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Abstract. A calculus for the entropy in runtime traces resulting from
stochastic program compilation is introduced here. It quantifies the vari-
ation that a ‘chaotic’ compiler aiming to vary the object code introduces
into the program trace at run time, and the best strategy is characterised.

1 Introduction

This article describes stochastic compilation via a program calculus that quanti-
fies the notion. To be clear from the outset, the stochastic element occurs not in
the execution but in the compilation of a program. Our prototype HAVOC com-
piler (http://sf.net/p/obfusc) is for ansi C [1] but the approach is generic.
Our compiler’s particular constructions are guided by the principle:

Every machine code instruction that writes should introduce maximal
possible entropy to the trace. (h̃)

and, for that, a logic to reason about runtime entropy is required. The compiler’s
aim in (h̃) is to vary object codes on each recompilation of the same source code
so that runtime traces vary to the maximal extent possible. This kind of ‘chaotic’
compilation is first described in [2]. The program semantics is not conserved, but
the difference from the nominal semantics is controlled. That is, the semantics
obtained differs by a planned (different) ‘delta’ at every register and memory
location before and after every instruction. That is called an obfuscation scheme.
It makes the code and the runtime trace harder to read, so ‘obfuscation’ is
an appropriate term for it. The scheme is a secret initially known only to the
compiler and in principle shared only with the user/owner of the code. Reasons
why it may be desirable to obfuscate will not be gone into here as introducing
the technology is the focus, but they include intellectual property protection and
other goals [3]. How it works may be illustrated via the following simple loop:

while x < y + z + 1 do {x← x + 2; x← x + 3; }

Imagine new program variables X, Y, Z and shift them by different deltas from
the program variables x, y, z at different points in the code as shown below:

while X + 4︸ ︷︷ ︸
x

< Y + 5︸ ︷︷ ︸
y

+ Z + 6︸ ︷︷ ︸
z

+1 do {X+7︸︷︷︸
x
← X + 4︸ ︷︷ ︸

x
+2; X + 4︸ ︷︷ ︸

x
← X + 7︸ ︷︷ ︸

x
+3; }



The imagined relation x = X + 4 has to be the same at the end of the loop as at
the beginning, but otherwise the choice is free. Simplifying:

while X < Y + Z + 8 do {X← X− 1; X← X + 6; }

(signed 2s complement comparison is translation-invariant). A user can see the
first while loop execute and understand it as this while loop, working their
imagination to make the substitutions. The lesson is that one program can be
understood in many ways by an observer, who simply believes that the program
variables are different by different deltas at different points in the program.

Conversely, a user intending the final while loop can instead obfuscate it to
the first while loop, installing the given obfuscation scheme of deltas through
the program, let it execute, and, discounting again the obfuscation, trust that it
is the final while loop that has executed, which is really the one of interest.

The obfuscated codes (a) look approximately the same, having the same
structure and differing only in program constants. Also (b) runtime traces ‘look
the same’, with the same instructions in the same order reading and writing
the same registers and memory locations (the end objective is to obfuscate at
machine code level), while data varies from nominal by planned but arbitrary
deltas, different at every point in the runtime trace and registers/memory, with
the obvious provisos that:

deltas are equal across copy or skip, and where control paths meet. (h˜)
That is necessary in order for computation to work properly. In particular, loops
must have the same delta from nominal at either end, ready for a loop repeat.

This paper describes ‘correct by construction’ compilation for obfuscation as
above following the principle (h̃). For the compiled programs, at any m points
in the trace not related as in (h˜), it is shown that variations with 32m bits of
entropy occur, supposing a 32-bit machine. That quantifies the obfuscation.

The compiler’s job is to vary the constants embedded in the machine code
instructions so all feasible trace variations are exercised equiprobably. How it
does that is summarised in Box 1: a new obfuscation scheme is generated at each
recompilation. That is formally a set of vectors of planned deltas from nominal
values for the data per memory and register location, one such vector before
and after each machine code instruction. A declarative outline of the compile
procedure is as follows: the compiler C[−] translates an expression e of type
Expr that is to end up in register r at runtime to machine code mc of type MC
and plans a 32-bit integer delta ∆r (type Off) in r:

C[-]r :: Expr→ (MC,Off)

C[e]r = (mc, ∆r) (1)

Let s(r) be the value in register (or memory location) r in state s of the processor
at runtime. The state is comprised by the values in registers and memory. Let
s(e) be the nominal (i.e., canonical, or at least standard, for some standard)
evaluation of expression e. Running the code mc changes the state s to state s′

2



Box 1: An ‘obfuscating’ compiler does as follows:

(A) change only program constants, generating an arrangement of planned deltas
from nominal values for instruction inputs and outputs (an obfuscation
scheme);

(B) leave runtime traces unchanged, apart from differences in the program con-
stants (A) and runtime data;

(C) equiprobably generate all arrangements satisfying (A), (B).

that holds a value in r whose value differs by ∆r from nominal. That is:

s
mc
 s′ where s′(r) = s(e) +∆r (2)

The compiler’s choices of deltas ∆r before and after each machine code instruc-
tion are known to the user/owner of the code, but not the processor or the
operating system. Since the user knows the obfuscation scheme, they can create
meaningful inputs for the compiled program and interpret the outputs.

Section 2 introduces a concrete, modified OpenRISC (http://openrisc.io)
machine code instruction set as a target for obfuscating compilation as described
above. It can alternatively be understood as a set of assembly-level macros to be
implemented by the instructions of another platform. The small-step instruction
semantics in Table 1 concretizes what is described broadly by s

mc
 s′ in (2).

The obfuscating compiler technology illustrated in the discussion of this sec-
tion is described less abstractly via the translation of three canonical source code
constructions in 3.1 and 3.2. A pre-/post-condition Hoare program logic [4] for
the calculus of deltas that the compiler must use to keep track of its code vari-
ations is introduced in 3.3, and in 3.4 it is modified to an obfuscation calculus
for stochastic compiler-induced entropy. A spin-off is that one is able to reason
about statements such as the covariance cov(x, x′) = 0 for a program variable x.

2 FxA Instructions

A ‘fused anything and add’ (FxA) [2] instruction set architecture (ISA) will
be the specific compilation target here. The integer portion is shown in Table 1.
The instruction set is adapted from OpenRISC ISA v1.1 (http://openrisc.io/
or1k.html), which has about 200 instructions so FxA has about that many too.
There are instructions for single and double precision integer operations, single
and double floating point, and vector operations, all 32 bits long. Instructions
access up to three 32 general purpose registers (GPRs), and one of those register
operands may be replaced by a (‘immediate’) constant. A number of 32-bit
‘prefixes’ may precede a 32-bit instruction which has 16 bits of room for an on-
board constant to provide room for 16 bits more of that constant and also any
others that the instruction requires.
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Table 1. FxA instruction set for encrypted work.

op. fields mnem. semantics

add r0 r1 r2 k add r0←r1 + r2 + k
sub r0 r1 r2 k subtract r0←r1 − r2 + k
mul r0 r1 r2 k0k1k2 multiply r0←(r1− k1) ∗ (r2− k2) + k0
div r0 r1 r2 k0k1k2 divide r0←(r1− k1)÷(r2− k2) + k0
. . .
mov r0 r1 move r0←r1
beq i r1 r2 k branch if b then pc←pc+i, b⇔ r1 = r2 + k
bne i r1 r2 k branch if b then pc←pc+i, b⇔ r1 6= r2 + k
blt i r1 r2 k branch if b then pc←pc+i, b⇔ r1<r2 + k
bgt i r1 r2 k branch if b then pc←pc+i, b⇔ r1>r2 + k
ble i r1 r2 k branch if b then pc←pc+i, b⇔ r1≤ r2 + k
bge i r1 r2 k branch if b then pc←pc+i, b⇔ r1≥ r2 + k
. . .
b i branch pc ← pc + i
sw (k0)r0 r1 store memJr0 + k0K← r1
lw r0 (k1)r1 load r0 ← memJr1 + k1K
jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j
nop no-op

Legend
r – register index k – 32-bit integer pc – prog. count reg.
j – prog. count ‘←’ – assignment ra – return addr. reg.

i – prog. incr. r – register content

3 Obfuscating Compilation

An obfuscating compiler as outlined in Section 1 works with a database D :
Loc→Off containing (here 32-bit) integer delta offsets ∆l (type Off) for data,
indexed per register or memory location l (type Loc). That is varied by the
compiler as it makes its pass through the source code. The delta ∆l defines by
how much the runtime data is to differ from nominal in l at that point in the
program control graph, and database D is an obfuscation scheme at that point.

The database L : Var→Loc that maps source code variables to registers and
memory will not be treated here but taken as given (and annotated as a super-
script on the compiler symbol).

Taking databases D (type DB) and L into account, the expression compiler
C[e]r described in Section 1 that places the result value in target register r in
fact will be written CL[D : e]r with type signature:

CL[_ : _]r : DB× Expr→ MC×Off (3)

where MC stands for machine code, a sequence of FxA instructions mc. The
compiler aims to vary the deltas ∆l of type Off equiprobably over the type
across recompilations. The following paragraphs explain how it is feasible.

3.1 Expressions

To translate x + y where x, y are signed 32-bit integer source code variables, the
compiler first emits machine code mc1 as in (4a). At runtime that will put the
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value of x in register r1 = Lx with offset delta ∆x (a pair in DB×Expr is written
D : x for readability here):

(mc1, ∆x) = CL[D : x]r1 (4a)

s0
mc1 s1 : s1(r1) = s0(x) +∆x (4b)

Small step semantics is from Table 1, with the value s(r) in register r. To make
that work formally, define the nominal value of a variable x in general as

s(x) =DF s(Lx)−DLx (5)

where r = Lx is the location for the variable and Dr is the delta intended for
that location at this point in the code. Then ∆r1 = Dr1 and

s1(x) = s0(x) (6)

has maintained the nominal value of variable x despite the numerical value in
the register r1 where it is located being different from that by ∆x.

The compiler next emits machine code mc2. At runtime that will put the
value of y in register r2 = Ly with offset delta ∆y:

(mc2, ∆y) = CL[D : y]r2 (7a)

s1
mc2 s2 : s2(r2) = s1(y) +∆y (7b)

As with x, that maintains the canonical value of y:

s2(y) = s1(y) (8)

The compiler emits the FxA integer add instruction that at runtime adds the
sum from r1 and r2 into r0, plus an increment k:

CL[D : x + y]r0 = (mc0, ∆e) (9a)
mc0 = mc1; mc2; add r0 r1 r2 k

Setting the canonical value of a sum expression as s(x + y) = s(x) + s(y), and
choosing k=∆e−∆x−∆y, the expression gets the following value at runtime:

s0
mc0 s2 : s2(r0) = s0(x) + s1(y) +∆e (9b)

The register r0 in which x is located will not be touched by the code mc2 that
evaluates y, because a compiler has always to be careful about that, so s1(x) =
s0(x) and the final value in r0 is the nominal value of x + y offset by delta ∆e.
The delta is independent of the two for x and y – the instruction constant k may
be adjusted at will to suit.
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3.2 Statements

Let Stat be the type of statements, then compiling a statement produces a new
obfuscation scheme, as well as machine code:

CL[_ : _] : DB× Stat→ DB×MC (10)

Consider an assignment z=x + y of the previous expression x + y to a source
code variable z, which the location database L binds in register rz=Lz. Let x+y
be called e here. The compiler emits code mc0 that evaluates expression e in
register t0 with (randomly chosen) offset ∆e as described in (9a) with t0 = r0.
A short-form add instruction with semantics rz ← t0 + k is emitted:

CL[D0 : z=e] = D1 : mc0; add rz t0 k (11a)

The compiler sets k=∆rz−∆e to choose delta ∆z for z in rz = Lz:

s0
mc0 s2

add
 s3 : s3(rz) = s0(x) + s1(y) +∆z (11b)

The database of offset deltas is updated from D0rz to D1rz=∆z here, so that is

s3(z) = s0(x) + s1(y) (12)

Again, the final delta ∆z may be freely chosen independent of the others by
choosing the instruction constant k as required.

3.3 Offset Calculus

A classical pre-/post-condition calculus [4] captures more handily the compiler’s
changes to the obfuscation scheme of deltas in each register and memory location
as it makes its pass through the source code.

Assignment. Generalising the x+y above to expression e with intermediates
in registers ρ={r0, . . . , rn}, and result variable z stored in r0, the delta offsets
before and after the assignment are generically:

{∆r0 = Y0, . . . , ∆rn = Yn}
z = e

{∆′r0= Z0, . . . , ∆
′rn= Zn}

(13)

By the example (9b,11b), the ∆′r, ∆r are independently chosen as the compiler
modifies (post-) vector∆′ to (pre-) vector∆:

{∆} z = e {∆′} (13a)
where ∆ ⊇ ∆′|ρ̄ (13b)

The vectors ∆, ∆′ are identical on the complement ρ̄ of ρ.
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Vectors. The ∆ above are indexed by the entire type Loc of registers and
memory locations but in practice only a small subset is needed for a program.

When pointers (memory addresses calculated dynamically) are involved we
augment the type system of the source language so each is declared restricted
to point into a particular global array as workspace:

int A[100]; . . . ; restrict A int ∗ ptr;

That reduces the set of possible memory locations as indices of the ∆ vectors
(to the storage space for A in expressions involving ∗ptr here).

The predictable problem of not knowing at compile-time which entry in the
array a pointer points to at run-time turns out not to be relevant: we are ulti-
mately interested in the statistical variation of the content achieved by compiling
stochastically, and it will ideally be uniformly the same for all array entries.

Conditionals. Source code conditionals are compiled to machine code branch
instructions, but which branch is for true and which for false from boolean
expression b can be deliberately varied by the compiler, which randomly chooses
to generate either code for b or for ¬b at each level of subexpression.

That compile procedure is detailed in [2], but it is not complicated. It has
already been described: the 1/0 result b of each boolean subexpression is modified
by a randomly chosen 1-bit delta δ to b+ δ mod 2 as just related for arithmetic
expressions with the difference that the delta for booleans is 1-bit, not 32-bit.

The compiler tracks the nominal value, but it is not determinable by an
observer whether the intended semantics has the nominal then or else branch
as the target of the branch instruction jump, just as it is not determinable which
while loop was meant by the code author in the introductory example given in
Section 1. The same technique is used in classic ‘garbled circuits’ [5] technology
for obfuscating hardware logic circuit design, with the difference that circuits
cannot be recursive and boolean expressions can be.

The upshot is that the appropriate pre-/post- logic is a classic nondetermin-
istic choice. Let ρ be the registers written in e. The deduction is:

{∆1} s1 {∆′} {∆2} s2 {∆′}
{∆} if (e) s1 else s2 {∆′}

(14a)

∆ ⊇ ∆1|ρ̄ ∪∆2|ρ̄ (14b)

and ∆, ∆1, ∆2 are identical on ρ̄, otherwise independent. The final offsets ∆′
set by the compiler are equal at the end of both branches, as the code following
it will be compiled supposing it receives the same scheme of offsets no matter
which branch was executed.

Loops The compiler implements do while loops as body plus conditional
branch back to the start. Let ρ be the registers written in e. The other registers
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are equally offset at loop start and end, i.e., ∆1|ρ̄=∆2|ρ̄=∆′|ρ̄ in (14a),(14b):

{∆} s {∆′}
{∆} do s while e {∆′}

(15a)

∆ ⊇ ∆′|ρ̄ (15b)

By this, the compiler is free to set offsets ∆|ρ and ∆′|ρ independently.

3.4 Obfuscation Calculus

Let fr be the probability distribution of offset ∆r from a nominal value v be-
neath the encryption in register r, as the compilation varies stochastically, so
prob(s(r) = v+d)=prob(∆r=d)=fr(d), where s is the processor state.

Each ∆r, ∆′r is a random variable with a probability distribution, giving the
stochastic analogue below (16) of (13) . Let variable x be stored in register or
memory location rx, and similarly for y, z;

{∆rx = X , ∆ry = Y, ∆rz = Z}
z = x + y

{∆′rx = X , ∆′ry = Y, ∆′rz = Z ′}
(16)

In particular, ∆rz and ∆′rz are independent random variables.
Let T be the runtime trace of a program. That is a sequence consisting of

each instruction executed and the values it read and wrote. After an assignment
the trace is longer by one: T ′ = T_〈z = e〉.

The entropy H(T ) of the random variable T distributed as fT is the expecta-
tion E[− log2 fT ]. The increase in entropy from T to T ′ (it cannot decrease with
longer T ) is informally the number of bits of unpredictable information added.

We will need only these two facts from information theory:

Proposition 1 The flat distribution fx=1/k constant is the one with maximal
entropy H(x)= log2 k, on a signal x with k values.

Proposition 2 Adding a maximal entropy signal to any random variable on a
n-bit space (2n values) gives another maximal entropy, i.e., flat, distribution.

Proposition 1 identifies the maximal entropy as n on an n-bit space, achieved
when each of the 2n values is equally probable. That is a completely disordered,
or chaotic, signal. Proposition 2 uses the known fact (Shannon) that the entropy
of the sum of two signals is at least as great as that of either. The surprising
inference is that the characteristics of any distribution on a finite point space
are obliterated completely, not partially, by adding a ‘chaotic’ signal to it, i.e.,
one with flat, uniform distribution.

Below, the logic is worked through for this stochastic view of compilation for
the three constructs already seen: assignment, conditionals, and while loops.
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Assignment. As in (13a), for pre-/post-condition:

{∆} z = e {∆′} (17a)

but the ∆, ∆′ are vectors of offsets ∆r, ∆′r that are random variables as in (16).
Let ρ={r0, . . . , rn} be the registers written in e or in writing to z. For

r/∈ ρ, ∆′r=∆r, because they are equal values by (13b), so the condition is still
∆|ρ̄=∆′|ρ̄ here. I.e.:

∆ ⊇ ∆′|ρ̄ (17b)

but there is more to come, because we suppose the compiler follows the principle
(h̃) and that means each new random variable is independent with maximal
entropy. Each represents the compiler’s free choice of constant like k of (9a,11a)
in ‘an arithmetic instruction that writes’ (add and addi respectively in those).

Let the trace entropy up to the assignment be H(T )=h. Writing to rz with
offset delta that is a new independent r.v. U increases the trace entropy to
H(T ′)=h+H(U). The offset is 32-bit, chosen with flat distribution by the com-
piler, as per (h̃), so H(U)=32. There are n+1 registers r0, . . . , rn that are written
independently, including the one holding target variable z, so entropy increases
by 32(n+1) bits:

{H(T ) = h} z = e {H(T ′) = h+ 32(n+1)} (17c)

In more general form, writing Φ[A/B] for substitution of A for B in predicate Φ:

{Φ[H(T ) + 32(n+ 1)/H(T )]} z = e {Φ′[H(T ′)]}

Put H(T ) = h+ 32(n+ 1) for Φ to obtain (17c) again.
That is the common case. But where the instruction that writes has already

appeared once earlier in the trace, the offset delta it introduces is already known,
and the increment in trace entropy is zero this time:

{H(T ) = h} z = e {H(T ′) = h} (17c0)

Alternatively:

{Φ[H(T )]} z = e {Φ′[H(T ′)]}

Remark 1. Whatever the expression e, provided it contains some arithmetic
(even z + 0 will do), z′ is independent of z is implied, as stated in Section 1.

Here ‘z’ is understood to refer to the exact value in the register rz where
z is located. By (17c), If H(T ) = h before the assignment, then it is H(T ′) =
h + 32(n + 1) after the assignment, where n + 1 in the number of ‘arithmetic
instructions that write’ that appear in the machine code, including one that last
writes to rz. That can only happen if each such instruction introduces 32 bits of
entropy to the trace because that is maximal per instruction, and therefore the
last write to rz introduces 32 bits of entropy. That means it adds an independent
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uniformly distributed 32-bit delta δ. Then prob(rz = i ∧ r′z = j) = prob(rz =
i ∧ r′z − rz = j − i) = prob(rz = i)prob(r′z − rz = j − i|rz = i) = prob(rz =
i)prob(δ = j − i|rz = i) = prob(rz = i)/232 = prob(rz = i)prob(r′z = j) since r′z
is distributed uniformly too (as the sum with a maximal entropy difference signal
δ). So rz and r′z are independent. and their covariance is 0, i.e., cov(z, z′) = 0.

Conditionals. As in (13b),(14b) but with random variables:

{∆1} s1 {∆′} {∆2} s2 {∆′}
{∆} if (b) s1 else s2 {∆′}

(18a)

∆ ⊇ ∆1|ρ̄ ∪∆2|ρ̄ (18b)

The ∆r=∆1r=∆2r for r/∈ρ, because they are equal values according to (14b).
The entropy added to the trace T is from the trace of b, say 32n bits of entropy
from n writes to n registers, plus the entropy from the trace through a branch:

{H(T ′)=h+32n} s1 {Θ} {H(T ′)=h+32n} s2 {Θ}
{H(T ) = h} if (b) s1 else s2 {Θ}

(18c)

or, in more generic form:

{Φ′[H(T ′)]} s1 {Θ} {Φ′[H(T ′)]} s2 {Θ}
{Φ[H(T ) + 32n/H(T )]} if (b) s1 else s2 {Θ}

Put H(T ) = h+ 32n for Φ in the above to get (18c).
To make that deduction valid, the compiler must even up the number of

arithmetic writes between the two branches so the entropy increase is the same.
It can do it, because, even for loops, the entropy increase is finite and bounded
(see below).

A second time the conditional appears in the trace, if it branches the same
way again then it contributes zero entropy as the offset deltas are known:

{H(T ) = h} if (b) s1 else s2 {H(T ′) = h} (18c0)

If it branches a different way from the first time, the branch (but not the test)
contributes entropy, as the offsets in that branch are yet unknown. But the, say
m, instructions that align final offsets are constrained in (14b) to agree with the
offsets in the other branch, which are already known. So those m do not count:

{H(T )=h} s1 {Θ} {H(T )=h} s2 {Θ}
{H(T )+32m = h} if (b) s1 else s2 {Θ}

(18c1)

Those final m instructions that synchronise the offsets with the other branch get
a special name:

Definition 1 An instruction emitted to adjust the final offset to a common value
with the other branch is a trailer instruction. Each is last to write to a register
in the branch.
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Loops Let ρ={r1, . . . , rn} be the registers written in b. Then, per (15a), (15b),
but with random variables:

{∆} s {∆′}
{∆} do s while (b) {∆′}

(19a)

∆ ⊇ ∆′|ρ̄ (19b)

That means ∆r=∆′r for r/∈ρ. Those distributions are equal because the values
are equal for r/∈ρ, by (17b).

A trace over the loop is always the same length between recompilation and
recompilation, because the compiler varies data values, not semantics. Say the
loop repeats N≥1 times for a particular set of input values. Then it could be
unrolled to N instances of the loop body and N instances of the loop test. The
variation in the trace is only that of (a) the test repeated once, because the same
offsets are applied to the n registers that are written in b at each repeat, plus (b)
that of the body repeated once, for the same reason. The entropy calculation is
(a) plus (b), no matter what N is:

{H(T )+32m = h} s {H(T ′) = h}
{H(T )+32(n+m)=h} do swhile b {H(T ′)=h}

(19c)

Put H(T ) + 32m = h for Φ in the following generalisation to get (19c):

{Φ′[H(T ′)]} s {Θ}
{Φ[H(T )+32n/H(T )]} do swhile b {Θ}

The abstraction here is that a do while may lengthen the trace arbitrarily
like a loop but it adds entropy to it like a conditional.

On a second time through the loop, zero entropy is added, because the offsets
are the same as the last time:

{H(T ) = h} do s while b {H(T ) = h} (19c0)

The (red) equations are an obfuscation calculus for trace entropy when compi-
lation follows the principle (h̃). In summary, counting up via the rules above:

Lemma 1 The entropy of a trace is 32(n+i) bits; n is the number in it of
distinct arithmetic instructions that write (a pair of trailer instructions count as
the same) and i is the number of inputs.

‘Inputs’ are identified with those instructions that read first time a location
that has not yet been written in the trace.

A successfully obfuscating compiler’s constructions must recruit every emit-
ted arithmetic instruction that writes to the task of freely varying the offsets in
data beneath the encryption in register and memory locations. Otherwise it is
not doing as much as it could to contribute to variability in the trace. The sole
restriction on the compiler is that two final writes in different control paths must
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set up the same offsets, and that is for correct program working. Conditionals,
loops and gotos would go wrong otherwise. The following characterises the best
way of compiling to produce this kind of obfuscation:

Proposition 3 The entropy in the run-time traces induced by a compiler follow-
ing the principle (h̃) is maximal among compositional strategies for varying the
constant parameters in the compiled machine code while it still works correctly.

The reasoning is that if the compiler works compositionally then it does not know
the context in which its constructions are used, so it must suppose that data that
is written will later be read, and so must arrange for synchronisation between all
final offset deltas in different branches of conditionals, even for locations that in
fact are never read afterwards. If the data is never read, synchronisation could
be done without and total entropy would be increased when both branches are
traversed in the trace. But for working compositionally, a compiler could put
more entropy into the trace, but it would be for data that serves no purpose
because it is never read.

The only other way to put more entropy in is to vary individual instructions
more, but that is impossible for a compiler that already implements (h̃).

The proposition implies that on a 32-bit platform a full 32 bits of entropy
per datum are provided by the compiler that follows (h̃):

Corollary 1 The probability across different compilations that any particular
32-bit value x is in a given register or memory location at any given point in the
trace at runtime is uniformly 1/232.

But what of two or more data values at different points in the trace? That
depends on how they are connected computationally. If they are input and output
of a copy instruction, they will be correlated.

Definition 2 Two data values in the trace are (obfuscation) dependent if they
are from the same register or memory location at the same point, are input and
output of a copy instruction, or are from the same register or location at a join
of two control paths after the last write to it in each and before the next write.

If data is taken at two (m) independent points, the variation is maximal:

Theorem 1 The probability across different compilations that any m particular
32-bit values have values xi in given register or memory locations at given points
in the program at runtime, provided they are pairwise independent, is 1/232m.

Each dependent pair reduces the entropy by 32 bits. The theorem asserts that
with (h̃) as a guide, as much trace data as one cares to observe is maximally
unpredictable across recompilations, as far as is computationally possible.

Remark 2. The theorem speaks to an argument about obfuscation in plain sight.
It is impossible for any observer to know what the variables X, Y, Z are in the
while loop given in Section 1, because they exist only in the mind of the code
author. The problem is that the observer has only to duplicate the form of the
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loop and run it to get a sequence of values x0, x1, x2, etc. in x and y and z that
are duplicated at some unknown offset as X0, X1, X2, etc. by X, Y, Z. Thus
X1 −X0, X2 −X1, etc. are known to the observer, being equal to respectively
x1 − x0, x2 − x1, etc. The theorem says that if the code author is to avoid the
observer being able to know even that much, then code with loops is out.

Suppose an observer claims to have a polynomial time (in the number of bits
n in a word on the platform, hitherto supposed to be 32) method of working
out what the code author means to have in their variable X at some identified
point in the trace of program P . The point of interest to the observer may even
move (polynomially) with n, being specifed, say as ‘the point of last change in
the first n3 steps’. The observer knows program P and may even have suggested
it. The observer also can see the compiled maximal entropy code C[P ], and see
it running and probe it deeply by running it themself.

The code author then readies a sequence of maximal entropy compilations
C[Pn] of P , with the nth being for a n-bit platform as target, and with P having
been partially or completely unrolled as Pn with no loops in at least the first
en (i.e., super-polynomially many) machine code instructions. If the program
predictably ends before then, just unroll completely. The observer is invited to
apply their method and predict what is meant by the values at their chosen
points in the trace(s) of these programs, which differ only in consequence of the
number n of bits in a word on the platform .

The theorem implies the observer’s method cannot exist. There are ‘no loops’
(i.e., no dependencies, per the wording of the theorem) in the part of the trace the
observer has time to examine. The theorem says the compiler will have arbitrarily
and independently varied what is meant by the values throughout that length
of the trace by varying the deltas from the nominal value independently across
each instruction in turn. The observer, seeing a 1, cannot tell if 2 was meant.

The credibility of the argument is supported by the trivial case in which the
program unrolls completely. Then it is equivalent to a logic circuit in hardware.
It is known from the theory of Yao’s garbled circuits [5] that the intended values
cannot be deciphered without the garbling scheme, which equates to an obfus-
cation scheme of deltas here via ‘+1 mod 2’ being boolean negation on a 1-bit
logic value, while ‘+0 mod 2’ leaves the logic value unchanged.

4 Implementation

Our own prototype compiler http://anonymised.url following 3.4 is for ansi
C [1], where pointers and arrays present particular difficulties. Currently, the
compiler has near total coverage of ansi C and GNU C extensions, including
statements-as-expressions and expressions-as-statements, gotos, arrays, pointers,
structs, unions, floating point, double integer and floating point data. Pointers
are obligatorily declared via ansi restrict to point into arrays. It is missing
longjmp and efficient strings (char and short are same as int), and global
data shared across code units (a linker issue). The largest C source compiled
(correctly) so far is 22,000 lines for the IEEE floating point test suite at http:
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Table 2. Trace for Ackermann(3,1), result 13.

PC instruction trace update
...
35 add t0 a0 zer -86921031 t0 = -86921028
36 add t1 zer zer -327157853 t1 = -327157853
37 beq t0 t1 2 240236822
38 add t0 zer zer -1242455113 t0 = -1242455113
39 b 1
41 add t1 zer zer -1902505258 t1 = -1902505258
42 xor t0 t0 t1 -1734761313 1242455113 1902505258

t0 = -17347613130
43 beq t0 zer 9 -1734761313
53 add sp sp zer 800875856 sp = 1687471183
54 add t0 a1 zer -915514235 t0 = -915514234
55 add t1 zer zer -1175411995 t1 = -1175411995
56 beq t0 t1 2 259897760
57 add t0 zer zer 11161509 t0 = 11161509
...
143 add v0 t0 zer 42611675 v0 = 13
...
147 jr ra # (return 13 in v0)

Legend: (registers) a0 = function argument; sp = stack pointer; t0, t1 = temporaries; v0 = return
value; zer = null placeholder.

//jhauser.us/arithmetic/TestFloat.html. A trace3 of the Ackermann func-
tion4 [6] is shown in Table 2.

5 Conclusion

A formal obfuscation calculus for programs is set out that quantifies the entropy
in the data beneath the encryption in a runtime trace, where compilation is
stochastic (and execution is not). The way to maximise the entropy is to follow
the principle for compiler constructions that every arithmetic instruction that
writes should be varied maximally across recompilations.
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