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Abstract. Demosaicing is a fundamental step in a camera pipeline to
construct a full RGB image from the bayer data captured by a cam-
era sensor. The conventional signal processing algorithms fail to perform
well on complex-pattern images giving rise to several artefacts like Moire,
color and Zipper artefacts. The proposed deep learning based model re-
moves such artefacts and generates visually superior quality images. The
model performs well on both the sRGB (standard RGB color space) and
the linear datasets without any need of retraining. It is based on Convo-
lutional Neural Networks (CNNs) and uses a residual architecture with
multiple ‘Residual Bottleneck Blocks’ each having 3 CNN layers. The
use of 1x1 kernels allowed to increase the number of filters (width) of
the model and hence, learned the inter-channel dependencies in a better
way. The proposed network outperforms the state-of-the-art demosaicing
methods on both sRGB and linear datasets.
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1 Introduction

De-mosaicing is the first and the foremost step of any camera ISP (Image Signal
Processing) pipeline. Color image sensor can only capture one color at any pixel
location in a fixed bayer pattern forming a mosaic/bayer image. An interpolation
method is needed to fill the missing colors at each pixel location in the mosaiced
image and this process is known as De-mosaicing. A common challenge faced for
demosaicing is the unavailability of the actual ground truth images where each
pixel contains the actual R (red), G (green) and B (blue) components. It is not
feasible to capture all the color components at any given pixel location. So, the
common approach is to take high quality images and treat them as the ground
truth. These images are then mosaiced into bayer images which goes as an input
to the demosaicing algorithm.

Traditional interpolation algorithms take advantage of correlation between
R, G and B components of bayer image. Since G component has double sampling
frequency, interpolation of G is done first, followed by R and B. Interpolation
is done along both horizontal and vertical direction and combined using various
metrics. In MSG [1] algorithm, authors improved the interpolation accuracy
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by using Multi-Scale color Gradients to adaptively combine color-difference-
estimates from different directions. In ARI (Adaptive Residual Interpolation)
[2], authors used R as a guided filter to interpolate G at R&B (guided upsam-
pling) and vice versa to interpolate R&B at G. Due to inherent sensor noise,
interpolation based algorithm sometimes fails to demosaic the complicated pat-
terns near the edges, leading to moire, zippering and other color artefacts. To
remove the moire artefact from images, camera uses low pass filter but that
reduces the sharpness of the image. To address these challenges, deep learning
algorithms have been proposed which show significant improvement over tradi-
tional interpolation based methods.

1.1 Related Work

Numerous deep learning architectures have been proposed for demosaicing and
with the advancements in the processing power, the networks are becoming
deeper and deeper. The authors of ‘A Multilayer Neural Network for Image
Demosaicing’ [3] had proposed a 3 layered deep network which achieved a PSNR
(Peak signal-to-noise ratio) of 36.71 on 19 Kodak images and showed initial
promise that deep learning network could prove to be useful for demosaicing.
Gharbi et al [4] uses a 15 layered network with a residual learning approach.
It was able to outperform all the interpolation based demosaicing methods and
deep learning based networks by achieving 41.2 PSNR on Kodak dataset [5].
Runjie Tan et al [6] uses a two stage network which is similar to interpolation
algorithms such as MSG and AHD [7]. The Green channel is used as a guide
for interpolation of Red and Blue channels. First, the demosaicing kernels are
learned using the L2 loss [8] on Green channel and then in the second stage,
the loss is calculated on all channels. Thus, the Green channel guides the in-
terpolation of the final RGB channels. On Kodak-24 image dataset, it achieved
a PSNR of 42.04 and on McMaster (McM) [9] dataset, it achieved a PSNR of
39.98. The network proposed in DMCNN-VD [10] is even deeper and consists of
20 convolutional layers. It also uses a residual learning approach and achieved a
PSNR of 42.27 on the Kodak-24 dataset.

However, the above mentioned deep learning networks do not generalize well
on all kind of images and hence, will require a re-training for the specific kind
of images. The proposed deep learning architecture addresses these issues and
outperforms the state-of-the-art deep learning based demosaicing network on
both linear and sRGB datasets. For the first time, a bottleneck residual network
for demosaicing has been proposed which can generalize across different types
of datasets. The proposed network is a fully convolutional neural network and
uses multiple residual blocks.

2 Proposed Deep CNN Architecture

The proposed bottleneck residual network architecture for demosaicing gener-
alizes well and generates superior quality images with minimal artefacts. The
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Fig. 1: Proposed Deep Learning model for demosaicing with 10 residual blocks

network is inspired from Residual Network (ResNet) architecture [11]. The pro-
posed network is able to handle the complicated patterns in the image and gives
much better visual quality.

The proposed network is based on CNNs and uses a residual architecture
with each residual block having a bottleneck structure [12]. The network has
10 such residual blocks each having 3 convolutional layers. The network has a
varying width of 256 and 64 channels. The bottleneck structure allows faster
learning and at the same time learns more number of features.

The input to the network is a bayer image which is split into 3 channels
- Red(R), Green(G) and Blue(B), with each channel having interleaved zeros.
The starting convolutional layer in the network uses 3x3 filters and converts
the dimensions of the 3-channeled bayer input to 256 channels that goes as an
input to the first residual block. Each residual block has 3 CNN layers. The first
layer uses 1x1 filters to change the dimension of 256-channeled input from the
previous residual block and convert it to a 64-channeled output. This output is
then passed through a ReLU activation layer. The second CNN layer operates
on a reduced dimensional output of 64 channels from the previous layer. This
layer uses a filter size of 3x3 which helps the model to learn important features
and interchannel relationships. The output from this layer is 64-channeled and
is passed through a ReLU activation layer. The third CNN layer uses 1x1 filters
to restore the dimensions from 64 to 256 channels. Using a skip connection,
the output from the third CNN layer is added with the original input (256-
channeled) of the given residual block. This output now goes as an input to the
next residual block. After the 10th (last) residual block, the final convolutional
layer of the network uses 3x3 filters and converts the output having 256 channels
into a 3-channeled color image. This is the final output of the network and has
the same dimensions as of the input bayer image. Fig. 1. shows the proposed
network architecture. The network uses an L2 loss function between the ground
truth and the output of the model.

Fig. 2 shows few possibilities of different input bayer images possible for
the network. The input is generated from the ground truth RGB image by mo-
saicing it in a bayer fashion. The basic form is shown in (a) which is a single
channeled image with all the three color components interleaved in the same
plane. This form is generally not preferred as an input to the network because
it adds an additional burden on the network to learn the relationship between
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Fig. 2: Comparison of different possible forms of the input image to the network

the interleaved color components. For example, the network needs to learn that
two alternate pixels belong to the same color channel. So, a common approach is
to split the color components into different channels. The proposed architecture
uses a 3-channeled bayer image as shown in (b). The interleaved white blocks in
the channels are the places where no color component is present and have been
initialized with zeroes. The Green channel contains 50% of the color components
whereas the Red and Blue contains 25% each. For uniformity, the Green channel
can further be split into two channels, as shown in (c), so that each channel
contains 25% of the color components. This approach was not adopted because
it would have increased the training parameters and made the model more com-
plex. The four channels shown in (c), can be compressed by packing the color
pixels together, as shown in (d). This would lead to the loss of spatial infor-
mation of the pixels and hence make it difficult for the network to learn some
important information, like edges, which is of utmost priority for demosaicing.
Hence, form (b) was chosen as the input for the proposed network.

The proposed model was trained solely on sRGB dataset and still it is able
to generalize well across linear dataset. Due to the limited availability of linear
datasets, the model was not trained on the linear dataset. So, to test the model
on linear datasets, the images were transformed to sRGB domain and demosaiced
using the network already trained on the sRGB dataset. During the experiment,
it was found that the model performed equally well for the linear dataset.
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Table 1: Comparison of BottleNeck architectures with different widths
Kodak12 McM Kodak24 Panasonic Canon

128-64 43.8 39.28 42.24 42.34 44.41

256-64 43.86 39.29 42.3 42.42 44.43

To confirm the role of the width of the architecture, the model was tested with
a modified version of the architecture having a smaller width of 128 instead of
256. Table 1 shows the results of the experiment on different datasets. Panasonic
and Canon are the linear datasets of Microsoft Demosaicing Dataset (MDD) [13]
while the rest of them are sRGB datasets. The first row shows the results of the
architecture having widths of 128 and 64. The second row shows the results of
the proposed model having widths of 256 and 64. It can thus be confirmed that,
more number of channels (width) helps the network to learn more number of
features required for demosaicing. Hence, increasing the width of the network
improves the quality of demosaiced image.

3 Experiments and Results

In all the mentioned experiments, Bayer color filter array was used, as it is the
most commonly and widely used color filter array in cameras. The network was
trained on Waterloo Exploration Dataset (WED) [14] dataset which contains
4,744 colored images of roughly 600x400 resolution. The dataset was augmented
by shifting 1 pixel along horizontal and vertical direction, all four rotations and
flipping. Shifting an image by 1 pixel helps to capture all the color components
at any given pixel location when mosaicing the ground truth image into bayer
image. Rotations and flipping helps to generate different orientations of the same
image and helps the network to learn a wide variety of patterns and orientations.
Finally, image patches of size 128x128 was cropped from this augmented dataset
for training. Total number of training images generated was 735,920.

Table 2: PSNR comparison for sRGB dataset
Kodak-12 McM Kodak-24

MSG NA NA 41.00

ARI 41.47 37.60 NA

DMCNN-VD 43.45 39.54 42.27

Gharbi 41.2 39.5 NA

Tan NA 38.98 42.04

Kokkinos [15] 41.5 39.7 NA

MMNet [16] 42.0 39.7 NA

Proposed 43.86 39.29 42.30
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Table 2. shows the quantitative comparison on sRGB datasets. Kodak-12
and Kodak-24 are the sets of 12 and 24 Kodak images respectively. Different
authors have used different Kodak sets to measure the performance. We have
compared our results on both the Kodak datasets. The proposed model out-
performs other algorithms on Kodak sets. In case of McMaster (McM) dataset,
the results are not far behind. Table 3. shows the quantitative comparison on
MDD. The proposed method outperforms other demosaicing algorithms and is
the state-of-the-art. Note that the PSNR 42.86 achieved is the weighted average
of 200 Panasonic and 57 Canon images.

Table 3: PSNR comparison for linear (MDD) dataset
ARI RTF [17] DMCNN-VD Kokkinos Gharbi MMNet Proposed

39.94 39.39 41.35 42.6 42.7 42.8 42.86

Table 4. shows the comparison for two networks with widths of 256 and 128
for linear dataset. In the table, the first row (128-64) refers to the bottleneck
architecture with widths 128 and 64. Similarly, 256-64 refers to the bottleneck
architecture with widths 256 and 64. The prefix ‘lin sRGB’ refers to the method
where the testing linear images were first converted to sRGB domain, then demo-
saiced and finally converted back to linear domain to find the PSNR values. The
data clearly shows that the network with 256-width outperforms the 128-width
network in both linear and sRGB domain demosaicing.

Table 4: PSNR Comparison of bottleneck architecture on linear datasets
Panasonic(200) Canon(57)

128-64 41.92 44.05

128-64 lin sRGB 42.14 44.41

256-64 41.94 44.07

256-64 lin sRGB 42.42 44.43

Fig. 3. and Fig. 4. shows the qualitative comparison on sRGB datasets. In
Fig. 3. top row image (green star), it can be observed that DMCNN-VD fails to
produce sharp edges inside the marked region. In Fig. 4, a blue-colored artefact
can be observed in the marked region when looked closely which is absent in the
proposed image . Fig. 5. shows the qualitative results on linear MDD dataset.
First two images (a,b) are Ground Truth and the proposed method’s output.
Next three images (c,d,e) are snapshots taken directly from the DMCNN-VD
paper. The authors have increased the saturation and brightness for these images
to highlight the chroma artefacts. The proposed model is not fine-tuned using any
linear dataset and even then, it is able to match the visual quality of DMCNN-
VD-Tr, which is a fine tuned version of DMCNN-VD on MDD dataset using
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(a) GroundTruth (b) ARI (c) DMCNN-VD (d) Proposed

Fig. 3: Visual comparison with ARI and DMCNN-VD

(a) Original Img (b) GroundTruth (c) ARI (d) Tan (e) Proposed

Fig. 4: Visual comparison with ARI and Tan on Kodak (Top row) and McM
(Bottom row) datasets
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(a) Ground
Truth

(b) Proposed (c) ARI (d) DMCNN VD (e) DMCNN
VD-Tr

Fig. 5: Visual comparison on Linear Images (MDD dataset)

transfer learning. In the top row, the DMCNN-VD-Tr output appears to have
lost the chroma information for the monument but the proposed model preserves
the color. The proposed model also outperforms DMCNN model in terms of
PSNR metric, as shown in Table 3.
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Fig. 6: Demosaicing on raw data captured from a smartphone

The proposed method was also tested on a real-life image dataset. Fig. 6.
shows demosaicing algorithms applied on the raw images captured at 12 MP
by a smartphone and it can be seen that the proposed model has generalized
well. Random noise and zipper artefacts can be clearly seen on MSG demosaiced
images. The proposed model minimizes all such artefacts.
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4 Conclusion and Future Work

In this paper, a novel approach for demosaicing has been proposed. The proposed
method is the state-of-the-art and confirms the ability to generalize well, across
different types of datasets. Most of the computational photography techniques
and computer vision algorithms rely on edge detection. Images with artefacts
on the edges such as zippering and chroma are likely to give poor segmenta-
tion results, thus, further affecting the processed image. Therefore, it is crucial
to solve such issues at the very start of the Image Processing Pipeline. With a
superior quality at the initial steps of the camera pipeline, it is expected that
further processing blocks will perform better and the final output will be much
more appealing and free from artefacts. Also, camera image enhancement solu-
tions such as low-light imaging and super resolution, rely heavily upon per pixel
quality. It is expected that the proposed method, which has minimal artefacts,
will directly benefit these solutions.

The future work involves exploring the effects of demosaicing algorithms on
the computational photography solutions like HDR and Super-Resolution and
evaluate the extent to which the proposed demosaicing algorithm improves these
solutions. Along with that, the next focus will be to explore the capability of
the proposed network to handle simultaneous demosaicing and denoising. De-
mosaicing and denoising is a tightly coupled problem, solving one greatly affects
the other. A wide research is going on to address both of them simultaneously
and many deep learning architectures have been proposed. Additionally, it will
be explored if such a network can be compressed and optimized for an on-device
ISP pipeline without significant loss in performance.
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