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Abstract. We propose PYHSCRF, a novel tagger for domain-specific named en-
tity recognition that only requires a few seed terms, in addition to unannotated
corpora, and thus permits the iterative and incremental design of named entity
(NE) classes for new domains. The proposed model is a hybrid of a generative
model named PYHSMM and a semi-Markov CRF-based discriminative model,
which play complementary roles in generalizing seed terms and in distinguish-
ing between NE chunks and non-NE words. It also allows a smooth transition
to full-scale annotation because the discriminative model makes effective use of
annotated data when available. Experiments involving two languages and three
domains demonstrate that the proposed method outperforms baselines.

1 Introduction

Named entity recognition (NER) is the task of extracting named entity (NE) chunks
from texts and classifying them into predefined classes. It has a wide range of NLP
applications such as information retrieval [1], relation extraction [2], and coreference
resolution [3]. While the standard classes of NEs are PERSON, LOCATION, and OR-
GANIZATION among others, domain-specific NER with specialized classes has proven
to be useful in downstream tasks [4].

A major challenge in developing a domain-specific NER system lies in the fact that
a large amount of annotated data is needed to train high-performance systems, and even
larger amounts are needed for neural models [5]. In many domains, however, domain-
specific NE corpora are small in size or even non-existent because manual corpus anno-
tation is costly and time-consuming. What is worse, domain-specific NE classes cannot
be designed without specialized knowledge of the target domain, and even with ex-
pert knowledge, a trial-and-error process is inevitable, especially in the early stage of
development.

In this paper, we propose PYHSCRF, a novel NE tagger that facilitates rapid proto-
typing of domain-specific NER. All we need to run the tagger is a few seed terms per
NE class, in addition to an unannotated target domain corpus and a general domain cor-
pus. Even with minimal supervision, it yields reasonable performance, allowing us to



go back-and-forth between different NE definitions. It also enables a smooth transition
to full scale annotation because it can straightforwardly incorporate labeled instances.

Regarding the technical aspects, the proposed tagger is a hybrid of a generative
model and a discriminative model. The generative model called the Pitman-Yor hid-
den semi-Markov model (PYHSMM) [6] recognizes high-frequency word sequences
as NE chunks and identifies their classes. The discriminative model, semi-Markov CRF
(semiCRF) [7], initializes the learning process using the seed terms and generalizes to
other NEs of the same classes. It also exploits labeled instances more powerfully when
they are available. The two models are combined into one using a framework known as
JESS-CM [8].

Generative and discriminative models have mutually complementary strengths.
PYHSMM exploits frequency while semiCRF does not, at least explicitly. SemiCRF ex-
ploits contextual information more efficiently, but its high expressiveness is sometimes
harmful. Because of this, it has difficulty in balancing between positive and negative
examples. We treat the seed terms as positive examples and the general corpus as proxy
data for negative examples. While semiCRF is too sensitive to use the general corpus
as negative examples, PYHSMM utilizes them in a softer manner. We conducted exten-
sive experiments on three domains in two languages and demonstrated that the proposed
method outperformed baselines.

2 Related Work

2.1 General and Domain-Specific NER

NER is one of the fundamental tasks in NLP and has been applied not only to English
but to a variety of languages such as Spanish, Dutch [9], and Japanese [10, 11]. NER
can be classified into general NER and domain-specific NER. Typical NE classes in
general NER are PERSON, LOCATION, and ORGANIZATION.

In domain-specific NER, special NE classes are defined to facilitate the develop-
ment of downstream applications. For example, the GENIA corpus for the biomedical
domain has five NE classes, such as DNA and PROTEIN, to organize research pa-
pers [12] and to extract semantic relations [13]. Disease corpora [14–16], which are
annotated with the disease class and the treatment class, are used to solve disease-
treatment relation extraction. However, domain-specific NER is not limited to only the
biomedical domain; it also covers recipes [17] and game commentaries [18], to name a
few examples. In addition, recognition of brand names and product names [19], recog-
nition of the names of tasks, materials, and processes in science texts [20] can be seen
as domain-specific NER.

2.2 Types of Supervision in NER

The standard approach to NER is supervised learning. Early studies used the hidden
Markov model [21], the maximum entropy model [22], and support vector machines
[23] before conditional random fields (CRFs) [24, 25] dominated. A CRF can be built
on top of neural network components such as a bidirectional LSTM and convolutional
neural networks [26].



Although modern high-performance NER systems require a large amount of an-
notated data in the form of labeled training examples, annotated corpora for domain-
specific NER are usually of limited size because building NE corpora is costly and
time-consuming. Tang et al. [5] proposed a transfer learning model for domain-specific
NER with a medium-sized annotated corpus (about 6,000 sentences).

Several methods have been proposed to get around costly annotation and they can
be classified into rule-based, heuristic feature-based, and weakly supervised methods.
Rau [27] proposed a system to extract company names while Sekine and Nobata [28]
proposed a rule-based NE tagger. Settles [29] proposed a CRF model with hand-crafted
features for biomedical NER. These methods are time-consuming to develop and need
specialized knowledge. Collins and Singer [30] proposed bootstrap methods for NE
classification that exploited a small amount of seed data to classify NE chunks into
typical NE classes. Nadeau et al. [31] proposed a two-step NER system in which NE
extraction followed NE classification. Since their seed-based NE list generation from
Web pages exploited HTML tree structures, it cannot be applied to plain text. Zhang
and Elhadad [32] proposed another two-step NER method for the biomedical domain
which first uses a noun phrase chunker to extract NE chunks and then classifies them
using TF-IDF and biomedical terminology. Shang et al. [33] and Yang et al. [34] pro-
posed weakly supervised methods by using domain-specific terminologies and unan-
notated target domain corpus. Shang et al. [33] automatically build a partially labeled
corpus and then train a model by using it. Yang et al. [34] also use automatically labeled
corpus and then select sentences to eliminate incomplete and noisy labeled sentences.
The selector is trained on a human-labeled corpus. We also use automatically labeled
corpus but there is a major difference. We focus on rapid prototyping of domain-specific
NER that only requires a few seed terms because domain-specific terminologies are not
necessarily available in other domains.

2.3 Unsupervised Word Segmentation and Part-of-Speech Induction

The model proposed in this paper has a close connection to unsupervised word segmen-
tation and part-of-speech (POS) induction [6]. A key difference is that, while they use
characters as the unit for the input sequence, we utilize word sequences.

Uchiumi et al. [6] can be seen as an extension to Mochihashi et al. [35], who focused
on unsupervised word segmentation. They proposed a nonparametric Bayesian n-gram
language model based on Pitman-Yor processes. Given an unsegmented corpus, the
model infers word segmentation using Gibbs sampling. Uchiumi et al. [6] worked on
the joint task of unsupervised word segmentation and POS induction. We employ their
model, PYHSMM, for our task. However, instead of combining character sequences
into words and assigning POS tags to them, we group word sequences into NE chunks
and give NE classes to them.

To efficiently exploit annotated data when available, Fujii et al. [36] extended
Mochihashi et al. [35] by integrating the generative word segmentation model into
a CRF-based discriminative model. Our model, PYHSCRF, is also a hybrid genera-
tive/discriminative model but there are two major differences. First, to extend the ap-
proach to NER, we combine PYHSMM with a semiCRF, not an n-gram model with a
plain CRF. Second, since our goal is to facilitate rapid prototyping of domain-specific
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Fig. 1. The overall architecture of PYHSCRF for domain-specific NER. Here, the maximum
length of NE chunks L = 2. F and Ac stand for FOOD and ACTION, respectively, while O
indicates a word outside of any NE chunks.

Add <F>olive oil</F> and chopped garlic ~
~ pouring some <F>olive oil</F> on the pot ~
~ from palm oil , <F>olive oil</F> , colza oil , ~

Target domain 
corpus 𝑿𝒖

Partially labeled corpus < 𝑿𝒍, 𝒀𝒍 >

…

Seed term
(olive oil <F>)

Fig. 2. Partially labeled sentences. F stands for FOOD.

NER, we consider a much weaker type of supervision than fully annotated sentences:
a few seed terms per NE class. This is challenging partly because seed terms can only
be seen as implicit positive examples although most text fragments are outside of NE
chunks (i.e., the O class). Our solution is to use a general domain corpus as implicit
negative examples.

3 Proposed Method

3.1 Task Setting

NER is often formalized as a sequence labeling task. Given a word sequence x =
(x1, x2, ..., xN ) ∈ Xl, our system outputs a label sequence y = (y1, y2, .., yN ′) ∈ Yl,
where yi = (zi, bi, ei) means that a chunk starting at the bi-th word and ending at the
ei-th word belongs to class zi. The special O class is assigned to any word that is not
part of an NE (if zi = O, then bi = ei). In the recipe domain, for example, the word
sequence “Sprinkle cheese on the hot dog” contains an NE in the F (FOOD) class, “hot
dog,” which corresponds to y5 = (F, 5, 6). Likewise the third word “on” is mapped to
y3 = (O, 3, 3).

We assume that we are given a few typical NEs per class (e.g., “olive oil” for the
F class). Since choosing seed terms is by far less laborious than corpus annotation,



our task settings allow us to design domain-specific NER in an exploratory manner. In
addition to seed terms, an unannotated target domain corpus Xu and an unannotated
general domain corpus Xg are provided. The underlying assumption is that domain-
specific NEs are observed characteristically in Xu. Contrasting Xu with Xg helps
distinguishing NEs from the O class.

3.2 Model Overview

Figure 3.1 illustrates our approach. We use seed terms as implicit positive examples.
We first automatically build a partially labeled corpus ⟨Xl,Yl⟩ using seed terms. For
example, if “olive oil” is selected as a seed term of class F, sentences in the target
domain corpus Xu that contain the term are marked with its NE chunks and the class
as in Figure 2. We train semiCRF using the partially labeled corpus (Section 3.3). To
recognize high-frequency word sequences as NE chunks, we apply PYHSMM to the
unannotated corpus Xu (Section 3.4). The general domain corpus Xg is also provided
to the generative model as proxy data for the O class, with the assumption that domain-
specific NE chunks should appear more frequently in the target domain corpus than
in the general domain corpus. PYHSMM is expected to extract high-frequency word
sequences in the target domain as NE chunks. Note that we do not train semiCRF with
the implicit negative examples because the discriminative model is too sensitive to noise
inherent to them. We combine the discriminative and generative models using JESS-CM
[8] (Section 3.5).

3.3 Semi-Markov CRF with a Partially Labeled Corpus

We use semiCRF as the discriminative model, although Markov CRF is more often
used as an NE tagger. Markov CRF employs the BIO tagging scheme or variants of it to
identify NE chunks. Since each NE class is divided into multiple tags (e.g., B-PERSON
and I-PERSON), it is unsuitable for our task, which is characterized by the scarcity of
supervision. For this reason, we chose semiCRF.

SemiCRF is a log-linear model that directly infers NE chunks and classes. The
probability of y given x is defined as:

p(y|x, Λ) = exp(Λ · F (x,y))

Z(x)
,

Z(x) =
∑
y∈Y

exp(Λ · F (x,y)),

where F (y,x) = (f1, f2, · · · , fM ) are features, Λ = (λ1, λ2, · · · , λM ) are the corre-
sponding weights, and Y is the set of all possible label sequences. The feature function
can be expressed as the combination of F (bi, ei, zi, zi−1) in relation to xi, yi, and yi−1.

The training process is different from standard supervised learning because we use
partially labeled corpus ⟨Xl,Yl⟩. Following Tsuboi et al. [37], we marginalize the prob-
abilities of words that are not labeled. Instead of using the full log likelihood

LL = F (x,y)−
∑
y∈Y

p(y|x)F (x,y)



as the objective function, we use the following marginalized log likelihood

MLL =
∑
y∈Yp

p(y|Yp,x)F (x,y)−
∑
y∈Y

p(y|x)F (x,y),

where Yp is the set of all possible label sequences in which labeled chunks are fixed.

3.4 PYHSMM

The generative model, PYHSMM, was originally proposed for joint unsupervised word
segmentation and POS induction. While it was used to group character sequences into
words and assign POS tags to them, here we extend it to word-level modeling. In our
case, PYHSMM consists of 1) transitions between NE classes and 2) the emission of
each NE chunk x′

i = xbi , ..., xei from its class zi. As a semi-Markov model, it em-
ploys n-grams not only for calculating transition probabilities but also for computing
emission probabilities.

The building blocks of PYHSMM are hierarchical Pitman-Yor processes, which can
be seen as a back-off n-gram model. To calculate the transition and emission probabil-
ities, we need to keep track of latent table assignments [38]. For notational brevity, let
Θ be the set of the model’s parameters. The joint probability of the i-th chunk x′

i and
its class zi conditioned on history hxz is given by

p(x′
i, zi|hxz;Θ) = p(x′

i|hn
x , zi;Θ)p(zi|hn

z ;Θ),

where hn
x = x′

i−1, x
′
i−2, ..., x

′
i−(n−1) and hn

z = zi−1, zi−2, ..., zi−(n−1). p(x′
i|hx, zi)

is the chunk n-gram probability given its class zi, and p(zi|hz) is the class n-gram
probability. The posterior predictive probability of the i-th chunk is

p(x′
i|hn

x , zi) =
freq(x′

i|hn
x)− d · tx′

i,h
n
x

θ + freq(hn
x)

+
θ + d · thn

x

θ + freq(hn
x)

p(x′
i|hn−1

x , zi), (1)

where hn−1
x is the shorter history of (n − 1)-gram, θ and d are hyperparameters,

freq(x′
i|hn

x) is n-gram frequency, thn
x ,x

′
i

is a count related to table assignments,
freq(hn

x) =
∑

x′
i
freq(x′

i|hn
x), and thn

x
=

∑
x′
i
thn

x ,x
′
i
. The class n-gram probability is

computed in a similar manner.
Gibbs sampling is used to infer PYHSMM’s parameters [35]. During training, we

randomly select a sentence and remove it from the parameters (e.g., we subtract n-gram
counts from freq(x′

i|hn
x)). We sample a new label sequence using forward filtering-

backward sampling. We then update the model parameters by adding the corresponding
n-gram counts. We repeat the process until convergence.

Now we explain the sampling procedure in detail. We consider the bigram case
for simplicity. The forward score α[t][k][z] is the probability that a sub-sequence
(x1, x2, ..., xt) of a word sequence x = (x1, x2, ..., xN ) is generated with its last k
words being a chunk (xt

t−k+1 = xt−k+1, ..., xt) which is generated from class z. Let L
be maximum length of a chunk and Z be the number of classes. α[t][k][z] is recursively



computed as follows:

α[t][k][z] =

L∑
j=1

Z∑
r=1

[
p(xt

t−k+1|xt−k
t−k−j+1, z)p(z|r)α[t− k][j][r]

]
. (2)

The forward scores are calculated from the beginning to the end of the sentence. Chunks
and classes are sampled in the reverse direction by using the forward score. There is
always the special token EOS and its class zEOS at the end of the sequence. The final
chunk and its class in the sequence is sampled with the score proportional to

p(EOS|wN
N−k, zEOS) · p(zEOS|z) · α[N ][k][z].

The second-to-last chunk is sampled similarly using the score of the last chunk. We
continue this process unti we reach the beginning of the sequence. To update the pa-
rameters in Equation (1), we add n-gram counts to freq(x′

i|hn
x) and freq(hn

x), and
also update the table assignment count thn

x ,x
′
i
. Parameters related to the class n-gram

model are updated in the same manner.
Recall that we use the general domain corpus Xg to learn the O class. We assume

that Xg consists entirely of single-word chunks in the O class. Although the general
domain corpus might contain some domain-specific NE chunks, most words indeed
belong to the O class. During training, we add and remove sentences in Xg without
performing sampling. Thus these sentences can be seen as implicit negative samples.

3.5 PYHSCRF

PYHSCRF combines discriminative semiCRF with generative PYHSMM in a similar
manner to the model presented in Fujii et al. [36]. The probability of label sequence y
given word sequence x is written as follows:

p(y|x) ∝ pDISC(y|x;Λ) pGEN(y,x;Θ)λ0 ,

where pDISC and pGEN are the discriminative and generative models, respectively. Λ
and Θ are their corresponding parameters. When pDISC is a log-linear model like semi-
CRF, p(y|x) can be expressed as a log-linear model:

pDISC(y|x) ∝ exp

[ M∑
m=1

λmfm(y,x)

]
,

p(y|x) ∝ exp

[
λ0 log(pGEN(y,x)) +

M∑
m=1

λmfm(y,x)

]
= exp(Λ∗ · F ∗(y,x)), (3)

where

Λ∗ = (λ0, λ1, λ2..., λM ),

F ∗(y,x) = (log(pGEN), f1, f2, ..., fM ).



Algorithm 1 Learning algorithm for PYHSCRF. ⟨Xl,Yl⟩ is a partially labeled corpus
and Xu is an unannotated corpus in the target domain. Xg is the general domain corpus
used as implicit negative examples.

for epoch = 1, 2, ..., E do
for x in randperm(Xu, Xg) do

if epoch > 1 then
Remove parameters of y from Θ

end if
if x ∈ Xu then

Sample y according to p(y|x;Λ∗, Θ)
else

Determine y according to Xg

end if
Add parameters of y to Θ

end for
Optimize Λ∗ on ⟨Xl,Yl⟩

end for

In other words, PYHCRF is another semiCRF in which PYHSMM is added to the
original semiCRF as a feature. The objective function is

p(Yl|Xl;Λ
∗) p(Xu,Xg;Θ).

Algorithm 1 shows our training algorithm. During training, PYHSCRF repeats the
following two steps:

1. fixing Θ and optimizing Λ∗ of semiCRF on ⟨Xl,Yl⟩,
2. fixing Λ∗ and optimizing Θ of PYHSMM on Xu,Xg

until convergence. When updating Λ∗, we use the marginalized log likelihood of the
partially labeled data. When updating Θ, we sample chunks and their classes from un-
labeled sentences in the same manner as in PYSHMM. In PYHSCRF, a modification
is needed to Equation (2) because forward score α[t][k][z] incorporates the semiCRF
score:

α[t][k][z] =

L∑
j=1

Z∑
r=1

exp

[
λ0 log(p(x

t
t−k+1|xt−k

t−k−j+1, z)p(z|r))

+Λ · F (t− k + 1, t, z, r)

]
α[t− k][j][r],

where F (t− k + 1, t, z, r) is a feature function in relation to chunk candidate xt
t−k+1,

its class z, and class r of the preceding chunk candidate xt−k
t−k−j+1.

4 Experimentals

4.1 Data

Table 1 summarizes the specifications of three domain-specific NER datasets used in
our experiments: the GENIA corpus, the recipe corpus, and the game commentary cor-



Table 1. Statistics of the datasets for the experiments.

Language Corpus (#NE classes) #Sentences #Words #NE instances
English Target

GENIA corpus (5)
train 10,000 264,743 -
test 3,856 101,039 90,309

General
Brown (-) 50,000 1039,886 -

Japanese Target
Recipe corpus (8)
train 10,000 244,648 -
test 148 2,667 869

Game commentary corpus (21)
train 10,000 398,947 -
test 491 7,161 2,365

General
BCCWJ (-) 40,000 936,498 -
Oral communication corpus (-) 10,000 124,031 -

pus. We used the GENIA corpus, together with its test script in the BioNLP/NLPBA
2004 shared task [39], as an English corpus for the biomedical domain. It contains five
biological NE classes such as DNA and PROTEIN in addition to the O class. The cor-
responding general domain corpus was the Brown corpus [40], which consists of one
million words and ranges over 15 domains.

The recipe corpus [17] and the game commentary corpus [18] are both in Japanese.
The recipe corpus consists of procedural texts from recipes for cooking. The game com-
mentary corpus consists of commentaries on professional matches of Japanese chess
(shogi) given by professional players and writers. We used gold-standard word seg-
mentation for both corpora. As NEs, eight classes such as FOOD, TOOL, and ACTION
were defined for the recipe corpus, while the game commentary corpus was annotated
with 21 classes such as PERSON, STRATEGY, and ACTION. Note that NE chunks
were not necessarily noun phrases. For example, most NE chunks labeled with AC-
TION in the two corpora were verbal phrases. The combination of the Balanced Corpus
of Contemporary Written Japanese (BCCWJ) [41] and the oral communication corpus
[42] were used as the general domain corpus. We automatically segmented sentences in
these corpora using KyTea1 [43]. (The segmentation accuracy was higher than 98%.)

4.2 Training Settings

Although PYHSMM can theoretically handle arbitrarily long n-grams, we limited our
scope to bigrams to reduce computational costs. To initialize PYHSMM’s parameter,
Θ, we treated each word in a given sentence as an O-class chunk. Just like Uchiumi et
al. [6] modeled expected word length with negative binomial distributions for the tasks
of Japanese word segmentation and POS induction, chunk length was drawn from a

1 http://www.phontron.com/kytea/ (accessed on March 15, 2017)



Table 2. Feature templates for semiCRF. chunki consists of word n-grams wei
bi

=
wbiwbi+1...wei , wi−1. wi−1 and wi+1 are the preceding word and the following word, respec-
tively. BoW is a set of words (bag-of-words) in chunki.

Semi-Markov CRF features
chunki(wbiwb1+1...wei)
wi−2, wi−1, wi+1, wi+2

BoW(wbi , wbi+1, ..., wei )

Table 3. Precision, recall, and F-measure of various systems.

Target
Method Precision Recall F-measure

GENIA
MetaMap [44] N/A N/A 7.70
weakly supervised biomedical NER [32] 15.40 15.00 15.20
PYHSCRF 19.20 23.50 21.13

Recipe
Baseline 49.78 25.89 34.07
PYHSCRF 38.45 42.58 40.41

Game
Baseline 52.75 29.18 37.57
PYHSCRF 75.57 35.05 47.89

negative binomial distribution. Uchiumi et al. [6] set different parameters for character
types such as hiragana and kanji, but we used a single parameter. We constrained the
maximum length of chunk L to be 6 for computational efficiency.

We used the normal priors of truncated N(µ, σ2) to initialize PYHSMM’s weight
λ0 and semiCRF’s weights λ1, λ2, · · · , λM . We set µ = 1.0 and σ = 1.0. We fixed the
L2 regularization parameter C of semiCRF to 1.0. We used stochastic gradient descent
for optimization of semiCRF. The number of iterations J was set to 300. Table 2 shows
the feature templates for semiCRF.

Each target domain corpus was divided into a training set and a test set. For each
NE class, the 2 most frequent chunks according to the training set were selected as seed
terms. In the GENIA corpus, for example, we automatically chose “IL-2” and “LTR”
as seed terms for the DNA class.

4.3 Baselines

In biomedical NER, the proposed model was compared with two baselines. MetaMap is
based on a dictionary matching approach with biomedical terminology [44]. The other
baseline model is a weakly supervised biomedical NER system proposed by Zhang
and Elhadad [32]. To our knowledge, there was no weakly supervised domain-specific
NER tool in the recipe and game commentary domains. For these domains, we created a
baseline model as follows: We first used a Japanese term extractor2 to extract NE chunks

2 http://gensen.dl.itc.u-tokyo.ac.jp/termextract.html (accessed on March 15, 2017)
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and then classified them with seed terms using a Bayesian HMM originally proposed
for unsupervised POS induction [45]. Note that only noun phrases were extracted by
the term extractor.

4.4 Results and Discussion

Table 3 compares the proposed method with baselines in terms of precision, recall, and
F-measure. We can see that PYHSCRF consistently outperformed the baselines.

Taking a closer look at the results, we found that the model successfully inferred
NE classes from their contexts. For example, the NE chunk “水” (water) can be both
FOOD and TOOL in the recipe domain. It was correctly identified as TOOL when it
was part of the phrase “水で洗い流す” (wash with water) while the phrase “水を鍋に
加える” (add water in the pot) was identified as the FOOD class.

We conducted a series of additional experiments. First, we changed the number of
seed terms to examine their effects. Figure 3 shows F-measure as a function of the
number of seed terms per NE class in the recipe domain. The F-measure increased
almost monotonically as more seed terms became available.

A major advantage of PYHSCRF over other seed-based weakly supervised methods
for NER [32, 31] is that it can straightforwardly exploit labeled instances. To see this,
we trained PYHSCRF with fully annotated data (about 2,000 sentences) in the recipe
domain and compared it with vanilla semiCRF. We found that they achieve competitive
performance (the F-measure was 90.01 for PYHSCRF and 89.98 for vanilla semiCRF).
In this setting, PYHSCRF ended up simply ignoring PYHSMM (−0.1 < λ0 < 0.0).

Next, we reduced the size of the general domain corpus. Figure 4 shows how F-
measure changes with the size of the general domain corpus in recipe NER. We can
confirm that PYHSCRF cannot be trained without the general domain corpus because
it is a vital source for distinguishing NE chunks from the O class.
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Finally, we evaluated NE classification performance. Collins and Singer [30] fo-
cused on weakly supervised NE classification, in which given NE chunks were classi-
fied into three classes (PERSON, LOCATION, and ORGANIZATION) by bootstrap-
ping with seven seed terms and hand-crafted features. We tested PYHSCRF with the
CoNLL 2003 dataset [46] in the same settings. We did not use a general corpus because
NE chunks are given a priori. PYHSCRF achieved competitive performance (over 93%
accuracy, compared to over 91% accuracy for Collins and Singer [30]) although the use
of different datasets makes direct comparison difficult.

The semiCRF feature templates in our experiments are simple. Though not explored
here, the accuracies can probably be improved by a wider window size or richer feature
sets such as character type and POS. Word embeddings [47, 48], character embeddings
[49], and n-gram embeddings [50] are other possible improvements because domain-
specific NE chunks exhibit spelling variants. For example, in the Japanese recipe cor-
pus, the NE chunk “玉ねぎ” (onion, kanji followed by hiragana) can also be written as
“たまねぎ” (hiragana), “タマネギ” (katakana), and “玉葱” (kanji).

5 Conclusion

We proposed PYHSCRF, a nonparametric Bayesian method for distant supervised NER
in specialized domains. PYHSCRF is useful for rapid prototyping domain-specific NER
because it does not need texts annotated with NE tags and boundaries. We only need
a few seed terms as typical NEs in each NE class, an unannotated corpus in the target
domain, and a general domain corpus. PYHSCRF incorporates word level PYHSMM
and semiCRF. In addition, we use implicit negative examples from the general domain
corpus to train the O class.



In our experiments, we used a biomedical corpus in English, and a recipe corpus and
a game commentary corpus in Japanese as examples. We conducted domain-specific
NER experiments and showed that PYHSCRF achieved higher accuracy than the base-
lines. Therefore we can build a domain-specific NE recognizer with much less cost.
Additionally, PYHSCRF can be easily applied to other domains for domain-specific
NER and is useful for low-resource languages and domains.

In the future, we would like to investigate the effectiveness of the proposed method
for downstream tasks of domain-specific NER such as relation extraction and knowl-
edge base population.
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