6229.pdf

[4] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L.

Jackel (1989). Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1(4), 541–551.

[5] K. He, X. Zhang, S. Ren and J. Sun, 2014 Spatial pyramid pooling in deep

convolutional networks for visual recognition, arXiv: 1406.4729,

https://arxiv.org/pdf/1406.4729.pdf

[6] Y. Zhu, R. Urtasun, R. Salakhutdinov and S. Fidler, 2015 segDeepM: Exploiting

segmentation and context in deep neural networks for object detection, arXiv:

1502.04275, https://arxiv.org/pdf/1502.04275.pdf

[7] M. D. Zeiler and R. Fergus, 2013 Stochastic pooling for regularization of deep

convolutional neural networks, International Conference on Learning

Representations, http://www.matthewzeiler.com/wp-

content/uploads/2017/07/iclr2013.pdf

[8] CIFAR100 dataset: https://web.stanford.edu/~hastie/CASI_files/DATA/cifar-

100.html

[9] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, 2013

Maxout networks, International Conference on Machine Learning,

https://dl.acm.org/citation.cfm?id=3043084

[10] J. T. Springenberg and M. Riedmiller, 2013 Improving deep neural networks

with probabilistic maxout units, arXiv: 1312.6116,

https://arxiv.org/pdf/1312.6116.pdf

[11] M. Lin, Q. Chen and S. Yan, 2013 Network in network, arXiv: 1312.4400,

https://arxiv.org/pdf/1312.4400.pdf

[12] A. M. Tousch, S. Herbin and J. Y. Audibert (2012). Semantic hierarchies for

image annotation: A survey. Pattern Recognition, 45(1), 333-345.

[13] S. Bengio, J. Weston and D. Grangier, 2010 Label embedding trees for large

multi-class tasks, Advances in Neural Information Processing Systems,

https://papers.nips.cc/paper/4027-label-embedding-trees-for-large-multi-class-

tasks.pdf

http://www.matthewzeiler.com/wp-content/uploads/2017/07/iclr2013.pdf
http://www.matthewzeiler.com/wp-content/uploads/2017/07/iclr2013.pdf
https://arxiv.org/pdf/1312.4400.pdf

WWW’19, May, 2019, San Francisco, USA F. Surname et al.

[14] T. Gao and D. Koller, 2011 Discriminative learning of relaxed hierarchy for

large-scale visual recognition, International Conference on Computer Vision,

https://dl.acm.org/citation.cfm?id=2356555

[15] M. Marszalek and C. Schmid, 2007 Semantic hierarchies for visual object

recognition, IEEE Conference on Computer Vision and Pattern Recognition,

https://ieeexplore.ieee.org/abstract/document/4270297

[16] N. Verma, D. Mahajan, S. Sellamanickam and V. Nair, 2012 Learning

hierarchical similarity metrics, IEEE Conference on Computer Vision and

Pattern Recognition, https://www.computer.org/csdl/proceedings-

article/2012/cvpr/288P2C26/12OmNrMZppY

[17] Y. Jia, J. T. Abbott, J. Austerweil, T. Griffiths and T. Darrell, 2013 Visual

concept learning: Combining machine vision and bayesian generalization on

concept hierarchies, Advances in Neural Information Processing Systems,

http://papers.nips.cc/paper/5205-visual-concept-learning-combining-machine-

vision-and-bayesian-generalization-on-concept-hierarchies.pdf

[18] R. Salakhutdinov, A. Torralba and J. Tenenbaum, 2011 Learning to share visual

appearance for multiclass object detection, IEEE Conference on Computer

Vision and Pattern Recognition, https://dl.acm.org/citation.cfm?id=2191903

[19] G. Griffin and P. Perona, 2008 Learning and using taxonomies for fast visual

categorization, IEEE Conference on Computer Vision and Pattern Recognition,

https://authors.library.caltech.edu/18774/1/Griffin2008p85632008_Ieee_Confe

rence_On_Computer_Vision_And_Pattern_Recognition_Vols_1-12.pdf

[20] M. Marszałek and C. Schmid, 2008 Constructing category hierarchies for visual

recognition, European Conference on Computer Vision,

https://link.springer.com/chapter/10.1007/978-3-540-88693-8_35

[21] L. J. Li, C. Wang, Y. Lim, D. M. Blei and L. Fei-Fei, 2010 Building and using

a semantivisual image hierarchy, IEEE Conference on Computer Vision and

Pattern Recognition, http://vision.stanford.edu/publications.html

[22] H. Bannour and C. Hudelot, 2012 Hierarchical image annotation using semantic

hierarchies, ACM International Conference on Information and Knowledge

Management, https://dl.acm.org/citation.cfm?id=2398659

[23] J. Deng, S. Satheesh, A. C. Berg and F. Li, 2011 Fast and balanced: Efficient

label tree learning for large scale object recognition, Advances in Neural

Information Processing Systems, https://papers.nips.cc/paper/4212-fast-and-

balanced-efficient-label-tree-learning-for-large-scale-object-recognition.pdf

[24] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman and A. A. Efros, 2008

Unsupervised discovery of visual object class hierarchies, IEEE Conference on

Computer Vision and Pattern Recognition,

https://www.di.ens.fr/willow/pdfs/sivic08.pdf

[25] J. Deng, J. Krause, A. C. Berg and L. Fei-Fei, 2012 Hedging yourbets:

Optimizing accuracy-specificity trade-offs in large scale visual recognition,

IEEE Conference on Computer Vision and Pattern Recognition,

http://vision.stanford.edu/documents/DengKrauseBergFei-Fei_CVPR2012.pdf

[26] Liu, F. Sadeghi, M. Tappen, O. Shamir and C. Liu, 2013 Probabilistic label trees

for efficient large scale image classification, IEEE Conference on Computer

Vision and Pattern Recognition, https://www.cv-

foundation.org/openaccess/content_cvpr_2013/papers/Liu_Probabilistic_Label

_Trees_2013_CVPR_paper.pdf

[27] N. Srivastava and R. Salakhutdinov, 2013 Discriminative transfer learning with

tree-based priors, Advances in Neural Information Processing Systems,

https://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-

based-priors.pdf

[28] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven and

H. Adam, 2014 Large-scale object classification using label relation graphs,

European Conference on Computer Vision,

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_4

[29] T. Xiao, J. Zhang, K. Yang, Y. Peng and Z. Zhang, 2014 Error driven

incremental learning in deep convolutional neural network for large-scale image

classification, ACM International Conference on Multimedia,

https://dl.acm.org/citation.cfm?id=2654926

[30] R. Girshick, 2015 Fast R-CNN, arXiv: 1504.08083v2,

https://arxiv.org/pdf/1504.08083.pdf

[31] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and L. Fei-Fei, 2009 ImageNet: A

large-scale hierarchical image database, IEEE Conference on Computer Vision

and Pattern Recognition, http://www.image-

net.org/papers/imagenet_cvpr09.pdf

[32] Erhan, C. Szegedy, A. Toshev and D. Anguelov, 2014 Scalable object detection

using deep neural networks, arXiv: 1312.2249,

https://arxiv.org/pdf/1312.2249.pdf

[33] P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan (2010). Object

detection with discriminatively trained part-based models. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.

[34] M. Zeiler and R. Fergus, 2014 Visualizing and understanding convolutional

networks, European Conference on Computer Vision,

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53

[35] A. Krizhevsky and G. Hinton, 2009 Learning multiple layers of features from

tiny images. Technical Report, Computer Science Department, University of

Toronto, Toronto, Canada.

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrama and T. Darrell, 2014 Caffe: Convolutional architecture for fast

feature embedding, ACM international conference on Multimedia,

https://dl.acm.org/citation.cfm?id=2654889

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53

