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ABSTRACT 

In object detection there is high degree of skewedness for objects' 

visual separability. It is difficult towards distinguishing certain 

categories demanding dedicated classification. The training for the 

deep convolutional neural networks (CNNs) is performed through 

N-way classifiers. Considerable work needs to be done for 

leveraging structures in hierarchical category. We present here 

hierarchical fast region-based CNNs (Hrch Fast RCNNs) where 

deep CNNs are embedded considering hierarchy as categorical. 

The easy classes are separated through classifiers in coarse 

category. The difficult classes are classified by classifier in fine 

category. The training in Hrch Fast R-CNN is achieved by initial 

training of the components which follows fine-tuning globally 

using multiple group discriminant analysis. The regularization is 

done using consistency in coarse category. For large-scale 

recognition tasks, scalability is done considering conditional 

execution of classifiers in fine category and compression in layer 

parameters. Using CIFAR100 datasets as benchmark we obtain 

good results. We build four different Hrch Fast R-CNN where 

standard CNNs top-1 error are reduced significantly. 
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1 Introduction  

The image classification [1] and object detection [2], [3] tasks have 

shown a high degree of accuracy [1], [4] from convolutional neural 

networks (CNN). Most of the available techniques [2], [3], [5], [6] 

work in multi-stage slow and inelegant pipelines. The complexity 

arrives from detection which requires accurate object localization 

leading to: (a) processing of numerous candidate object locations 

and (b) achieving precise localization for candidate object locations 

which provide only rough localization. The solutions for the stated 

problems often struggle to achieve good speed, accuracy and 

simplicity. 

The region-based convolutional neural network (R-CNN) [2] has 

reached brilliant accuracy in detection of objects through deep 

CNN towards object classification. However, it has certain 

drawbacks [2], [3], [5], [6]: (a) the training is performed through 

pipeline with multiple stages (b) there is space and time complexity 

involved and (c) detection of objects happen slowly. R-CNN works 

slowly as each object’s CNN forward pass happens without sharing 

of computation. By sharing computation, the spatial pyramid 

pooling networks (SPNN) [5] speeds up the R-CNN. The input 

convolutional image’s feature map is computed by SPPN. Then 

each object is classified through feature vector taken from shared 

feature map. Considering an object, extraction of features through 

max-pooling feature-map’s portion within the object with fixed 

output size. As in spatial pyramid pooling, concatenation and 

pooling are performed for multiple sizes output. SPPN enhances R-

CNN considerably at test time. Due to fast object feature extraction, 

training time is also reduced. 

In this paper, hierarchical version of fast region-based CNN (Hrch 

Fast R-CNN) is proposed towards object detection that 

hierarchically learns to classify objects and refine them. This work 

looks towards the development of Hrch Fast R-CNN which 

integrates deep CNNs alongwith category hierarchy. The algorithm 

streamlines the process for training towards CNN-based object 

detectors [2], [5]. The image classification task is decomposed into 

two steps. The weighted coarse component R-CNN classifier 

separates classes which are easy. The complex classes are directed 

towards weighted fine components which takes care of classes with 

confusion. Hrch Fast R-CNN is build considering R-CNN building 

block through module design principle. The building blocks are 

considered to be as one of the top ranked single R-CNN. The 

coarse-to-fine classification is followed here. Then fine category 

classifiers predictions are integrated as possibilistic means which 
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takes care of the inherent data uncertainty. The proposed 

architecture is evaluated through CIFAR100 dataset [7]. Hrch Fast 

R-CNN achieves less error with respect to memory footprint 

increase as well as time of classification. The schematic 

representation of the Hrch Fast R-CNN based prediction system is 

given in Figure 1. 

 

Figure 1: Prediction framework through Hrch Fast R-CNN  

This paper is presented as: section 2 presents the motivation for this 

work. The Fast R-CNN architecture and training is given in section 

3. The Hrch Fast R-CNN is highlighted in section 4. This is 

followed by Hrch Fast R-CNN detection in section 5. The section 

6 places the experimental results. Finally, in section 7 conclusions 

are given. 

2 Motivation for this Work 

The motivation for this work is taken from the success achieved in 

designing CNN hierarchically with respect to the integration of 

category hierarchy and linear classifiers. CNN models are 

continuously upgraded through enhancement of their components 

such as pooling layers [8], activation units [9], [10] and nonlinear 

layers [11]. These developments have improved CNN training and 

learning processes. This work improves the performance of CNN 

model considerably. The hierarchical model is built layer-wise 

considering the building block as the basic CNN model. Several 

building blocks are placed to form the hierarchical version of deep 

CNN. 

There exit a wide variety of structures with categorical hierarchy 

[12]. The classification with linear classifiers having high number 

of classes is generally performed through classifiers’ taxonomy. 

Here the classifiers are verified with respect to test image which 

scales in sub-linear manner against number of classes [13], [14]. 

The hierarchy learning is either pre-specified [15], [16], [17] or 

achieved in top-down and bottom-up manner [18], [19], [20], [21], 

[22], [23], [24]. The hierarchical classifiers in [25] and [26] have 

reached considerable speedup bearing some accuracy loss. The 

initial work on category hierarchy for CNN is available in [27]. [28] 

achieves good accuracy considering training images subset that are 

re-labeled with internal nodes in class tree hierarchy. [29] uses 

CNN hierarchy with scalability and has good classification 

performance over CNN. 

3    Fast R-CNN Architecture and Training   

This section presents Fast R-CNN architecture adopted from [30] 

as the baseline method with subtle variations. The Fast R-CNN 

architecture is highlighted in Figure 2. The entire image and 

objects' set forms the input towards Fast R-CNN network. The 

convolutional feature map is produced through the processing of 

the entire image alongwith various convolutional and max pooling 

layers. Considering the feature map, a fixed length feature vector is 

extracted for each object's region of interest (RoI) pooling layer. 

The sequence of fully connected (𝑓𝑦_𝑐𝑡) takes each feature vector 

as input. From 𝑓𝑦_𝑐𝑡 the output is fed in 2 sibling output layers 

producing softmax probability estimates. The softmax probability 

are estimated with respect to OB object classes considering catch-

all background class as well as another layer that has 4 real valued 

numbers as output. For each of the OB classes, 4 values' set are 

encoded considering bounding box positions which are refined. 

The max pooling is used for RoI pooling layer in order to convert 

its features into small feature map considering fixed 𝐻𝑡 × 𝑊ℎ 

fixed spatial extent. Here 𝐻𝑡 and 𝑊ℎ are the hyper parameters of 

layers not dependent on any specific RoI. RoI is just a rectangular 

window with convolutional feature map. A 4-tuple 
(𝑟𝑤, 𝑐𝑚, ℎ𝑡, 𝑤ℎ) defines an RoI where (𝑟𝑤, 𝑤ℎ) is the top left with 

ℎ𝑡  and 𝑤ℎ  as its height and width respectively. The ℎ𝑡 × 𝑤ℎ 

window is divided by RoI max pooling into 𝐻𝑡 × 𝑊ℎ sub-window 

grids having ℎ𝑡/𝐻𝑡 × 𝑤ℎ/𝑊ℎ  size (approx). Then sub-window 

values are max-pooled into each grid cell output. Towards each 

feature map channel independent pooling is applied. RoI layer has 

1 pyramid level. It is a special case of spatial pyramid pooling layer 

in SPNN [5]. 6 pre-trained ImageNet [31] networks (with 8 max 

pooling layers and between 8  and 18  convolutional layers) are 

used to perform the experiments. There are 3 transformations for 

Fast R-CNN network with pre-trained network initialization. RoI 

pooling layer replaces the last max pooling layer. It is configured 

as 𝐻𝑡 × 𝑊ℎ . This is followed by 1000 -way ImageNet 

classification training for network’s last fully connected and 

softmax layers. There are 𝐴 + 1 categories for fully connected and 

softmax layers as well as bounding-box regressors which are 

category specific. The network is updated to absorb 2 data inputs. 

Fast R-CNN uses backpropagation to train all network weights. 

Below spatial pyramid pooling layer, weight updation is not 

possible as SPP layer's backpropagation is not effective. This 

inefficiency is spread across receptive field spanning the entire 

input image starting from each RoI. The training inputs are large as 

the forward pass processes the entire receptive field. The feature 

sharing is used during training. For each image, RoIs are sampled 

hierarchically through 𝐼  and then 𝑅/𝐼  images for Fast R-CNN 

training stochastic gradient descent (SGD) mini-batches. In 

forward and backward passes, computation and memory are shared 

for RoIs from same image. Taking small 𝐼 reduces the computation 

of mini-batch. It slows convergence of training as same image RoIs 

are correlated. Significant results are achieved using 𝐼 = 2  and 
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𝑅 = 128 with less SGD iterations. Here the training process is 

synchronized through fine-tuning which optimizes softmax 

classifier and bounding box regressors [2], [5]. 

 

Figure 2: Architecture of Fast R-CNN  

In Fast R-CNN 2 sibling output layers are used. The initial output 

is discrete probability distribution per RoI considering 𝐴 + 1 

categories which is 𝑝𝑟𝑜𝑏 = (𝑝𝑟𝑜𝑏0, … … , 𝑝𝑟𝑜𝑏𝐴) . For fully 

connected layer, 𝑝𝑟𝑜𝑏 is calculated for softmax considering 𝐴 + 1 

outputs. The 2nd sibling layer has the following bounding-box 

regression offsets outputs for 𝐴   object classes as 𝑣𝑎 =

(𝑣𝑥
𝑎, 𝑣𝑦

𝑎, 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎 ) . The parameterization for 𝑣𝑎  is given in [2]. 

Here 𝑣𝑎 specifies translation (scale-invariant) and height shift (log-

space) with respect to the object. For each training RoI labeling is 

done considering ground-truth class 𝑢  and ground-truth (with 

bounding-box regression) for 𝑣. For each labeled RoI, there is a 

joint classification (for training) and bounding-box regression with 

respect to multitask loss 𝐿:  

     𝐿(𝑝, 𝑢, 𝑣𝑢, 𝑠) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑣𝑢, 𝑠)                       (1) 

For the true class 𝑢 , log loss is 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢 . 𝐿𝑙𝑜𝑐  is 

second task loss which is specified considering true bounding-box 

regression target tuples such that 𝑠 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑤ℎ, 𝑠ℎ𝑡)  with 

predicted tuple𝑣𝑎 = (𝑣𝑥
𝑎, 𝑣𝑦

𝑎, 𝑣𝑤ℎ
𝑎 , 𝑣ℎ𝑡

𝑎 )  for class 𝑢. When 𝑢 ≥ 1 

[𝑢 ≥ 1] = 1  else 0  is the iverson bracket indicator function. 

Background class with catch-all convention is marked as 𝑢 = 0. 

𝐿𝑙𝑜𝑐  is ignored with background RoIs having no ground-truth 

bounding box. The loss (bounding-box regression) is: 

     𝐿𝑙𝑜𝑐(𝑣𝑢, 𝑠) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑣𝑖

𝑢 − 𝑠𝑖)𝑖∈{𝑥,𝑦,𝑤ℎ,ℎ𝑡}                          (2) 

In equation (2) the smooth function is: 

      𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) = {

0.5𝑥2           |𝑥| < 1
|𝑥| − 0.5             𝑜𝑤

                                         (3) 

In 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥), loss 𝐿2 in R-CNN and SPPN [5] is more outliers’ 

sensitive than robust loss 𝐿1 . The loss 𝐿2  needs to be carefully 

tuned in terms of learning rates to prevent gradients exploding with 

unbounded training as regression targets. This sensitivity is 

eliminated through equation (3). In equation (1) the balance 

between 𝐿1  and 𝐿2  is controlled by 𝜆 . With 𝜆 = 1  ground-truth 

regression targets 𝑠𝑖~𝑁(0,1). The class-agnostic object network is 

trained using the loss factor [31]. The localization and classification 

are separated by 2-network system. The images (𝑁 = 2) selected 

uniformly at random are used from SGD minibatch created at fine 

tuning. The dataset is permuted to perform the iterations. From each 

image 64 RoIs are sampled considering mini-batches of 𝑅 = 128 

size. 25 % of RoIs are taken from objects which have intersection 

over union (IoU) overlap having ground-truth bounding box ≥ 0.5 

[2]. The examples marked with foreground object class as 𝑢 ≥ 1 

make the RoIs. The rest RoIs are sampled considering objects with 

maximum IoU at ground truth in [0.1, 0.5)  [5]. These form 

examples (background) and are marked as 𝑢 = 0 . A 0.1 low 

threshold acts as hard mining heuristic [33]. The training images 

are flipped horizontally considering probability 0.5. Augmentation 

of data is not used. Derivatives are routed through RoI pooling layer 

using backpropagation. All images are treated independently at 

forward pass since it assumes only one image per mini-batch (𝑁 =

1)  with 𝑁 > 1 . Let 𝑥𝑖 ∈ ℝ  as 𝑖𝑡ℎ  activation input towards RoI 

pooling layer. Also assume 𝑦𝑟𝑗 as the layers’ 𝑗𝑡ℎ output from 𝑟𝑡ℎ 

RoI. The RoI pooling layer computes 𝑦𝑟𝑗 = 𝑥𝑖∗(𝑟,𝑗)  with 𝑖 ∗

(𝑟, 𝑗) =  argmax𝑖′∈ℛ(𝑟,𝑗)𝑥𝑖′ . ℛ(𝑟, 𝑗) denotes input set’s index for 

sub-window considering the max pooling of output unit 𝑦𝑟𝑗 . 

Several different outputs 𝑦𝑟𝑗  are assigned single 𝑥𝑖 . The partial 

derivative of loss function is computed through RoI pooling layer’s 

backwards function considering each input variable 𝑥𝑖 as: 

        
𝜕𝐿

𝜕𝑥𝑖
= ∑ ∑ [𝑖 = 𝑖 ∗ (𝑟, 𝑗)]𝑗𝑟

𝜕𝐿

𝜕𝑦𝑟𝑗
                                                     (4) 

The partial derivative 
𝜕𝐿

𝜕𝑦𝑟𝑗
 accumulates if 𝑖 is selected as argmax 

considering 𝑦𝑟𝑗  through max pooling for each mini-batch RoI 𝑟 

and for pooling output unit 𝑦𝑟𝑗. Using the backwards function of 

layer over RoI pooling layer, the partial derivatives 
𝜕𝐿

𝜕𝑦𝑟𝑗
 are 

calculated. Considering softmax classification and bounding-box 

regression for fully connected layers, an initialization is done 

through zero-mean Gaussian distributions. Here standard 

deviations are taken as 0.01 and 0.001 for both cases with 0 as the 

bias initialization. For weights learning rate is 1 per layer and for 

biases learning rate is 2 per layer considering all layers. The global 

learning rate is 0.001. Trainval SGD is executed for 30000 mini-

batch iterations when training on VOC07 or VOC12. Then the 

learning rate is lowered to 0.0001 and training is done for next 

10000 iterations. SGD is executed for more iterations, when 

training is done on larger datasets. For weights and biases the 

momentum is 0.9 and parameter decay is 0.0005. Brute-force 

learning and using image pyramids are used to achieved scale 

invariant object detection. These approaches used here are taken 

from [5]. During training and testing for brute-force approach each 

image is being processed at predefined pixel size. Using training 

data, network learns scale-invariant object detection. From an 

image pyramid, approximate scale-invariance to network is 

provided by multi-scale approach. Each object proposal is scale 

normalized approximately through image pyramid at test time. 

Each time when an image is sampled, pyramid scale is randomly 

sampled at multi-scale training. The detection considers small 

amount of running forward pass when objects are assumed to be 

precomputed as Fast R-CNN network is fine-tuned. The network 

input is image or image pyramid as well as 𝑅 objects list towards 

score. 𝑅 is typically taken as 2000, though cases are there when it 
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is about 45000 at test time. Using image pyramid, each RoI is 

placed to scale such that scaled RoI is near to 2242  pixels [5]. 

Considering each test RoI 𝑟, the output of forward pass is posterior 

probability distribution 𝑝𝑟𝑜𝑏  with predicted bounding-box set 

offsets relative to 𝑟  for each 𝐴  classes which gets its refined 

bounding-box prediction. For each object class 𝑘  through 

estimated probability 𝑃𝑟𝑜𝑏(𝑐𝑙𝑎𝑠𝑠 =  𝑘|𝑟)  ≜  𝑝𝑘 , a detection 

confidence is assigned to 𝑟 . Then for each class using R-CNN 

algorithm [33], non-maximum suppression is performed 

independently.  

The time spent for calculating convolutional layers is greater than 

fully connected layers considering whole-image classification. The 

processing time for number of RoIs is large enough for detection. 

It is about 50 % of the forward pass time required for calculating 

fully connected layers [33]. By compressing the large fully 

connected layers with truncated SVD, easy acceleration is 

achieved. Each layer is parameterized by 𝑢 × 𝑣 weight matrix 𝑊 

which is approximately factorized as 𝑊 ≈ 𝑈 ∑ 𝑉𝑇
𝑡 . Here 𝑈  is 

𝑢 × 𝑡  matrix constituting 𝑊′𝑠  first 𝑡  left-singular vectors, t is 

𝑡 × 𝑡 diagonal matrix with 𝑊′𝑠 top 𝑡 singular values and 𝑉 is 𝑣 × 𝑡 

matrix constituting 𝑊′𝑠  first 𝑡  right-singular vectors. The 

parameter count is reduced from 𝑢𝑣 to 𝑡(𝑢 + 𝑣) through truncated 

SVD. This works well when 𝑡  is less than 𝑚𝑖𝑛(𝑢, 𝑣) . 

Corresponding to 𝑊 , single fully connected layer network is 

compressed by replacing 2 fully connected layers with no in 

between non-linearity. With no biases, the weight matrix ∑ 𝑉𝑇
𝑡  is 

used for first few layers and with original biases linked with 𝑊, 𝑈 

is used for second few layers. As the RoIs number grows, good 

speedups are achieved through this compression.  

4 Architecture of Hierarchical Fast R-CNN with 

Training   

In this section architecture of Hrch Fast R-CNN is presented. Based 

on the success of Fast R-CNN, Hrch Fast R-CNN is discussed in 

this section. The image dataset has images {𝑥𝑖 , 𝑦𝑖}𝑖 with 𝑥𝑖 and 𝑦𝑖 

representing image data and label respectively. The dataset 

{𝑆𝑗
𝑓

}
𝑗=1

𝐶𝑡
 contains 𝐶𝑡  fine categories of images. The category 

hierarchy with 𝐴 coarse categories {𝑆𝑎
𝑐𝑡}𝑎=1

𝐴  is used to form the 

learning process. Hrch Fast R-CNN emulates category hierarchy 

structure with coarse categories making up the fine categories.  

As shown in Figure 3 end-to-end classification happens here. It 

consists of 5 components: (a) high-level feature extraction layer (b) 

low-level feature extraction layer (c) weighted coarse component 

independent layers {𝐵𝑎}𝑎=1
𝐴  (d) weighted fine component 

independent layers {𝐹𝑎}𝑎=1
𝐴  and (e) possibilistic averaging layer. 

The extraction layers are present on the leftmost side of figure 2. 

They take raw image pixel as input and extract the high-level 

features followed by the low-level features. The configuration of 

extraction layers is kept same as the preceding layers with respect 

to the building block net. The weighted coarse component 

independent layers assign weight factor to each of the 𝐴 layers and 

gives the coarse prediction based on the best weight achieved. The 

weighted fine component independent layers assign weight factor 

to each of the grouped 𝐴 layers and gives the fine prediction for 

each group based on the best weight achieved. Both these layers 

reuse rear layers’ configuration considering the CNN’s building 

block such that {𝐵𝑖𝑎
𝑓

}
𝑎=1

𝐶𝑡
with respect to image 𝑥𝑖 . To reach the 

prediction {𝐵𝑖𝑎}𝑎=1
𝐴  with respect to the coarse categories an 

intermediary layer is placed which transforms fine towards coarse 

predictions through function 𝐹: [1, 𝐶𝑡] ⟼ [1, 𝐴].  

 

Figure 3: Hrch Fast R-CNN architecture  

The probabilities in weighted coarse category probabilities provide: 

(a) the weight factor towards combining predictions which the fine 

category components make and (b) considering the threshold 

conditional executions of fine category components are enabled for 

which the coarse probabilities are quite large. The independent 

layers are represented considering weighted fine category 

classifiers set {𝐹𝑎}𝑎=1
𝐴  where weighted fine category predictions 

are made by each classifier. Each weighted fine category 

component classifies small categories set accurately. As such from 

here fine prediction is produced with respect to partial categories 

set. When the partial set do not have probabilities of other fine 

categories, they are taken as zero. From the building block Fast R-

CNN, the layer configurations are copied. However, in final 

classification layer the filter numbers are taken as partial set size.  

Common layers are shared for both weighted coarse category and 

fine category components. This is because of the reasons stated 

here. The preceeding layers in deep networks [34] respond towards 

low-level features (class-agnostic) for example corners and edges 

but class-specific features are extracted from rear layers. The 

preceding layers is shared by both coarse and fine components as 

for both coarse and fine classification tasks low-level features are 

useful. The floating-point operations network execution memory 

footprint is considerably reduced. The Hrch Fast R-CNN 

parameters are also decreased which is vital towards the network’s 

training. Finally, there is a possibilistic averaging layer where fine 

category and coarse category predictions are received and 

converted to possibilistic measures through equation (5). Then a 

weighted average is produced as the final prediction result. The 

possibilistic measures handles the inherent uncertainty in data 

better than probabilistic values. 

        𝑝𝑜𝑠𝑠𝑏(𝑥𝑖) =
∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖)𝐴

𝑎=1

∑ 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎)𝐴
𝑎=1

                                           (5) 

In equation (5) 𝑝𝑜𝑠𝑠𝑏(𝐵𝑖𝑎) is the possibility of coarse category 𝑎 

considering image 𝑥𝑖  which is predicted through coarse category 
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component 𝐵 and 𝑝𝑜𝑠𝑠𝑏𝑎(𝑥𝑖) is the prediction achieved through 

fine category component 𝐹𝑎. Considering the building block Fast 

R-CNN, layer configurations for both coarse and fine category 

components are reused. The flexibility in modular design gives the 

best module Fast R-CNN as the building block.  

As the fine category components are inserted into Hrch Fast R-

CNN the parameters in rear layers increases linearly with respect 

to the coarse categories. This increases training complexity as well 

as overfitting risk considering the same training data amount. 

Within stochastic gradient descent mini-batch, training images are 

routed probabilistically towards various fine category components. 

To ensure parameter gradients larger minibatch are required in fine 

category components which are estimated through quite large 

number of training samples. The training memory footprint is 

increased by large training mini-batch but training process is 

considerably slow. Hrch Fast RCNN training is decomposed into 

several steps as shown in the Algorithm below. 

Algorithm: Hrch Fast R-CNN training algorithm 

Procedure: Hrch Fast R-CNN training 

       Step A: Pre-train Hrch Fast R-CNN 

             Step A.1: Initialize weighted coarse category components 

             Step A.2: Pre-train weighted fine category components 

       Step B: Fine-tune the complete Hrch Fast R-CNN 

Hrch Fast R-CNN is sequentially pre-trained for coarse and fine 

category components. First a building block Fast R-CNN 𝐹𝑝 is pre-

trained through training set. There is a resemblance in building 

block Fast R-CNN with preceding and rear layers in coarse 

category component. As a result of this for initialization purpose, 

the weights of 𝐹𝑝 are placed into coarse category component. Fine 

category components {𝐹𝑎}𝑎  can be independently pre-trained in 

parallel. Each 𝐹𝑎  specializes towards classification of fine 

categories considering coarse category 𝑆𝑎
𝑐𝑡.  

Thus, pre-training of each 𝐹𝑎 uses images {𝑥𝑖|𝑖 ∈ 𝑆𝑎
𝑐𝑡} considering 

coarse category 𝑆𝑎
𝑐𝑡 . The initialization is done for the shared 

preceding layers which are kept fixed now. All rear layers are 

initialized for each 𝐹𝑎  except last convolutional layer through 

writing learned parameters from pre-trained model 𝐹𝑝. 

5 Hierarchical Fast R-CNN Detection 

Once Hrch Fast R-CNN is trained the detection is performed. This 

section highlights this issue. The complete Hrch Fast R-CNN is 

fine-tuned when coarse and fine category components are 

appropriately pre-trained. Every fine category component is 

directed towards classifying fixed fine categories subset, when 

learning is done for category hierarchy and associated mapping 𝑃0. 

The coarse categories semantics predicted through coarse category 

component must remain consistent coarse category component 

during fine-tuning. The consistency term in coarse category is 

included in order to regularize the multiple group discriminant loss. 

The mapping 𝐹: [1, 𝐶𝑡] ⟼ [1, 𝐴] which is fine-to-coarse in nature 

paves a way towards specification of target coarse category 

distribution  {𝑡𝑎} . Here 𝑡𝑎  is placed as fraction for all training 

images within coarse category 𝑆𝑎
𝑐𝑡  with assumption that 

distribution for coarse categories over training dataset is near to that 

in trained mini-batch such that: 

        𝑡𝑎 =
∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)

∑ ∑ |𝑆𝑗|𝑗|𝑎∈𝐹(𝑗)
𝐴
𝑎′=1

  ∀𝑎 ∈ [1, 𝐴]                                                (6) 

For fine-tuning Hrch Fast R-CNN final loss function is: 

  𝐿𝑜𝑠𝑠 = −
1

𝑛
∑ log(𝑝𝑜𝑠𝑠𝑏𝑦𝑖

)𝑛
𝑖=1 + 

𝜆

2
∑ (𝑡𝑎 −

1

𝑛
∑ 𝐵𝑖𝑎

𝑛
𝑖=1 )

2
𝐴
𝑎=1    (7) 

Here training mini-batch size is 𝑛 and regularization constant 𝜆 =

20. As fine category components are added into Hrch Fast R-CNN, 

rear layers with parameters, memory footprint and execution time 

variables are linearly scaled with coarse categories. In order to scale 

Hrch Fast R-CNN to large-scale visual recognition, layer parameter 

compression techniques and conditional execution are used. It is 

not required to test all fine category classifiers for given image 

because they have weights 𝐵𝑖𝑎 which are not significant as shown 

in equation (7). The final predictions are negligible here. Hrch Fast 

R-CNN classification is accelerated through conditional executions 

of top weighted fine components. Thus 𝐵𝑖𝑎  is given a threshold 

using 𝐵𝑡 = (𝛽𝐴)−1  and reset 𝐵𝑖𝑎 = 0  when  𝐵𝑖𝑎 < 𝐵𝑡 . The 

evaluation is not done for fine category classifiers with 𝐵𝑖𝑎 = 0. 

With Hrch Fast R-CNN rear layers parameter in classifiers of fine 

category is directly proportional to the number of coarse categories. 

In order to reduce memory footprint compression of layer 

parameters is done at test time.  

The product quantization approach is chosen to compress the 

parameter matrix 𝑊 ∈ 𝑅𝑚×𝑛  by partitioning as segments having 

width 𝑠 horizontally such that 𝑊 = [𝑊1, … … , 𝑊(𝑛/𝑠)]. K-means 

then clusters rows into 𝑊𝑖∀𝑖 ∈ [1, (
𝑛

𝑠
)]. A compression factor of 

32𝑚𝑛

(32𝑘𝑛+
8𝑚𝑛

𝑠
)
 is achieved through storing cluster indices which are 

near at 8-bit integer matrix 𝐼 ∈ 𝑅𝑚×(𝑛 𝑠⁄ )  with cluster centers in 

floating number matrix 𝐶 ∈ 𝑅𝑘×𝑛 . The hyperparameters for 

parameter compression are (𝑠, 𝑘). 

6 Results from Experiments  

The results from experiments are presented in this section. Hrch 

Fast R-CNN is evaluated on the benchmark dataset CIFAR100 [7], 

[35]. Hrch Fast R-CNN is implemented through Caffe [36]. Back 

propagation [1] is used to train the network. NVIDIA Tesla V100 

card is used to simulate all the test experiments. 

There are 100 classes of natural images in CIFAR100 dataset. The 

dataset is composed of 50000 and 10000 images for training and 

testing respectively. The pre-processing of the dataset is done using 

contrast normalization (globally) and ZCA-cor whitening. For 

training the image patches of 30 × 30 size is flipped and cropped 

randomly. A 4 stacked layer NIN network is adopted which is 

denoted as CIFAR100-NIN and placed in the building block of 

Hrch Fast R-CNN. The preceeding layers from 𝑐𝑜𝑛𝑣1 to 𝑝𝑜𝑜𝑙1 are 

shared by components from weighted fine category. These are 

responsible towards 10%  and 35%  of total parameters and 
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floating-point operations respectively. The rest of the layers are 

considered as independent layers. In order to construct the category 

hierarchy, 10000 images are chosen at random and taken as heldout 

set considering the training set. There is a visual similarity for the 

fine categories considering the similar categories which are coarse. 

Pre-training is done for rear layers for fine components category. 

The learning rate considered initially as 0.05. This decreases by 

factor 10 for every 6000 iterations. With mini-batches of 256 size, 

fine-tuning is done with respect to 20000 iterations. The learning 

rate considered initially as 0.005 here. This decreases by factor 10 

for every 10000 iterations. 10view testing [1] is used towards 

evaluation. Six 30 × 30  patches (with 5 corner patches and 1 

center patch) alongwith their reflections (horizontal) and 

predictions (average) are extracted. Hrch Fast R-CNN achieves 

lower testing error than CIFAR100-NIN. 

 

Figure 4(a): Testing error (10-view) against number of coarse 

categories with CIFAR100 dataset  

When the category hierarchy is constructed, the clustering 

algorithm adjusts the coarse category number. When the 

hyperparameter 𝛾  is varied, the coarse categories can be made 

overlapping or disjoint. Their impacts are investigated on the 

classification error. The experiments are performed with 5, 10, 16 

and 20 coarse categories with varying the values of 𝛾. Figures 4(a) 

and 4(b) show that considering 10 coarse categories (overlapping) 

superior are achieved with 𝛾 = 6 . The coarse category optimal 

number and 𝛾  depend on the dataset. They are also impacted 

through within categories inherent hierarchy. 

 

Figure 4(b): Overlapping coarse categories with respect to fine 

category occurrences   

In comparison with building block net, the shared layers usage 

results in sublinear computational complexity and memory 

footprint of Hrch Fast R-CNN considering fine category classifiers 

number. Hrch Fast R-CNN consumes less than four times memory 

as building block net with no compression of parameters 

considering 10 fine category classifiers with respect to CIFAR100-

NIN. Table 1 highlights the significance of classification error, 

memory footprint and net execution time. Using the pre-trained 

building block net, Hrch Fast R-CNN is built with coarse category 

and all fine category components which use independent preceding 

layers initialization. The central cropping is used with single-view 

testing where there is a slight increase in error. The memory 

footprint and testing time is considerably reduced through shared 

layers. 

By varying hyperparameter 𝛽  the fine category components 

number which are executed are affected considerably. The trade-

off exists between time of execution time and error of 

classification. For fine category when more components are 

executed higher accuracy is achieved through large 𝛽 values. As 

shown in Table 1, there is slight error increase when conditional 

executions are enabled through 𝛽 = 6. Hrch Fast R-CNN achieves 

3 times testing time as compared with building block net. The fine 

category Fast R-CNNs with independent layers from 𝑐𝑜𝑛𝑣2  to 

𝑐𝑜𝑛𝑣6 are compressed and memory footprint reduces from 448 

MB to 269 MB with slight error increase. As highlighted in Table 

1 Hrch Fast R-CNN memory footprint is nearly 2 times in 

comparison to the building block model. As a result of this it is 

mandatory to compare strong baseline with identical complexity for 

Hrch Fast R-CNN. 

Model Top-1, Top-5 Mem (MB) Tim (s) 

Base: CIFAR100-NIN 33.96 186 0.04 

Hrch Fast R-CNN w/o SL 33.69 1350 2.37 

Hrch Fast R-CNN 33.34 455 0.27 

Hrch Fast R-CNN + CE 33.19 448 0.10 

Hrch Fast R-CNN + CE + PC 31.05 269 0.10 

Table 1: Testing errors, memory footprint and testing time - building block nets 

and Hrch Fast R-CNN: Comparative analysis on CIFAR100 dataset (mini-batch 

size (for testing) = 100; SL = Shrd. lyrs., CE = Cond. exec., PC = Param. comp.) 

CIFAR100-NIN is adapted with doubled filters for all 

convolutional layers. This results in increase of memory footprint 

by more than 3 times. This is denoted as CIFAR100-NIN-double. 

The error is higher than Hrch Fast R-CNN but lower than building 

block net. 

Method Error 

Model averaging (2 CIFAR100-NIN nets) 36.05 

CIFAR100-NIN-double 34.24 

Base: CIFAR100-NIN 33.96 

Hrch Fast R-CNN (no fine tuning) 33.34 

Hrch Fast R-CNN (fine tuning without CCC) 33.05 

Hrch Fast R-CNN (fine tuning with CCC) 31.86 

Table 2: Testing errors (10-view) on CIFAR100 dataset (CCC 

= coarse category consistency) 
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Conceptually Hrch Fast R-CNN differs from model averaging [1]. 

With model averaging full category sets are classified for all 

models. There is an independent training for each model. As 

different initializations are used the predictions are different. Partial 

category sets are classified for each classifier in fine category in 

Hrch Fast R-CNN. To make comparison between Hrch Fast R-

CNN and model averaging, 2 CIFAR100-NIN networks are trained 

independently followed by their prediction average which is treated 

as final prediction. Table 2 shows that Hrch Fast R-CNN achieves 

lower error. It is noted that Hrch Fast R-CNN bears orthogonality 

towards model averaging. There is a considerable performance 

enhancement for Hrch Fast R-CNN ensembles. Hrch Fast R-CNN 

is fine-tuned using multiple group discriminant analysis in order to 

verify the coarse category consistency term effectiveness in 

equation (7) (loss function). Table 2 shows that higher testing error 

for Hrch Fast R-CNN is fine-tuned considering consistency in 

coarse category. There is a considerable performance improvement 

for Hrch Fast R-CNN using CIFAR100 datasets.  

Before concluding this section, we throw some light on the design 

evaluation of Hrch Fast R-CNN. In this direction, several 

experiments were performed in order to achieve the optimal 

performance for Hrch Fast R-CNN. However, there remains certain 

questions which needs to be discussed. Some of these aspects have 

been addressed here and the rest of them form the future scope of 

work. The first question is: Does training using multi-tasking is 

helpful? The multi-task training is always useful because there is 

no need to manage sequentially-trained tasks pipeline. It potentially 

improves accuracy results as there is an influence among the tasks 

considering the shared representation which CNN use over here. 

The classification loss is one such measure which the baseline 

network uses during training. Another useful measure used here is 

the multi-task loss. It is observed here that there is an improvement 

of pure classification accuracy with respect to only classification 

training through multi-task training. The second question is: Is 

brute-force scale invariance always useful here? The brute-force 

scale invariance is achieved here through both single scale and 

multi scale (using image pyramids). The scale of the image is 

specified as its shortest side length. It has been observed that both 

single and multi-scale has produced good results here. There are 

certain instances where single scale has shown the best tradeoff 

between speed and accuracy considering the very deep models.  

The third question is: Is more training data required to verify the 

results? As a rule of thumb, when trained with larger datasets, the 

performance of the object detector improves. The same verdict is 

true here. Here as and when the training data volumes are increased 

the object detection performance grows considerably. Further the 

heterogeneity in the training data helps the networks to generalize 

its learning capability appreciably. The fourth question is: Is using 

more object proposals always better? Generally, the object 

detectors use two proposal types viz object proposals with sparse 

set and dense set. Here dense set proposals have worked well. This 

has considerably improved Hrch Fast R-CNN object detection 

accuracy. As the proposals play here a pure computational role, 

increasing their number per image has produced good results.   

7 Conclusion 

In this work, we presented Hrch Fast R-CNN which is the 

hierarchical updated version of Fast R-CNN. It improves deep 

CNN architecture considerably. The computational system 

comprises of extraction layers, weighted coarse and fine 

component layers and possibilistic averaging layer. The 

possibilistic averaging layer converts fine category and coarse 

category probabilistic predictions into possibilistic measures which 

is weighted average and considered as final prediction result. The 

possibilistic measures effectively address inherent uncertainty in 

data. The experimental results with CIFAR100 dataset provide new 

insights. This fact is highlighted using four variant building block 

nets. Hrch Fast R-CNN architecture can be further extended with 

more than five levels. This will improve the experimental results in 

terms of object detection accuracy as well as accelerated the overall 

process considering the theoretical viewpoint. The future work 

looks towards developing Hrch Fast R-CNN with more layers and 

verifying the results with other image datasets such ImageNet, MS-

COCO, MNIST, VisualQA etc. 

REFERENCES 

[1] Krizhevsky, I. Sutskever and G. Hinton, 2012 ImageNet classification with deep 

convolutional neural networks, Advances in Neural Information Processing 

Systems, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf 

[2] R. Girshick, J. Donahue, T. Darrell and J. Malik, 2014 Rich feature hierarchies 

for accurate object detection and semantic segmentation, IEEE Conference on 

Computer Vision and Pattern Recognition, 

https://dl.acm.org/citation.cfm?id=2679851  

[3] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, 2014 

OverFeat: Integrated recognition, localization and detection using convolutional 

networks, arXiv: 1312.6229, https://arxiv.org/pdf/1312.6229.pdf 

[4] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L. 

Jackel (1989). Backpropagation applied to handwritten zip code recognition. 

Neural Computation, 1(4), 541–551.  

[5] K. He, X. Zhang, S. Ren and J. Sun, 2014 Spatial pyramid pooling in deep 

convolutional networks for visual recognition, arXiv: 1406.4729, 

https://arxiv.org/pdf/1406.4729.pdf  

[6] Y. Zhu, R. Urtasun, R. Salakhutdinov and S. Fidler, 2015 segDeepM: Exploiting 

segmentation and context in deep neural networks for object detection, arXiv: 

1502.04275, https://arxiv.org/pdf/1502.04275.pdf  

[7] M. D. Zeiler and R. Fergus, 2013 Stochastic pooling for regularization of deep 

convolutional neural networks, International Conference on Learning 

Representations, http://www.matthewzeiler.com/wp-

content/uploads/2017/07/iclr2013.pdf 

[8] CIFAR100 dataset: https://web.stanford.edu/~hastie/CASI_files/DATA/cifar-

100.html 

[9] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, 2013 

Maxout networks, International Conference on Machine Learning, 

https://dl.acm.org/citation.cfm?id=3043084 

[10] J. T. Springenberg and M. Riedmiller, 2013 Improving deep neural networks 

with probabilistic maxout units, arXiv: 1312.6116, 

https://arxiv.org/pdf/1312.6116.pdf 

[11] M. Lin, Q. Chen and S. Yan, 2013 Network in network, arXiv: 1312.4400, 

https://arxiv.org/pdf/1312.4400.pdf 

[12] A. M. Tousch, S. Herbin and J. Y. Audibert (2012). Semantic hierarchies for 

image annotation: A survey. Pattern Recognition, 45(1), 333-345. 

[13] S. Bengio, J. Weston and D. Grangier, 2010 Label embedding trees for large 

multi-class tasks, Advances in Neural Information Processing Systems, 

https://papers.nips.cc/paper/4027-label-embedding-trees-for-large-multi-class-

tasks.pdf 

http://www.matthewzeiler.com/wp-content/uploads/2017/07/iclr2013.pdf
http://www.matthewzeiler.com/wp-content/uploads/2017/07/iclr2013.pdf
https://arxiv.org/pdf/1312.4400.pdf


WWW’19, May, 2019, San Francisco, USA F. Surname et al. 

 

 

 

[14] T. Gao and D. Koller, 2011 Discriminative learning of relaxed hierarchy for 

large-scale visual recognition, International Conference on Computer Vision, 

https://dl.acm.org/citation.cfm?id=2356555 

[15] M. Marszalek and C. Schmid, 2007 Semantic hierarchies for visual object 

recognition, IEEE Conference on Computer Vision and Pattern Recognition, 

https://ieeexplore.ieee.org/abstract/document/4270297 

[16] N. Verma, D. Mahajan, S. Sellamanickam and V. Nair, 2012 Learning 

hierarchical similarity metrics, IEEE Conference on Computer Vision and 

Pattern Recognition, https://www.computer.org/csdl/proceedings-

article/2012/cvpr/288P2C26/12OmNrMZppY 

[17] Y. Jia, J. T. Abbott, J. Austerweil, T. Griffiths and T. Darrell, 2013 Visual 

concept learning: Combining machine vision and bayesian generalization on 

concept hierarchies, Advances in Neural Information Processing Systems, 

http://papers.nips.cc/paper/5205-visual-concept-learning-combining-machine-

vision-and-bayesian-generalization-on-concept-hierarchies.pdf 

[18] R. Salakhutdinov, A. Torralba and J. Tenenbaum, 2011 Learning to share visual 

appearance for multiclass object detection, IEEE Conference on Computer 

Vision and Pattern Recognition, https://dl.acm.org/citation.cfm?id=2191903 

[19] G. Griffin and P. Perona, 2008 Learning and using taxonomies for fast visual 

categorization, IEEE Conference on Computer Vision and Pattern Recognition, 

https://authors.library.caltech.edu/18774/1/Griffin2008p85632008_Ieee_Confe

rence_On_Computer_Vision_And_Pattern_Recognition_Vols_1-12.pdf 

[20] M. Marszałek and C. Schmid, 2008 Constructing category hierarchies for visual 

recognition, European Conference on Computer Vision, 

https://link.springer.com/chapter/10.1007/978-3-540-88693-8_35 

[21] L. J. Li, C. Wang, Y. Lim, D. M. Blei and L. Fei-Fei, 2010 Building and using 

a semantivisual image hierarchy, IEEE Conference on Computer Vision and 

Pattern Recognition, http://vision.stanford.edu/publications.html 

[22] H. Bannour and C. Hudelot, 2012 Hierarchical image annotation using semantic 

hierarchies, ACM International Conference on Information and Knowledge 

Management, https://dl.acm.org/citation.cfm?id=2398659 

[23] J. Deng, S. Satheesh, A. C. Berg and F. Li, 2011 Fast and balanced: Efficient 

label tree learning for large scale object recognition, Advances in Neural 

Information Processing Systems, https://papers.nips.cc/paper/4212-fast-and-

balanced-efficient-label-tree-learning-for-large-scale-object-recognition.pdf 

[24] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman and A. A. Efros, 2008 

Unsupervised discovery of visual object class hierarchies, IEEE Conference on 

Computer Vision and Pattern Recognition, 

https://www.di.ens.fr/willow/pdfs/sivic08.pdf 

[25] J. Deng, J. Krause, A. C. Berg and L. Fei-Fei, 2012 Hedging yourbets: 

Optimizing accuracy-specificity trade-offs in large scale visual recognition, 

IEEE Conference on Computer Vision and Pattern Recognition, 

http://vision.stanford.edu/documents/DengKrauseBergFei-Fei_CVPR2012.pdf 

[26] Liu, F. Sadeghi, M. Tappen, O. Shamir and C. Liu, 2013 Probabilistic label trees 

for efficient large scale image classification, IEEE Conference on Computer 

Vision and Pattern Recognition, https://www.cv-

foundation.org/openaccess/content_cvpr_2013/papers/Liu_Probabilistic_Label

_Trees_2013_CVPR_paper.pdf 

[27] N. Srivastava and R. Salakhutdinov, 2013 Discriminative transfer learning with 

tree-based priors, Advances in Neural Information Processing Systems, 

https://papers.nips.cc/paper/5029-discriminative-transfer-learning-with-tree-

based-priors.pdf 

[28] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven and 

H. Adam, 2014 Large-scale object classification using label relation graphs, 

European Conference on Computer Vision, 

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_4 

[29] T. Xiao, J. Zhang, K. Yang, Y. Peng and Z. Zhang, 2014 Error driven 

incremental learning in deep convolutional neural network for large-scale image 

classification, ACM International Conference on Multimedia, 

https://dl.acm.org/citation.cfm?id=2654926 

[30] R. Girshick, 2015 Fast R-CNN, arXiv: 1504.08083v2, 

https://arxiv.org/pdf/1504.08083.pdf 

[31] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and L. Fei-Fei, 2009 ImageNet: A 

large-scale hierarchical image database, IEEE Conference on Computer Vision 

and Pattern Recognition, http://www.image-

net.org/papers/imagenet_cvpr09.pdf   

[32] Erhan, C. Szegedy, A. Toshev and D. Anguelov, 2014 Scalable object detection 

using deep neural networks, arXiv: 1312.2249, 

https://arxiv.org/pdf/1312.2249.pdf  

[33] P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan (2010). Object 

detection with discriminatively trained part-based models. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.   

[34] M. Zeiler and R. Fergus, 2014 Visualizing and understanding convolutional 

networks, European Conference on Computer Vision, 

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53 

[35] A. Krizhevsky and G. Hinton, 2009 Learning multiple layers of features from 

tiny images. Technical Report, Computer Science Department, University of 

Toronto, Toronto, Canada. 

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. 

Guadarrama and T. Darrell, 2014 Caffe: Convolutional architecture for fast 

feature embedding, ACM international conference on Multimedia, 

https://dl.acm.org/citation.cfm?id=2654889 

 

 

 

https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53

