
EasyChair Preprint
№ 7890

Design of AMBA Based AHB2APB Bridge
Protocol

Peram Bhanu Prakash, Panta Nishith Reddy,
Maddireddy Sathish Reddy, Rachapalyam Vignesh Kumar and
G. Bharatha Sreeja

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 2, 2022



 

 

 

Design of  AMBA Based AHB2APB Bridge Protocol 
Peram Bhanu Prakash #1,Panta Nishith Reddy #2, Maddireddy Sathish Reddy#3, Rachapalyam Vignesh Kumar#4,  

G.Bharatha Sreeja#5 

 1,2,3,4, UG Student, ECE Dept, R.M.K College of Engineering and Technology, Chennai, India.  

5 Assistant Professor, ECE Dept, R.M.KCollege of Engineering and Technology 

 

 

Abstract— The main abstract of this project is to design an Ip 

for a soc level purpose that converts AH B signals coming out 

from the AHB interface which is connected with high-

performance devices like DMA, CPU to the APB signals 

which are low-performance devices like UVART, keypad 

connected to the APB interface. Creates a bridge between two 

interfaces AHB and APB.. 
 

KEYWORDS—            
            IP,AHB,APB,DMA,CPU,UVART,BRIDGE,interface 

                I.INTRODUCTION 

The Advanced Microcontroller Bus Architecture (AMBA) 

has three types of signals.  

 The advanced high-performance bus(AHB) 

 The Advanced System Bus (ASB) 

 The Advanced Peripheral Bus (APB) 

 we are only  discussing AHB and APB. 

 

Advanced High-performance Bus (AHB): 
  The AHB act as a high-performance bus and fast 

transmission. AHB supports the efficient connection of 

processors, off-chip external memory and on-chip memories 

interfaces with low-power peripheral macrocell functions, 

which sits above the APB and implements the features 

required for high clock frequency and high-performance 

systems including: 

 Pipeline data operation 

 split transactions 

 burst transfers 

 single cycle bus master handover 

 single clock edge operation  

 non-tristate implementation 

 wider data bus configurations (64/128 bits). 

 Advanced Peripheral Bus (APB): 
APB (Advanced Peripheral Bus) is one of the component           

of the AMBA bus architecture. APB is low-performance and 

low consumption bandwidth bus used to connect the peripherals 

like Keypad, Timer, UART and other peripheral devices to the 

bus architecture. APB can be used in conjunction with either 

version of the system bus. 

 

 Low power consumption 

 Small bandwidth 

 Reduce interface complexity 

 Pipelined operation is not supported by APB, so it 

makes communication with ASB or AHB. 
 

Structure of AMBA microcontroller: 

An AMBA-based microcontroller typically consists of a high-

performance system (AHB or ASB), able to sustain the external 

memory bandwidth, on-chip memory, on which the CPU and 

other Direct Memory Access (DMA) devices reside. This bus 

provides a bandwidth interface between the elements that are 
involved in the transfers. Also located on the high-performance 

bus is a bridge to the lower bandwidth APB, where most of the 

peripheral devices in the system are located (see Figure 1-1). 

 

                        Fig1 typical AMBA bridge 

AMBA signal prefix denotations: 

An AMBA-based microcontroller typically consists of a high-
performance system (AHB or ASB), able to sustain the external 

memory bandwidth,  on-chip memory, on which the CPU and 

other Direct Memory Access (DMA) devices reside. This bus 

provides a bandwidth interface between the elements that are 

involved in the transfers.. 

 

AMBA AHB signals list: 
H illustrates an AHB signal. For example, HCLK is the 

signal used to indicate that This clock times all bus 

transfers. It is active HIGH 
All signals are prefixed with the letter H, ensuring that 

the AHB signals are differentiated from other similarly 

named signals in a system design. 



 

 

 

Table 1 AHB Signals and Arbitration Signal. 

 

   Name    source description 

HCLK 

Bus clock 
Clock 

source 
This clock times all 

bus transfers 

HRESETn 

Reset 
Reset 

controller 
It is used to reset the 

system and the bus. 

HADDR[31:0] 

Address bus 
Master The 32-bit system 

address bus 

HTRANS[1:0] 

Transfer type 
Master Indicates the type of 

the current transfer 

HWRITE 

Transfer direct 
Master l Indicates a write 

transfer and read 

transfers. 
HWRITE 
Transfer direct 

Master Indicates the size of 
the transfer 

HBURST[2:0] 

Burst type 
Master Indicates the transfer 

forms part of a burst 

HWDATA[31:

0] Write data 

bus 

Master used to transfer data 

from the master to the 

bus slaves 
HSELx  

Slave select 

Decoder Indicates the current 

transfer is intended for 

the slave 
HRDATA[31:

0] Read data 

bus 

Slave Transfer data from 

slave to master bus  

HREADY 

Transfer done 

Slave Indicates that a 

transfer has finished 

HRESP[1:0] 

Transfer 
response 

Slave Provides extra info 

about transfer  

                      Arbitration signals 

HBUSREQx 

Bus request 

Master This indicates that the 

bus master requires 

the bus. 
HLOCKx 

Locked 

transfers 

Master This indicates that the 

master requires locked 

access to the bus 

 
HGRANTx  

Bus grant 
Arbiter Indicates the 

highest priority 

master 
HMASTER[3:0] 

Master number 
Arbiter Indicates which 

bus is performing 

the transfer. 
HMASTLOCK 

Locked 

sequence 

Arbiter This indicates that 

the current master is 

performing a locked 

sequence of 

transfers 

HSPLITx[15:0] 

Split completion 

request 

Slave 

(SPLIT-

capable) 

Used by a slave to 

indicate to the 

arbiter 

  

 

AMBA APB signals list: 

P indicates the AMBA APB  signals. Some APB signals, 
such as the reset, may be connected directly to the system 

bus equivalent signal. 

Table 2 APB  signal 

 

  Name          Description 
PCLK  

Bus clock 
PCLK is used to time all transfers 

PRESETn 

APB reset 
The APB bus reset signal 

PADDR[31:0] 

APB address                 

bus                                                                        

This is the APB address bus 

PSELx  

APB select 
 A signal from the secondary decoder, l 

indicates that the slave device is selected 

and a data transfer is required. 
PENAL APB 

strobe 
This strobe signal is used to time all 

accesses on the peripheral bus. 
PWRITE 

APB transfer 

direction 

Indicates the read and write access 

PRDATA 
APB read data 

bus 

The read data bus is driven by the selected 
slave during reading cycles 

PRDATA 

APB read data 

bus 

The write data bus is driven by the 

peripheral bus bridge unit during write 

cycles 

 
 

 

 

 

 

 

 

 

                Fig 2 architecture of Ahb2Apb bridge 



 

 

AHB Slave: AHB master commences write as well as read 

operations by coming up with control and address signals. Only 

once the bus can be used by a single bus master.  

Bridge FSM: It is a sequential type machine that defines each 

step in the sequence. In this project, State machine control:  
1. AHB transaction with HREADYout signal  

2.Generation of each product signal of APB.  

Then APB location there is not a single peripheral get        

preferred. 

 

APB Interface: Slave answers to both operations read and 

write in the allotted span of address. The slave signal returns to 

the master which is active and that master is acknowledged by 

a response like success, failure, and waiting of the signals(data, 

address) collected from the bridge.  

 

Top Module: It is the leading chunk which is not small 
compared to others. To connect various elements present in the 

top, all signals behave as wires and connect all modules within 

the chief top chunk. This top factor has AHB slave, AHB2APB 

bridge element & APB interface. 

 

                            fig 3 Block diagram 

 
II.PROPOSED WORK 

Testbench Components and Architecture 

The following are the required and important components of 

UVM based verification. 

 

Design  Test: 

This gives the design that is intended to be proved. This is 

usually an RTL us in any of the HDL (System Verilog, 

VHDL, and Verilog). This completely describes the 

functionality of the design as well the features to be verified. 

Interface: 

The interface serves as the actual link between the design-

under-verification and the verification environment. The 

interface describes the pin-level description of the DUT. An 
interface is a bundle of nets or wires. 

Virtual Interfaces: 

Virtual interfaces provide a mechanism for separating abstract 

models from the actual signals of the design. A virtual interface 

gives access to the subprogram to operate in different places of 

the design. 

 

Transaction (class uvm_sequence_item): 

It is an object that represents communication abstraction such 

as a bus cycle, data packet, or handshake. A transaction class 

contains user-defined properties of the specific protocol, and 

user-defined specific methods to perform a few operations like 

print, pack, unpack, copy, compare, and record those members. 
Typically transactions are generated by a sequence and these 

are passed to a driver or collected by a monitor and passed to 

zero or more subscribers. Between components, transactions 

are passed using ports and exports. 

 

Sequence (class uvm_sequence): 

It is an object that generates basic transactions or 

starts other sequences in the verification methodology. A 

sequence generates a sequence item which is nothing but 

stimulus scenarios that are passed to the driver through a 

sequencer. In a sequence class that contains a user-defined task 

body that is called when the sequence is started. The task body 
does the work of the sequence. A sequence that directly 

generates transactions must always execute on a sequencer. A 

sequence indicates its readiness to generate a transaction  by 

using the calling method start_item and delivers the transaction 

by calling method finish_item. A sequence may retrieve a 

response to a transaction by calling the method get_response. A 

sequence may be synchronized with other parts of the 

verification environment using events. 

Sequencer: 

Multiple sequences may be trying to send sequence items ‟s to 

the driver so this component coordinates and arbitrates between 
transactions generated by sequences. 

 

Driver: 

The driver is defined by extending uvm_driver. The driver takes 

the transactions from the sequencer using seq_item_port and 

sends the transactions to the DUT as per the interface signal 

specifications. Then using uvm_analysis_port in the monitor 

transactions will be sent to the scoreboard. Tasks are used here 

after to reset DUT. In the environment class, an instance of the 

driver class is created and a sequencer is connected to it. The 

following figure 4 shows the connection between the 

uvm_sequencer and uvm-driver and the connection between 
uvm_driver to uvm_scoreboard.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Connection between Driver and Sequencer 

 

Monitor: 

The monitor is used to observe specific DUT activity through 

an interface and convert it into a higher-level transaction. 

Monitors collect and perform protocol checking. The monitor 

does the following: 

 



 

 

• Extracts signal information from an interface as per 

the protocol and translates the information into a transaction 

& this is made available to other components. 

• Passes the information collected from the DUT to 

coverage collectors using analysis ports/exports. 
It is implemented by extending the uvm monitor class and an 

instance is created in the environment for with DUT signals. 

Env (class uvm_env): 
For all the components Environment is the top-level container. 
Inside the environment, all the agents are instantiated and 

configured. The top-level environment is instantiated from the test. 

 

Testcases: 

Class is instantiated inside this Test class. The 

uvm_test class defines the test case for the 

testbench for the DUT and as specified in the test. 

Each test is derived from the uvm_test. The virtual 

interfaces declared in the verification environment 

are pointed to the physical interfaces which are 

declared in the top module. Virtual interfaces 

pointing to the top module are made to point to the 

physical interface in the test case. 
Scoreboard (class uvm_scoreboard): 

A component that receives the transactions from multiple 

active/passive agents and typically performs checking of DUT 

functionality using cover groups and assertions and helps to 

collect functional coverage information. A scoreboard may or 

may not incorporate a reference / golden model of DUT 

functionality. 
Top Module: 

  System Verilog interface instance is created in this module.                      

The clock generator is implemented here. run_test method is             

called.  The implementation will be discussed in further  

sections. 

Agent (class uvm_agent): 
This is a component (depending on active/passive type) that 

contains one sequencer, one driver, and one monitor and 

which also senses and drives the signals of the SystemVerilog 

interface. 

 

 

                   Fig :5  AHB Signals 

 

 

 

Fig:6  APB Signals 

 

 

 

 
 

 

 

                       

 

 Fig:7  AHB2APB Signals 
   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

III.CONCLUSION AND FUTURE WORK  

AHB2APB bridge design is implemented in system  

Verilog HDL for Read transfer, Write transfer, Read burst 

transfer, Write burst transfer, back to back read and write 

transfer and all these designs are verified by simulating Xilinx 
ISE. By adding the timeout concept, data loss can be overcome 

and the design will become more generic. 

 

 

 

REFERENCES: 

1. M. kiran Kumar, Amrita Sajja, Dr, Fazal Noorbasha, 

“Design and FPGA Implementation of AMBA APB 

bridge with clock skew minimization Technique” 

(IOSR-JVSP),Vol.7,Issue.3,June 2017.  

2.  Miss Pooja, Kawale, , “Design of AMBA based 

AHB2APB bridge” IJSRD, Vol.4, Issue.8, 
Nov.2016. 

3.  N.G.N. Prasad, “ Development and Verification of 

AHB2APB Bridge Protocol using UVM 

Technique”. IJSRR, Vol.6, Issue.12, 2017.  

4.  Sujata Mallappa chajagauda, Abdullah Gubbi.,” 

Using Verilog and System Verilog design and verify 

communication bridge between APB and I2C 

protocol.”. IJSTE ,Vol.3 , Issue. 1, 2016.  

5. Aparna charade, Jayshree Sengupta, “VLSI Design 

of AMBA based AHB2APB bridge” (IJCSNS) 

VOL.9 No.3 June 2018.  
6. Sowmya Aithal, Dr. J. S. Baligar, Guruprasad S. P. 

“FPGA Implementation of AHB to APB Protocol” 

(IJSR)-Volume 5 Issue 5, May 2016.  

7. Prof. ravi Mohan Sairam ,Prof. Sumit Sharma, Miss 

Geeta Pal, “FSM abd handshaking based 

AHB2APB bridge for high speed system”. IJERT, 

Volume.2 , Feb 2019.  

8. Ankem Kiran1, V Thrimurthulu, “Verification Of 

Amba Ahb2apb Bridge Using Universal 

Verification Methodology (UVM), IJITE, Vol.04 

Issue-12, ISSN: 2321-1776.  

9. Clifford E. Cummings, "Coding And Scripting 
Techniques For FSM Designs With Synthesis-

Optimized, Glitch-Free Outputs," SNUG (Synopsys 

Users Group Boston, MA 2000) Proceedings, 

September 2000. 

10. Sowmya Aithal1, Dr. J. S. Baligar, Guruprasad S. P. 

“FPGA Implementation of AHB to APB Protocol” 

IJSR-Volume 5 Issue 5, May 2016.  

11. Samir Palnitkar, “ Verilog HDL: A guide to digital 

design and synthesis(2nd Edition), Pearson, 2008.  

12. Bergeron, “ Writing testbench using system 

Verilog”,Springer,2009.  
13. AHB to APB Bridge (AHB2APB) Technical Data 

Sheet Part Number: T-CS-PR-0005-100 Document 

Number: IIPA01-0106-USR Rev 05 March 2007.  

14. Mukunthan, J., et al. "Design And Implementation 

Of Amba Apb Protocol." IOP Conference Series: 

Materials Science and Engineering. Vol. 1084. No. 

1. IOP Publishing, 2021. 
15. Yuan, Conggui, et al. "An Easy-to-Integrate IP 

Design of AHB Slave Bus Interface for the 

Security Chip of IoT." Mathematical Problems 
in Engineering 2021 (2021). 

16. HK, Meghana Jain, and Punith Kumar. 
"Verification of Advanced Peripheral Bus 
Protocol (APB V2. 0)." (2021). 

17. Giri, Davide, et al. "Accelerator Integration for 
Open-Source SoC Design." IEEE Micro 41.4 
(2021): 8-14. 

 


	I.INTRODUCTION

