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Mixed-Integer Linear Programming problems, playing a prominent role in Operations Research, are prone

to the curse of dimensionality; specifically, the combinatorial complexity of the associated MILP problems

increases exponentially with the increase of the problem size. To efficiently solve the “separable” MILP

combinatorial problems, decomposition, and coordination Surrogate “Level-Based” Lagrangian Relaxation

method is developed. The new method efficiently exploits the underlying geometric-convergence potential

- the best convergence theoretically possible - inherent to Polyak’s step-sizing formula in the dual space

without the need to know the optimal dual value required for convergence. Unlike all the previous methods to

obtain “level” estimates of the optimal dual value by adjusting hyperparameters, the key novel idea to obtain

“level” value is through a hyper-parameter-free optimization: a novel “multiplier-convergence-feasibility”

Linear Programming constraint satisfaction problem needs to be solved, from which, in conjunction with

the Polyak’s formula, the sought-for “level” estimate is inferred. Testing results for medium- and large-

scale instances of standard Generalized Assignment Problems from OR-library demonstrate that 1. “level”

estimates generally decrease and the dual values increase faster than those obtained by using other existing

methods, 2. the new method is computationally efficient in terms of the quality of solutions (for several

large-scale cases, optimal solutions are obtained) and in terms of the CPU time, 3. the new method is robust

with respect to the choice of initial parameters such as step-sizes and multipliers. Moreover, the procedure

to estimate the “level” value is independent of linearity and separability of the problem, and thus the new

method also paves the way for efficient resolution of general Mixed-Integer Programming (MIP) problems.
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1. Introduction

We study the resolution of combinatorial optimization problems belonging to a class of “separable”

mixed-integer linear programs (MILP) with integer linear programming (ILP) being a special case,

which can formally be stated as

min
(x,y):={xi,yi}Ii=1

{
I∑
i=1

(
(cxi )

Txi + (cyi )
Tyi
)}

, (1)

s.t. g(xk, yk) = 0, {xi, yi} ∈Fi, i= 1, . . . , I. (2)

where g(xk, yk) =
∑I

i=1A
x
i xi +

∑I

i=1A
y
i yi − b. The primal problem (1)-(2) is assumed to be fea-

sible and feasible regions Fi ⊂ Zni ×Rni , which can be delineated by simple bounds, subsystem

constraints or both, are assumed to be finite. Mixed-integer linear programming has multiple appli-

cations in problems of importance, which will be reviewed in Section 2.

MILP problems are known to belong to the NP-hard class of problems because of the presence of

integer variables x. Problems of practical sizes are thus difficult to solve because of the associated

combinatorial complexity: as the problem size increases linearly, the complexity increases expo-

nentially. The reduction of complexity, on the other hand, has been traditionally achieved through

the use of the dual decomposition and coordination Lagrangian Relaxation technique: decomposi-

tion “reverses” the combinatorial complexity thereby exponentially reducing the effort required to

solve sub-problems: sub-problem i corresponds to a subsystem i. Notwithstanding the advantage

of the decomposition aspect, the coordination aspect of the method, however, has been the sub-

ject of intensive research for many decades because of fundamental difficulties of the non-smooth

optimization of the associated dual functions as explained ahead.

The purpose of this paper is two-fold: 1. To provide an overview of the important milestones

in the development of the optimization of convex non-smooth functions as well as the Lagrangian

Relaxation method, the success of which relies on the optimization of non-convex dual function in

Section 2, and 2. To develop a solution methodology to solve the problem (1)-(2) through the use

of Lagrangian Relaxation (LR) to exploit the efficient reduction of complexity while developing

the novel approach to overcome coordination difficulties of previous methods in Section 3.
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2. Lagrangian Duality for Discrete Programs and Non-Smooth Optimization

The convex dual function corresponding to the MILP problem (1) is:

max
λ
{q(λ) : λ∈Rm}, (3)

where

q(λ)=min
(x,y)

{
I∑
i=1

(
(cxi )

Txi + (cyi )
Tyi
)
+λT ·

(
I∑
i=1

Axi xi +
I∑
i=1

Ayi yi− b

)
,{xi, yi} ∈Fi, i= 1, . . . , I

}
. (4)

The Lagrangian multipliers λ (“dual” variables) are the decision variables with respect to the dual

problem (3) and it is assumed that the set of optimal solutions is not empty. The minimization

within (4) with respect to {x, y} is referred to as the “relaxed problem.” Because of the presence

of integer variables x, the dual function (3) is non-smooth with facets (each corresponding to a

particular solution to the relaxed problem within (4)) intersecting at ridges whereby derivatives of

q(λ) exhibit discontinuities; in particular, the dual function is not differentiable at λ∗. As a result,

subgradients (in early literature referred to as “generalized gradients”) may lead to lower dual

values or exhibit zigzagging across ridges of the dual function (see Figure 1 for illustrations).

Traditionally, the dual function (3) is maximized by updating Lagrangian multipliers λ based on

stepsizes sk and subgradient directions g(xk, yk), which within the Lagrangian relaxation framework

are defined as levels of constraint violations g(xk, yk)≡
(∑I

i=1A
x
i x

k
i +
∑I

i=1A
y
i y

k
i − b

)
, as

λk+1 = λk + sk · g(xk, yk), (5)

where {xki , yki }Ii=1 is a an optimal solution to the relaxed problem (4) with multipliers equal to

λk. If inequality constraints
∑I

i=1A
x
i xi +

∑I

i=1A
y
i yi ≤ b are present, one way to handle them is

to convert into equality constraints by introducing non-negative real-valued slack variables z such

that
∑I

i=1A
x
i xi +

∑I

i=1A
y
i yi + z = b.

Because of the lack of differentiability of the dual function, notably, at the optimum λ∗, the step-

size selection plays an important role to guarantee convergence to the optimum as well as for the

success of the overall Lagrangian Relaxation methodology for solving MILP problems. Accordingly,

the roadblocks on the way of Lagrangian relaxation are the following:
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A 

B 

* 

Figure 1 An example of a dual function demonstrating difficulties faced by subgradient methods. Solid lines

denote the level curves, dash-dotted lines denote the ridges of the dual function whereby the usual

gradients are not defined (possible subgradient directions at points A and B are denoted by solid arrows),

and the direction from point B toward optimal multipliers is denoted by a dashed line.

1. Non-differentiability of the dual function

(a) Subgradient directions are non-ascending;

(b) Zigzagging of multipliers across ridges of the dual function leading to many iterations

required for convergence;

(c) It is necessary for step-sizes to approach zero to guarantee convergence, yet, it is not

sufficient;

2. High computational effort required to solve the relaxed problem in order to obtain subgradient

directions;

3. Solutions {xki , yki } to the relaxed problem, when put together, do not satisfy constraints (2)

even at λ∗.

In the following, by looking through a prism of the above-mentioned difficulties and to lay

out the foundation for further methodological developments, several stages in the methodological

development to optimize non-smooth dual functions as well as to solve mixed-integer programming

problems by using Lagrangian Relaxation will be reviewed roughly in chronological order.
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2.1. 1960’s: Minimization of “Unsmooth Functionals.”

The study of optimization of the class non-smooth convex functions, with q(λ) being its member,

though irrespective to Lagrangian relaxation, originates in Polyak’s seminal work (Polyak (1967)).

Subgradient Method with “Non-Summable” Stepsize. Polyak noted that subgradient

directions are not always descending (Polyak 1967, p. 593) for minimization problems (accordingly,

subgradient directions are not always ascending for maximization problems such as (3). This prop-

erty of subgradient as point A is shown in Figure 1.) Nevertheless, convergence to the optimal

solution optimizing the non-smooth function was proven under the following (frequently dubbed

as “non-summable”) stepsizing formula satisfying the following conditions:

sk > 0, lim
k→∞

sk = 0,
∞∑
k=0

sk =∞. (6)

A specific example of a “non-summable” step-size is sk = s0

k
, where s0 is some positive constant.

Subgradient Method with Polyak’s Stepsize. As noted by Polyak in his subsequent work

(Polyak (1969)), the non-summable stepsizes satysfying (5) lead to “extremely slow convergence”

(Polyak 1969, p. 15). Intending to achieve geometric (also referred to as “linear”) rate of convergence

so that ‖λk − λ∗‖ is monotonically decreasing, Polyak proposed the stepsizing formula (nowadays

bearing his name, or sometimes referred to as “dynamic stepsize rule”), which in terms of the

problem under consideration takes the following form:

0< sk <γ · q(λ
∗)− q(λk)

‖g(xki , y
k
i )‖2

, γ < 2. (7)

Within (7) and thereafter in the paper, the standard Euclidean norm will be used. A noteworthy

feature of stepsizes (6) and (7) is convergence to zero is required to achieve convergence to λ∗. Even

though the optimal dual value q(λ∗) is not known, the geometric convergence potential offered

by the formula (7) has been extensively exploited and gave rise to applications of Lagrangian

relaxation to solve MILP problems as will be discussed next.
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2.2. 1970’s, 1980’s and Early 1990’s: Application of Lagrangian Relaxation and Non-Smooth

Optimization to Mathematical Programming Problems.

The 1970’s and 1980’s have been marked by the explosion of the applications of non-smooth

optimization with Polyak’s step-size (7) for solving a host of discrete (both integer and mixed-

integer) optimization problems. Since the optimal dual value q(λ∗) of the associated dual value

is generally unknown, to compute stepsizes, q(λ∗) was estimated, for example, though a “target”

value q (e.g., Held and Karp (1971)) or by using a feasible cost of the primal problem (e.g., Fisher

(1976)). Notable applications of the method are the traveling salesman problems (Held and Karp

(1970), Held and Karp (1971)), scheduling problems (Fisher (1973), Fisher (1976), Muckstadt and

Koenig (1977), Shepardson et al. (1980), Hoitomt et al. (1990), Chang et al. (1990), Hoitomt et

al. (1993), Yan et al. (1993)), location problems (Cornuejols et al. (1977), Erlenkotter (1978)) and

many others. An excellent summary of early applications of Lagrangian relaxation for discrete

programming problems can be found at Fisher (1981) and Fisher (1985).

2.3. The 1990’s: The Subgradient-Level Method.

The subgradient-level method, first proposed by Brännlund (1993) and subsequently improved by

Goffin and Kiwiel (1999), overcomes the unavailability of the optimal value needed to compute

Polyak’s step-size (7) by adaptively adjusting a “level” estimate based on detection of “sufficient

descent” of the function and “oscillation” of solutions.

In terms of the problem (3), the procedure of the method is explained as follows: the “level”

estimate qklev = q
kj
rec + δj is used in place of the optimal dual value q(λ∗), where qkrec is the best dual

value (“record objective value”) obtained up to an iteration k, and δj is an adjustable parameter

with j denoting the jth update of qklev. The main premise behind is when δj is “too large,” then

multipliers will exhibit oscillations while travelling a significant (predefined) distance R without

improving the “record” value. In this case, the parameter δj is updated as δj+1 = β · δj with β = 1
2
.

On the other hand, if δj is such that the dual value is sufficiently increased: q(λk)≥ qklev + τ · δj,

with τ = 1
2
, then the parameter δj is unchanged and the distance travelled by multipliers is reset

to 0 to avoid premature reduction of δj by β in future iterations.
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2.4. Fundamental Difficulties of Sub-gradient Methods.

High Computational Effort. Up to this point in the literature review, the methods reviewed

relied on the assumption that non-smooth functions (e.g., the dual function) are given. However,

within the Lagrangian relaxation framework, this is not the case since the minimization of the

relaxed problem within (4) needs to be performed to obtain a dual function q(λ), which is a

non-trivial computational task for problems of practical sizes. In fact, even for a given value of mul-

tipliers λk, minimization within (4) to obtain a dual value q(λk) and the corresponding subgradient

is time-consuming.

Zigzagging of Multipliers. As hypothesized by Goffin (1977), slow convergence of subgradient-

based method is due to ill-conditioning. The condition number µ is formally defined as µ =

inf{µ(λ) : λ∈Rm/P}, where P = {λ∈Rm : q(λ) = q(λ∗)} (the set of optimal solutions) and µ(λ) =

minu
uT ·(λ∗−λ)
‖uT ‖·‖λ∗−λ‖ (the cosine of the angle that subgradient form with directions toward the opti-

mal multipliers). It was then demonstrated experimentally when solving, for example, scheduling

(Czerwinski and Luh 1994, Fig. 3(b), p. 104) as well as power systems problems (Guan et al.

1995, Fig. 4, p. 774) that multipliers frequently zigzag across the ridges of the dual function. This

phenomenon could be attributed to the ill-conditioning of the problems.

To address these difficulties, the notions of “surrogate,” “interleaved” and “incremental” sub-

gradients, which do not require relaxed problems to be fully optimized to speed up convergence,

emerged in the late 1990’s, early 2000’s as reviewed next.

2.5. The late 1990’s: The Interleaved Subgradient and the Surrogate Subgradient Methods.

Within the Interleaved Subgradient method proposed by Kaskavelis and Caramanis (1998), multi-

pliers are updated after solving one subproblem at a time

min
(xi,yi)

{
(cxi )

Txi + (cyi )
Tyi +λT · (Axi xi +Ayi yi) ,{xi, yi} ∈Fi ⊂Zni ×Rni

}
, (8)

rather than solving all the subproblems as within the standard subgradient method. This signifi-

cantly reduces computational effort, especially for problems with a large number of subsystems.
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The more general Surrogate Sub-gradient Method was then developed by Zhao et al. (1999)

whereby the exact optimality of the relaxed problem (or even subproblems) is not required. As

long as the following “surrogate optimality condition” is satisfied

L(x̃k, ỹk, λk)<L(x̃k−1, ỹk−1, λk) (9)

the multipliers can be updated by using the following formula

0< sk <γ · q(λ
∗)−L(x̃k, ỹk, λk)

‖g(x̃k, ỹk)‖2
, γ < 1. (10)

and the convergence to λ∗ is guaranteed. Here “tilde” is used to distinguish solutions {xki , yki },

which are obtained by optimally solving the relaxed problem, from the solutions of the relaxed

problem {x̃ki , ỹki }, not necessarily optimal, but satisfying the “surrogate optimality condition” (9).

Unlike that in Polyak’s formula, parameter γ is less than 1 to guarantee that q(λ∗)>L(x̃k, ỹk, λk)

so that the step-sizing formula (10) is well-defined in the first place, as proved in (Zhao et al.

1999, Proposition 3.1, p. 703). The concomitant reduction of multiplier zigzagging has been also

observed.

2.6. The Early 2000’s: Incremental Subgradient Methods.

The main idea of the incremental subgradient method, like that of the interleaved method dis-

cussed above, is to improve convergence by solving a subproblem i before updating multipliers.

After one subgradient component is updated, rather than updating all the multipliers “at once,”

within the incremental subgradient methods, multipliers are updated “incrementally.” After the

ith subgradient component is calculated,

ψki =ψki−1 + sk ·
(
Axi x

k
i +Ayi y

k
i −βi

)
. (11)

Here βi are the vectors such that
∑I

i=1 βi = b, for example, βi = b
I
. Only after all i subproblems are

solved, are the multipliers “fully” updated as

λk+1 =ψkI . (12)
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Convergence results of the subgradient-level method (Goffin and Kiwiel (1999)) have been extended

for the subgradient methods and proved. Variations of the method were proposed with β and τ

belonging to an interval [0,1] rather than being equal to 1
2
. Moreover, to improve convergence,

rather than using constant R, a sequence of Rl was proposed such that
∑∞

l=1Rl =∞.

2.7. 2010’s: The Surrogate Lagrangian Relaxation Method.

The Surrogate Lagrangian Relaxation (SLR) method (Bragin et al. (2015)) overcomes the unavail-

ability of the optimal dual value difficulty based on the “contraction mapping” concept. Namely,

within the method, distances between multipliers at consecutive iterations are required to decrease,

i.e.,

‖λk+1−λk‖= αk · ‖λk−λk−1‖, 0≤ αk < 1. (13)

Based on (10), the step-sizing formula has been derived:

sk = αk ·
sk−1‖g(x̃k−1, ỹk−1)‖
‖g(x̃k, ỹk)‖

. (14)

Moreover, a specific formula to set αk has been developed to guarantee convergence:

αk = 1− 1

M · k1− 1
kr
, M ≥ 1, 0≤ r≤ 1. (15)

2.8. The Late 2010’s - Early 2020’s: Important Applications of Lagrangian Relaxation for

MILP Problems.

Lagrangian Relaxation remains a prominent method for solving MILP (sometimes even MINLP)

problems within a variety of disciplines with applications to problems of importance to society:

building evacuation during fire (Lu et al. (2021)) and active shooter events (Gunn et al. (2017)),

energy harvesting-aided cellular IoT (Cheng et al. (2021)), microgrid coordination (Wang et al.

(2021)), air traffic flow management (Garćıa Heredia (2021)), job-shop scheduling (Yan et al.

(2018), Yan et al. (2020)), flow-shop scheduling (Hong et al. (2019)), steelmaking-continuous cast-

ing process scheduling (Cui et al. (2020), Cui et al. (2021)), flexible scheduling (Hämmerle and
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Weichhart (2017)), plant factory crop scheduling (Huang et al. (2020)), unit commitment (Kim

et al. (2018), Chen et al. (2019), Li et al. (2019), Chen et al. (2020), Li et al. (2020)), neural

network acceleration (Peng et al. (2021)), semiconductor manufacturing (Chang and Dong (2017)),

chiller-plant optimization (Zhang et al. (2019)), slot allocation of a liner container shipping service

(Wang et al. (2021)), and transmission and distribution coordination (Bragin and Dvorkin (2021)).

The above-mentioned list of applications encompasses research during the last 5 years, and by no

means inclusive.

In short summary, all the subgradient-based methods reviewed above using Polyak’s (or Polyak-

like) step-sizes with the intention of achieving the geometric convergence either require the optimal

dual value, whih is unavailable, or explicitly require multipliers to travel infinite distance to guar-

antee convergence to the optimum λ∗. While the SLR method’s advantage is to avoid the need

to estimate the optimal dual value, the geometric/linear convergence is only possible outside of

a neighborhood of λ∗ (Bragin et al. 2015, p. 187). In the following Section 3, a novel Surrogate

“Level-Based” Lagrangian Relaxation will be proposed 1. to develop a novel way to determine a

“level” estimate of the optimal dual value and 2. to speed up adjustment of the “level” for faster

overall convergence.

3. Novel Surrogate “Level-Based” Lagrangian Relaxation

In this section, a novel Surrogate “Level-Based” Lagrangian Relaxation (SLBLR) method is devel-

oped with adaptive adjustment of the “level” estimate of the optimal dual value within the Polyak’s

step-sizing formula for faster convergence. The key is faster (as compared to, for example, Gof-

fin (1977)) multiplier “oscillation detection” based on a novel auxiliary “multiplier-convergence-

feasibility” linear constraint satisfaction problem.

“Multiplier-Convergence-Feasibility” Problem to Obtain the Estimate of q(λ∗). The

premise behind the “Multiplier-Convergence-Feasibility” is the rendition of the result due (Zhao

et al. 1999, Theorem 4.1, p. 706):
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Theorem 1. Under the stepsizing formula

sk <γ · q(λ
∗)−L(x̃k, ỹk, λk)

‖g(x̃k, ỹk)‖2
, γ < 1, (16)

such that

L(x̃k, ỹk, λk)≤L(x̃k−1, ỹk−1, λk), (17)

the multipliers move closer to optimal multipliers λ∗ iteration by iteration:

‖λ∗−λk+1‖< ‖λ∗−λk‖. (18)

Corollary 1. If

‖λ∗−λk+1‖ ≥ ‖λ∗−λk‖, (19)

then

sk ≥ γ · q(λ
∗)−L(x̃k, ỹk, λk)

‖g(x̃k, ỹk)‖2
. (20)

Proof of Corollary 1 Define two predicates

A=

{
sk <γ · q(λ

∗)−L(x̃k, ỹk, λk)

‖g(x̃k, ỹk)‖2

}
. (21)

and

B =
{
‖λ∗−λk+1‖< ‖λ∗−λk‖

}
. (22)

From Theorem 1 the following assertion is true A⇒ B and from the Corollary 1 the following

assertion is true ¬B⇒¬A. It remains to prove that both assertions are equivalent. Taking negation

of A⇒B leads to ¬A∨B, and taking negation of ¬B⇒¬A leads to ¬(¬B)∨¬A, which simplifies

to B ∨¬A.
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Corollary 2. If the following auxiliary “multiplier-convergence-feasibility” feasibility problem

(with λ being a continuous decision variable: λ∈Rm)

‖λ−λkj+1‖ ≤ ‖λ−λkj‖,

‖λ−λkj+2‖ ≤ ‖λ−λkj+1‖,

...

‖λ−λkj+nj‖ ≤ ‖λ−λkj+nj−1‖,

(23)

admits no feasible solution with respect to λ for some kj and nj, then ∃ i∈ [kj, kj +nj] such that

si ≥ γ · q(λ
∗)−L(x̃i, ỹi, λi)

‖g(x̃i, ỹi)‖2
. (24)

Proof of Corollary 2 Assume the contrary: ∀i∈ [kj, kj +nj] the following holds:

si <γ · q(λ
∗)−L(x̃i, ỹi, λi)

‖g(x̃i, ỹi)‖2
. (25)

By Theorem 1, multipliers approach λ∗, therefore, the “multiplier-convergence-feasibility” problem

admits at least one feasible solution - λ∗. Contradiction.

From (25) it follows that ∃ qi,j such that qi,j > q(λ
∗) and the following condition holds:

si = γ ·
qi,j −L(x̃i, ỹi, λi)

‖g(x̃i, ỹi)‖2
. (26)

The equation (26) can equivalently be rewritten as:

qi,j = γ · si · ‖g(x̃i, ỹi)‖2 +L(x̃i, ỹi, λi). (27)

Therefore,

qj = max
i∈[kj ,kj+nj ]

qi,j > q(λ
∗). (28)

A brief yet important discussion is in order here. The overestimate qj of the dual value q(λ∗) is

the sought-for “level” value. Unlike previous methods, which require hyper-parameters to obtain

“level” values, up to this point, the new method is hyper-parameter-free. Specifically, neither
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“multipliers-convergence-feasibility” problem (23), nor the computations within (26)-(28) requires

hyper-parameter adjustment; following Nedić and Bertsekas (2001b), parameter γ will be chosen

as γ = 1
I

(unless specified otherwise), which is the inverse of the number of subproblems, and will

not require further adjustments.

To speed up convergence, however, a hyper-parameter ζ < 1 will be introduced to reduce step-

sizes as follows:

skj+1 = ζ · γ ·
qj −L(x̃kj+1 , ỹkj+1 , λkj+1)

‖g(x̃kj+1 , ỹkj+1)‖2
, ζ < 1. (29)

Subsequently, between iterations kj+1 and kj+1 +nj+1−1 the step-size is updated dynamically per

(29) until the next update j+ 2 when the “multiplier-convergence-feaibility” problem is infeasible

again, and the process repeats.

Corollary 3. The following system of linear inequalities

2 · (λ−λkj ) · g(x̃kj , ỹkj )≥ skj · ‖g(x̃kj , ỹkj )‖2,

2 · (λ−λkj+1) · g(x̃kj+1, ỹkj+1)≥ skj+1 · ‖g(x̃kj+1, ỹkj+1)‖2,

...

2 · (λ−λkj+nj−1) · g(x̃kj+nj−1, ỹkj+nj−1)≥ skj+nj−1 · ‖g(x̃kj+nj−1, ỹkj+nj−1)‖2,

(30)

is equivalent to (23).

The above Corollary allows to obtain the “level” value by using LP solvers.

On Improvement of Convergence. To speed up the acceleration of the multipliers divergence

detection through the “multiplier-convergence-feasibility” problem (23) is modified, albeit heuris-

tically, in the following way:

‖λ−λkj+1‖ ≤
√

1− 2 · ν · skj · ‖λ−λkj‖,

‖λ−λkj+2‖ ≤
√

1− 2 · ν · skj+1 · ‖λ−λkj+1‖,

...

‖λ−λkj+nj‖ ≤
√

1− 2 · ν · skj+nj−1 · ‖λ−λkj+nj−1‖.

(31)
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Unlike the problem (23), the problem (31) can no longer be simplified to an LP problem. The

potential gain in performance is expected to make up for the increases computational effort to

solve (31), which will be verified numerically in Section 4.

Heuristic to Obtain Feasible Solutions. The premise behind the feasible-solution search is

that the infeasibility of subproblems solutions with respect to the original problem is caused by

a relatively few subproblems. To obtain feasible solutions, only a few subproblem solutions need

to be adjusted. However, the exact subproblem solution to be adjusted are unknown. To resolve

this difficulty, the procedure developed by Bragin et al. (2019) is used. The main idea behind

is to introduce binary “indicator” variables: 1, if subproblem solution is changed/adjusted, and

0, otherwise. The “if” statements are converted to linear constraints and embedded within the

original problem, which is then solved. These heuristics only rely on separability of the problem

and are universal for general MILP problems. Feasible solutions are typically obtained at the end

of the iterative process and no novelties with regards to feasible solution search are claimed in this

paper.

4. Numerical Testing

In this Section, a series of examples is considered to test different aspects of the method. In

Example 1, a small example with known optimal dual solutions (λ∗) is considered to demonstrate

convergence of multipliers. In Example 2, a medium-size generalized assignment problem with 10

machines and 400 jobs is considered to demonstrate the increase of the dual values as well as the

decrease of the “level” values. In Example 3, large-scale instances of the generalized assignment

problem with 20, 40 and 80 machines and 1600 jobs are considered to demonstrate efficiency,

scalability and competitiveness of the method with respect to the best results available thus far

in the literature. The new method is implemented within CPLEX 12.10 by using a Dell Precision

laptop Intel(R) Xeon(R) E-2286M CPU @ 2.40GHz with installed memory (RAM) of 32.0 GB.
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4.1. Example 1: Demonstration of Convergence of Multipliers Based on a Small Example

with Known Optimal Multipliers.

Consider the following example (due Bragin et al. (2020)):

min
x1,x2,x3,x4,x5,x6

{x1 + 2x2 + 3x3 +x4 + 2x5 + 3x6} , (32)

s.t. x1 + 3x2 + 5x3 +x4 + 3x5 + 5x6 ≥ 26, 2x1 + 1.5x2 + 5x3 + 2x4 + 0.5x5 +x6 ≥ 16. (33)

As proved in Bragin et al. (2020), the optimal dual solutions are λ∗1 = 0.6 and λ∗2 = 0. Within the

SLBLR method, inequality constraints are converted to equality constraints after introducing slack

variables. Within this example only, γ will be not chosen as γ = 1
6
, rather, a range of values will

be tested to demonstrate robustness. In Figure 2, the decrease of the corresponding distances from

current multipliers to the optimal multipliers (‖λk−λ∗‖) is shown. The results are also compared

to those of the Surrogate Lagrangian Relaxation method.
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Figure 2 Results for Example 1.

As demonstrated in Figure 2, the SLBLR method converges fast for a wide range of values of γ

(from 0.05 to 0.4).
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4.2. Example 2: Generalized Assignment Problems.

In this example, generalized assignment problem type D instances from the OR-library Yagiura

(2021) will be used. The mathematical formulation of the GAP is as follows:

min
xi,j

I∑
i=1

J∑
j=1

gi,jxi,j, xi,j ∈ {0,1}, gi,j ≥ 0. (34)

s.t.
I∑
i=1

ai,jxi,j ≤ bj, j = 1, . . . , J, ai,j ≥ 0, bj ≥ 0. (35)

J∑
j=1

xi,j = 1, j = 1, . . . , J, . (36)

4.2.1. Convergence for a Medium-Scale Instance. In this subsection, the novel step-

sizing method will be tested by using the GAP instance d10400 (with 10 machines and 400 jobs).

Performance of the new method will be compared against those by using the following step-sizing

formulas: 1. “Contraction mapping” step-sizing (Bragin et al. (2015)); and 2. “Subgradient-level”

step-sizing à la Goffin and Kiwiel (1999) and Nedić and Bertsekas (2001a). To level the playing field,

1. One subproblem is solved at a time before updating the multipliers in an interleaved-like fashion;

and 2. No particular initialization heuristic is used; stepsizes within all the methods are initialized

at the value of 0.5 and all the multipliers are initialized at the value of 101. Comparison against

the Surrogate Subgradient Method (Zhao et al. (1999)) is not performed because the optimal dual

value is unknown. For “contraction mapping” stepsizes, several hyper-parameters were picked from

the following ranges: M ∈ [30,50] with the step of 5, and r ∈ [0.01,0.1] with the step of 0.01 and the

best result was obtained for M = 40 and r= 0.05. For “path-based” stepsizes, parameters β and τ

are chosen to be 1
2
, and other hyper-parameters were picked from the following ranges: R ∈ [50,150]

with a step of 10, and initial δ ∈ [50,250] with a step of 50 and the best result was obtained by using

parameters R= 60 and δ= 100. Within the new method, the “auxiliary” problem (23) is solved to

infer the “level” value and step-sizes (29) are set by using ζ = 1, consequently, no hyper-parameter

adjustment was necessary and the results were obtained after one run. In addition to the dual
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Figure 3 Results for Example 2.

values, the upper bound qj obtained within the new method is also plotted. The results are shown

in Figure 3.

While the total CPU time is not reported since the number of times subproblems are solved is

the same, and the total CPU time is roughly the same across all methods, the CPU time involved

within the method to solve the “multiplier-convergence-feasibility” problem to obtain the upper

bound to calculate stepsizes is worth reporting: 0.187 seconds. This effort more than makes up

for with the superior quality of the dual solutions obtained and the avoidance of hyper-parameter

adjustment; within (29), parameters γ and δ are chosen to be 1
10

(the inverse of the number of

machines) and 1, respectively.

Herein lies an advantage of the novel SLBLR method: while the choice of hyper-parameters

R and δ within the incremental subgradient method as well as the choice of M and r within

the Surrogate Lagrangian relaxation is problem-dependent and may require significant effort to

determine appropriate values, for this instance of the generalized assignment problem, no hyper-

parameter was needed within the new method for achieving a de facto superior convergence.
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The new method’s computational efficiency to obtain feasible solutions as well as to demonstrate

robustness with respect to the choice of initial step-sizes and multipliers will be demonstrated next.

4.2.2. Resolution of Large-Scale Instances. Within this example, three largest instances

of the generalized assignment problem of type D will be tested: with 20, 40 and 80 machines;

all instances contain 1600 jobs. According to Avella et al. (2010), these instances are considered

“hard.” These instances will be denoted as d201600, d401600, and d801600, respectively.

Robustness of the Method with Respect to Initial Step-sizes. Robustness of the new

method with respect to the choice of the initial stepsizes is demonstrated in Table 1. For this trial,

multipliers are initialized by using LP dual solutions. Here, and for the rest of the section, the

following hyper-parameters are used: within the step-sizing formula (29), parameters γ and δ are

chosen to be 1
I

(the inverse of the number of machines) and 1
1.5

, respectively; within (31), parameter

ν is chosen to be 2.

Table 1 Robustness Results for the Instance d201600 with Respect to Initial Step-sizes.

Initial Feasible Gap “Auxiliary” Total

Step-size (s0) Cost (%) Time (sec) Time (sec)

0.0025 97825 0.0037% 123.71 2427.71

0.005 97825 0.0037% 6.84 1226.17

0.01 97826 0.0048% 6.96 2143.58

0.02 97825 0.0037% 17.10 1195.36

0.04 97826 0.0048% 19.21 1941.55

As demonstrated in Table 1, the method’s performance is appreciably stable for the given range

of initial step-sizes used.

Robustness of the Method with Respect to Initial Multipliers. Robustness of the new

method with respect to the choice of the initial multipliers is demonstrated in Table 2. For this
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Table 2 Robustness Results for the Instance d201600 with Respect to Initial Multipliers.

Case Feasible Total Subproblem Feasible Solution Multiplier-Convergence- Total

Number Cost Solving Time (sec) Search Time (sec) Feasibility Time (sec) Time (sec)

1 97825 1098.74 375.96 22.13 1496.84

2 97826 1009.42 777.16 173.48 1960.07

3 97826 2223.99 221.70 4.54 2450.24

4 97826 2333.55 402.41 4.08 2740.04

5 97826 1002.77 119.91 160.73 1283.42

purpose, the multipliers are initialized randomly by using the uniform distribution U [90,110]. For

the testing, the initial step-size 0.02 was used.

Once again, as evidenced from Table 2, the method’s performance is fairly stable, exhibiting

only a slight degradation of solution accuracy and increase of the CPU time as compared to the

case with multipliers initialized by using LP dual solutions.

Scalability of the Method. To test scalability, the three instances d201600, d401600 and d801600

are used. The results are demonstrated in Table 3.

Table 3 Scalability Based on Instances d201600, d401600 and d801600..

Instance Feasible Gap “Auxiliary” Total

Number Cost (%) Time (sec) Time (sec)

d201600 97825 0.0037% 17.10 1195.36

d401600 97105 0.00% 37.57 836.61

d801600 97034 0.00% 141.46 3670.56

As demonstrated in Table 3, the new method is scalable. Moreover, for the two largest instances,

the method obtains the optimal solutions.
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Competitiveness of the Method. To the best of the author’s knowledge, the best results for

the three instances have been reported by Sadykov et al. (2015) and the results are summarized in

Table 4.

Table 4 Comparison Against the Best Results Currently Available.

Instance Feasible Total Time Feasible Total Time

Cost (hr:min:sec) Cost Sadykov et al. (2015) (hr:min:sec) Sadykov et al. (2015)

d201600 97825 0:19:50 97825 0:17:06

d401600 97105 0:13:56 97106 0:15:19

d801600 97034 1:01:10 97037 3:00:01

As demonstrated in Table 4, for the d201600 instance, the results of the both methods are

comparable. For the instance d401600, the new method obtains a better feasible solution and for

the instance d801600, the advantage over the existing method is even more pronounced. Even

though the comparison in terms of the CPU time is not entirely fair, feasible-cost wise, the new

method decisively beats the previous best method. To the best of the author’s knowledge, no other

reported method obtained optimal results for instances d401600 and d801600.

5. Conclusions

This paper develops the novel MILP solution methodology based on the Lagrangian Relaxation

method. Salient features of the new method, inherited from previous version of Lagrangian relax-

ation, are: 1. reduction of the computational effort required to obtain Lagrangian-multiplier-

updating directions and 2. alleviation of zigzagging of multipliers. The key novelty is that new

method exploits the underlying geometric-convergence potential inherent to the Polyak’s step-

sizing formula, tautologically, by using Polyak’s formula in conjunction with the novel auxiliary

“multiplier-convergence-feasibility” linear programming (LP) constraint satisfaction problem to

estimate the “level” value. More importantly, the new method requires neither the optimal dual

value, nor the adjustment of hyper-parameters for the estimate of the optimal dual values - the
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associated the “level” values are determined purely through the simple “auxiliary” optimization;

although, one hyper-parameter is needed to govern the reduction of stepsizes per (29), and another

is to heuristically speed up convergence per (31). Through testing, it is discovered that the method

is robust with respect to the choice of initial stepsizes and multipliers, and the method is computa-

tionally efficient and competitive. While “separable” MILP problems are considered, no particular

problem characteristics have been used to obtain “level” values, and thus the method has the

potential to solve a broader class of mixed-integer programming problems.
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