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Abstract. In this paper we propose to merge theories and principles explored in 

artificial intelligence and cognitive sciences into a reference architecture for hu-

man-level cognition or AGI. We describe a functional model of information pro-

cessing systems inspired by several established theories: deep reinforcement 

learning mechanisms and grounded cognition theories from artificial intelligence 

research; dual-process theory from psychology; global-workspace theory, so-

matic markers hypothesis, and Hebbian theory from neurobiology; mind-body 

problem from philosophy. We use a formalism inspired by flow-graph and cy-

bernetics representations. We called our proposed model IPSEL for Information 

Processing System with Emerging Logic. Its main assumption is on the emer-

gence of a symbolic form of process from a connectionist activity guided by a 

self-generated evaluation signal. We also discuss artificial equivalents of con-

cepts elaboration, common-sense and social interactions. This transdisciplinary 

work can be considered as a proposition for an artificial general intelligence de-

sign. It contains elements that will be implemented on further experiments. Its 

current aim is to be an analyzing tool for Human interactions with present and 

future artificial intelligence systems and a formal base for discussion of AGI fea-

tures.  

Keywords: Human-level cognition, Artificial general intelligence, Cognitive 

modeling. 

1 Introduction 

Recent publications raised discussions on limits of the followed current approaches in 

artificial intelligence (AI) [Marcus and Davis, 2019]. These limits on artificial systems’ 

capacities and the debates they generated aren’t new. In fact, one could consider they 

are analogous to the indirect debate between Alan Turing exhibiting his Imitation game 

as a test of AI [Turing, 1950] and John Searle with his counterargument of the Chinese 

room [Searle, 1980]. Can machines understand humans? And can humans truly under-

stand machines? Artificial information processing systems aim to simulate processes 

that are usually done by human cognition, thus we decided to model Human-like cog-

nition as a reference architecture for artificial systems. To design our model, we took 

inspiration from various established cognitive science theories. 

From the field of AI, we were inspired by deep reinforcement learning (DRL) frame-

works, grounded cognition theories and prior cognitive architectures. Systems that 
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implement DRL have been shown to efficiently perform human-level tasks from sen-

sory input computations [Everitt et al., 2018]. It is often said that conventional DRL 

alone cannot account for the way humans learn. It’s too slow, requires very large da-

tasets, doesn’t generalize well, struggles to perform symbolic processing and lacks the 

ability to reason on an abstract level [Garnelo et al., 2016]. Recent reports, however, 

show that these issues can be overcome by architectural and modality modifications for 

narrowed environments [Dosovitskiy and Koltun, 2016; Wayne et al., 2018]. As an 

example, DeepMind researchers implement two different learning speeds for simula-

tion of episodic memory and meta-learning. They concluded that “a key implication of 

recent work on sample-efficient deep RL is that where fast learning occurs, it neces-

sarily relies on slow learning, which establishes the representations and inductive biases 

that enable fast learning.”  [Botvinick et al., 2019]. This architectural consideration of 

decomposing cognition into two modes has been largely explored by cognitive archi-

tects. This dual-process assumption seems to be the most promising one considering 

the natural synergy between connectionism and cognitivism. It is often said that con-

nectionist models efficiently perform inductive reasoning and classifications but lack 

symbolic and deductive abilities. On the other hand, deductive inference requires enti-

ties and rules, which are hard to a-priori define for complex and partially observable 

environments. An interesting idea concerning this constraint is to make the symbolic 

part emerge from the connectionist activity [Hopfield, 1982]. 

Hybrid systems’ propositions are usually inspired by psychology research where 

William James proposed in 1890 to decompose human cognition into two subsystems 

which he named “Associative thinking” and “Reasoning thinking” [James et al., 1890]. 

Many works have been done around this principle, one of the most notable is the ex-

tended experiment conducted by Amos Tversky and the Nobel prize winner Daniel 

Kahneman on human economic decision making [Kahneman, 2011]. For them, cogni-

tive processes can result from the production of two different systems. System 1 which 

is described as fast, unconscious and automatic, accounting for everyday decision and 

subject to errors. The System 2 is slower, conscious and effortful. For Kahneman, Sys-

tem 2 operates complex decision-making processes and is more reliable. To better un-

derstand the relation between these different cognitive modes, we have also been vastly 

inspired by the works of Carl Jung and Sigmund Freud, who were among the first to 

distinguish and study the unconscious part of our mind [Freud and Bonaparte, 1954; 

Jung, 1964]. 

Converging neurobiology studies associate reasoning or declarative cognitive func-

tions with distributed brain activities. This assumption finds an echo in the words of the 

Global Workspace Theory [Dehaene et al., 1998]. Functional brain imaging shows that 

conscious cognition is associated with the spread of cortical activity, whereas uncon-

scious cognition tends to activate only local regions [Baars, 2005]. Experimental re-

ports stressed the notion of Free will by observing unconscious initiative before volun-

tary action [Libet, 1985] giving us our intuition on how both systems are architectured. 

These large-scale considerations on the brain activity have started to operate a shift in 

the way that cognitive scientists analyse cognition. Vinod Menon studied psychopathol-

ogy and wrote: “The human brain is a complex patchwork of interconnected regions, 

and network approaches have become increasingly useful for understanding how 
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functionally connected systems engender, and constrain, cognitive functions.” [Menon, 

2011]. However, brain processing does not rely only on electrical activity; information 

flows are encoded into electrical-chemical potentials. Emotions, which are associated 

with chemical neurotransmitters, play an undeniable role in human behaviours whether 

they are conscious or unconscious. To integrate this part in our model, we took inspi-

ration from the Somatic Marker hypothesis formulated by Antonio Damasio [Damasio 

et al., 1991]. Lastly, we also considered the Hebbian theory described by neurobiolo-

gists. Named after Donald Hebb, this cell assembly theory modelized the synaptic plas-

ticity of the brain. Recent publication in artificial intelligence shows how recurrent neu-

ral networks with Hebbian plastic connections provide a powerful novel approach to 

the learning-to-learn problem [Miconi, et al., 2018]. 

All these theories have been thoroughly discussed by their corresponding discipline. 

Because of the space limitation, we cannot reference or further develop these discus-

sions or reports. Moreover, this is not the objective of this paper. In this introduction 

we have presented what are the transdisciplinary sources that have inspired our archi-

tecture. The formalism we use to represent networks’ activities is described in part 2 

along with the definition of our architecture. Discussion of its attributed capacities will 

be presented in part 3. More specifically, we will discuss conceptual reasoning, com-

mon-sense knowledge and social interactions such as language. As a conclusion, we 

conjecture on behaviours of agents that would be architectured with our proposition. 

2 Information processing systems with emerging logic 

(IPSEL) 

2.1 Cognition as a flow graph 

The considered system is represented as a graph of processing units connected together. 

Processing units are represented by nodes and their connections by weighted and ori-

ented arcs called routes. We define three types of units. Source units which represent 

sensor organs of the system; sink units representing motor organs; and routing units 

which are graph nodes that are neither sources nor sinks. All together they form a net-

work in which flows are spreading. These flows are called Action Potential Flows (AP-

flows). When a unit or a route is crossed by AP-flows we say it is activated. AP-flows 

have the property of being persistent for an undefined amount of time. When activated, 

routing units can emit part of a signal called Emotional Response Signal (ERS). Con-

sidered all together, ERSs represent the internal response of the whole network being 

crossed by AP-flows. We give no constraint on how ERS are produced, it can be gen-

erated by one group of units or the generation can be distributed amongst all units. A 

schematic representation is given in figure 1.  

We associate source units’ activities as a process which transforms environment in-

teractions into AP-flows. It is continuous and said to be the system’s perception of its 

environment. AP-flows then spread into the network and eventually reach sink units. 

Sink units’ activities are responsible for transformation of AP-flows into environment 

interactions. This process is said to be the system’s behaviour. The function that 
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connects perception to behaviour is called cognition and is represented by the structure 

of the network.  

 

 

Fig. 1. An arbitrary cognition flow graph. Only few units and routes have been displayed.  

We named this form of representation a Cognition Flow Graph (CFG). Structural in-

formation of the graph is represented by the arcs’ weight. They are probabilities of the 

type “probability of the route to be activated if connected unit is activated”. Altogether, 

the arcs’ weights form a probability distribution over pairs of units. We call it the intu-

itive probability distribution (ID) of the cognition flow graph. There are two mecha-

nisms that allow ID editing. The first is called Hebbian Learning (HL). It has the func-

tion to grow connections between unconnected units that have simultaneous activities. 

It changes the ID probabilities from 0 to something greater than 0. The second mecha-

nism, called Reinforcement Learning (RL), increase or decrease the arcs’ weights to 

optimize emotional response signals of the structure. 

The particular routings of AP-flows through the structure determine, for a set of ac-

tivated source units, which sinks units will be activated. Thus, we say that perception 

is processed by cognition to produce behaviours. Cognition is performing a computa-

tion on perception with intuitive probability distribution as instructions. 

2.2 IPSEL functional architecture 

Different natures of routing imply different natures of computation and thus different 

natures of behaviours. In this part we regroup various kinds of routing and define ab-

stract systems that represent their consequent computation. 

We distinguish two types of routing possibilities. Direct paths: on these paths, AP-

flows have a unique routing possibility. And indirect paths: on these paths AP-flows 

have multiple routing possibilities, which implies a notion of network and allow flow 

cycles. Considered all together, indirect paths form a network of networks. 

Behaviours engendered by activities on direct paths are called direct behaviours. We 

represent them as being the production of a system called Direct System (S0). Activities 

on indirect paths can have two modalities. When one indirect path is considered it is 

said to be a local activity. When the activities are considered over a combination of 
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indirect paths, involving potentially unconnected distant networks, it is said to be a 

global activity. Behaviours engendered by local activities are called intuitive behav-

iours and are the production of the Intuitive system (S1). Combinations of local activi-

ties form global activities which embody a computation attributed to the deliberative 

system (S2). We postulate that S2 emerges from S1 because of the relations between 

local and global activities. 

While experiencing its environment, the structure of indirect paths’ networks 

changes because of RL and HL. At the local scale, preferred routings will emerge and 

form local patterns of activities. At the global scale, unconnected networks will develop 

connections because of HL, and preferred routings between these localities will emerge 

because of RL. We define the notion of concept which, in our formalism, means a com-

bination of local routing patterns that have developed inter-local routes at the global 

scale. Because of concept formation, local networks can now be activated by flows 

coming from the global activity. This kind of global flow activities is said to emerge 

since it requires a previous step of local structure self-organisation. At the local scale, 

AP-flows are continuous and form a global configuration at any time. However not all 

global configurations imply activated concepts. Thus, from a global point of view, con-

cepts appear in an ordered sequence. Once again, due to HL, RL and the persistence of 

AP-flows, concepts that appear close in the sequence will develop and reinforce inter-

connections. Since the sequence is ordered, it can also be viewed as the emergence of 

probabilistic causality relations between concepts. We define a second probability dis-

tribution over pairs of concepts called the conceptual probability distribution (CD). ID 

represents S1 knowledge whereas CD represents S2 knowledge. 
Environment perception penetrates the system through sensory organs where they 

are transformed into Action potential flows called messages. These flows propagate 
through the structure and activate direct and indirect paths. Propagation on direct paths 
will engender direct behaviours seen as production of the direct system S0. Propagation 
in indirect paths activates local networks and engenders intuitive behaviours seen as 
production of the intuitive system S1, and it is determined by the intuitive distribution. 
At the global scale, activated concepts engender new local flow propagations and can 
be inferred from a previously activated concept. When it is the case, the appearing se-
quence of concepts is said to be the production of the declarative system (S2) and is 
determined by the conceptual distribution. The cycle of flow propagation between local 
and global configurations is said to be the reasoning behaviour of the system. It can 
also be viewed as communication between S1 and S2. AP-flows that activate sink units 
for behaviour productions are called commands. 

IPSEL agents alternate between three natures of behaviours (direct, intuitive, or rea-

soning), corresponding to what is required for environmental interactions. Perceptions 

that activate direct paths engender direct behaviours. Other perceptions engender intu-

itive behaviours. Occasionally, internal flow propagations instantiate concepts and trig-

ger concept inferences at the global scale. The inferred concept sequence acts as new 

sources of flows for local activities. It is the reasoning behaviour of the agent and en-

genders further intuitive behaviours. 
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Fig. 2. (a) distinction between direct, local and global activities. (b) IPSEL agent. 

3 Discussion 

In our model, a concept is a combination of simultaneous local patterns of activities. 

We can state that the more a route is activated, the more it may be reinforced. For this 

reason, invariance on perceptions will engender more reinforcement for their own con-

nected networks. Invariance on combination of simultaneous local patterns of activities 

will engender inter-local connections thanks to the Hebbian mechanism and develop 

concepts. From the global perspective, the first criteria of invariance on perceptual pat-

terns is the fact that they continuously change over time. Thus, we could suppose that 

Time would be one, if not the first, of the primary concepts an IPSEL agent may inter-

nally represent with structure differentiation. Through the integration of the concept of 

Time, the structure can now characterize further perceptions. All perceptions do not 

change evenly throughout Time and are modulated by the body position and sensor 

orientation. Therefore, invariance on perceptions through Time engender the formation 

of the concept of Space. With the ability to represent Time and Space concepts, the 

structure can now form a concept of Object which is perception’s invariances through 

Space and Time. Time, Space and Object are the three primary concepts. From that 

point, the system may differentiate objects from one another to form more elaborate 

concepts, again, by representing the invariance of its perception through already ac-

quired concepts. Depending on its sensors’ position, the system could form the concept 

of its own body, as it may be the most invariant object of perception. Geometric forms, 

colours, symbols and so on, are all internal representations of invariant perceptions 

through Space/Time/Object. Progressively, the structure represents its perceptual envi-

ronment with concepts. IPSEL agent’s world representation is thus, totally subjective. 

From the global point of view, concepts appear in sequences. Because of Hebbian 

and reinforcement mechanisms, concepts which are close in the sequence will develop 

and differentiate inter-concepts connections. Through the same dynamism in which 



7 

local patterns of a common concept can activate each other, inter-concepts’ connections 

enable concept inference. Sequences of concepts can now be internally simulated, 

therefore the perceptual environment they have originated from, can be simulated. This 

environment simulation is valuable for the structure, as it gives it the capacity to repre-

sent past or future configurations and their associated emotional responses. This allows 

the system to remember and to predict. 

Internal intuitive representation is inspired by the philosophy of Carl Jung [Jung, 

1964]. The notion of concept emerging from perceptual experience is inspired and well 

developed in other terms by grounded cognitivists [Barsalou, 2010]. Characterization 

of environmental perception through Time and Space consideration is mainly inspired 

by the philosophy of Arthur Schopenhauer [Schopenhauer, A. 1891]. Objects’ defini-

tion and relationships for environmental representations is inspired from Rudolf Car-

nap’s book “The logical structure of the world” [Carnap, 1967]. Recent reports show 

that the symbolic nature of computation is attainable through a connectivism mecha-

nism with the help of some structural specifications [Lample and Charton, 2019]. Other 

artificial neural network models consider expressive probabilistic circuits with certain 

structural constraints that support tractable probabilistic inference [Khosravi et al., 

2019]. In the neurobiology field, a neural basis for the retrieval of conceptual 

knowledge has been proposed from empirical reports [Tranel et al.; 1997] and strong 

evidence for a neural realization of distributional reinforcement learning have been pre-

sented [Dabney et al., 2020]. 

Common-sense is defined by Cambridge online dictionary as “The basic level of 

practical knowledge and judgment that we all need to help us live in a reasonable and 

safe way”, or for Marvin Minsky “the ability to think about ordinary things the way 

people can” [Singh and Minsky, 2003]. For an IPSEL agent, common sense would be 

the system’s knowledge represented by its differentiated structure. It would have sev-

eral forms: intuitive when local patterns are considered, giving the agent a sort of “com-

mon-sense” about which behaviours to produce for a given set of perceptions; concep-

tual when it states how concepts are linked together, and how objects they represent 

may interact with each other. In both cases these knowledges are embodied in the struc-

ture and are thus mostly acquired by individual experience. Experience is relative to the 

system’s perceptual modalities, therefore its common-sense is subjective. For example, 

distinguishing between north and south magnetic poles appears to be common sense 

for a homing pigeon whereas most humans require a tool for achieving this distinction. 

In a broad sense, in the IPSEL paradigm, we would define common-sense as knowledge 

acquired by experience. 

For an IPSEL agent, all behaviours are either direct or intuitive, even if sometimes 

the intuitive behaviour is triggered by inferred conceptual sequences produced by the 

declarative system S2. If multiple agents are interacting with each other, they can learn 

intuitive synchronized behaviours that would externally be seen as communication. 

They can also learn common symbols that refer to subjective concepts, hence allowing 

the development of communication language as commonly defined. For that reason, we 

say that an IPSEL agent has two communication modalities: intuitive where words of 

a speech are intuitive learned behaviours and conceptual when symbols or combination 

of symbols refer to concepts. These communications can be of various forms since 
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words of a speech can be of multiple natures such as body-movement, sound, smell or 

visual pattern (in other words, everything that can be perceived by both agents in-

volved). The various modalities of speech, intuitive or deliberative, have been explored 

and theorized by psychiatrist Sigmund Freud [Freud and Bonaparte, 1954]. Complex 

social behaviours have been shown to emerge from artificial multi-agents’ interactions 

with reinforcement learning [Baker et al., 2019]. 

4 Conclusion 

In this paper we consider human-level cognition as a dualism between an inductive 

process and a deductive one which relies on emerging logic. An experiment and a com-

plete comparison with existing cognitive architectures would be an interesting devel-

opment that should be explored. If we try to place IPSEL model in the hybrid group of 

cognitive architecture [Kotseruba and Tsotsos, 2018], models such as CLARION [Sun 

et al., 2001] have more similarities with our approach. Specifically, the IPSEL perspec-

tive is consistent with Arthur Schopenhauer theory of will and ideas, and Sigmund 

Freud works on unconsciousness and language. We generally tried to avoid technical 

consideration to present a functional architecture that is more consistent with the pre-

dominant theories of cognitive sciences. 

In our theory, an IPSEL agent builds its knowledge through perceptual experiences. 

Throughout different phases of development its inner structure self-organizes and ena-

bles the emergence of an inner dialog between internal representations and sensory per-

ceptions. All of its experiences are associated with an emotional response that guides a 

learning mechanism and influences resulting behaviours. Thoughts of the agent are 

constructed sequences of concepts. As concepts represent combinations of environment 

perceptions, thoughts represent relations between them. By internally representing the 

external environment as concepts, and relations that are associated to them, the structure 

can “hallucinate” environments that are not currently perceived. It allows the agent to 

remember past environment states and predict future ones. It forms a loop where per-

ceptions activate multiple parts of the structure. Emerging concepts trigger a chain re-

action that produce a conceptual sequence generated by the flow of activity through 

induced preferred inter-concept paths. While being constructed, the conceptual se-

quences activate new parts of the structure, ending the loop in a top-down manner and 

acting as new sources of information for cognitive processing. All declarative cognitive 

functions such as planning, deliberating, or performing an introspection, are supported 

by conceptual sequence production. We conjecture that an IPSEL agent is emotionally 

rational and its knowledge is subjective. 

In 1950, Alan Turing proposed a test to evaluate machine intelligence. It has been 

greatly debated and the community had a hard time defining intelligence and other 

terms associated to it. As Searl pointed out, symbols don’t carry out meaning and sym-

bolic computation isn’t enough to catch the idea behind it. It is maybe for this reason 

that Turing included two humans in his original description of the imitation game. Two 

humans, when they communicate, can use overtone, common-sense, metaphors, irony, 

abstraction, that is to say, many language forms that not only rely on grammatically 
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correct symbolic sentences but also on a shared world representation and socio-cultural 

knowledge. Beside the great achievement of artificial intelligence techniques, machines 

still struggle to catch these deeper aspects and are only efficient in narrowed environ-

ments. Consequently, machine behaviours, trustworthy AI, ethical AI and explainable 

AI are all new topics of interest for the community. 

For an IPSEL agent, the ability to succeed at the Turing test, would require that the 

system is granted with the same modality of sensors as humans and has had an individ-

ual experience of the world that is close to a human’s one. At the end, even with these 

requirements, nothing assures us that the specific tested agent will pass the test. But are 

we sure that all humans uniformly would? 
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