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Abstract: In this work, we propose a refinement of the aeropendulum platform model,
specifically focusing on the modeling of thrust force. We have derived a mathematical model,
proposed acquisition schemes for data collection, and conducted experiments to describe the
previously overlooked dynamics of the actuator. We have developed a simulation model that
comprehensively captures the system’s electrical, mechanical, and aerodynamic behaviors by
utilizing electrical and mechanical information. The results obtained from the simulation data
demonstrate the effectiveness of the WSINDy algorithm in accurately determining the thrust
coefficient and predicting the dynamics of other variables during the testing phase.
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1. INTRODUCTION

System identification aims at determining the mathemat-
ical model of a system based on observed input-output
data. What is known as the classic system identifica-
tion is a mature domain with more than half a century
of existence Papoulis (1968); Ljing (1999). The so-called
data-driven approach, in a nutshell, aims at reducing the
amount of a priori knowledge regarding the underlying
system model and maximizing the use of statistics at the
core of system identification workflow. With minimal a
priori, one has to infer from data the system dynamics, and
quite important progress has been made in this direction
recently Brunton and Kutz (2022); Brunton et al. (2016).

The SINDy algorithm has been used to infer dynamic
models from data. Bastos (2021) used the sparse identifica-
tion algorithm to derive a model for a robotic application.
Fangzheng Sun (2021) used the method to predict the
dynamics of a drive system for prismatic joints of robots.
What is common to these applications is that the use of
the SINDy algorithm leads to unmodeled dynamics and a
lack of physical explainability, mainly due to the necessity
of computing approximate derivatives.

Here, we apply data-driven system identification to a rela-
tively simple nonlinear aeropendulum system. An aeropen-
dulum is a nonlinear dynamical system, quite simple to
design and build, that is commonly used in graduate
and undergraduate engineering courses for teaching feed-
back control systems Enikov and Campa (2012); Silva
et al. (2020). Although the propulsion force that drives
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the aeropendulum is provided by an electric motor, few
works include models of the electrical part in the control
problem formulation. An attempt to apply the so-called
classical system identification and include the electrical
parts’ model into the control problem formulation has
been presented in Lucena et al. (2021). However, in that
attempt, the experimental test results obtained with a
controller synthesized based on the identified model re-
vealed that the closed loop was stable, but the transient
behavior did not fully match the prescribed performance
template OLIVEIRA (2023).

In this paper, we revisit Lucena et al. (2021) to diagnose
and fix the mismatch between the experimental transient
behavior and the prescribed performance template used in
the controller design phase. However, in the present case,
we are reconsidering some of the hypotheses adopted for
the electrical subsystem and its coupling to the mechani-
cal subsystem, whereas exploiting the data-driven system
identification proposed in Messenger and Bortz (2021) to
determine the thrust coefficient of the propeller.

2. THE AEROPENDULUM PLATFORM

This section focuses on describing the laboratory proto-
type and its nonlinear dynamic model.

2.1 Physical representation

Figure 3 shows the free-body diagram of the aeropendu-
lum. The rotating rod with length L connects the bearing
axis to the DC motor. The motor is connected to the drive
gear, whilst the driven gear is attached to a propeller.
A thrust force T opposes the force weight component
mg sin(y). This thrust is proportional to the speed of



the driven gear. It opposes the force weight component
mg sin(y). The torque TL leads to the angular displace-
ment concerning the vertical axis.

Figure 1. Free-body diagram of the aeropendulum. The
basic set of components is the motor, the gearbox, the
propeller, and the rotating bearing. Source: adapted
from Lucena et al. (2021)

2.2 Electrical and aerodynamic parts

The aeropendulum comprises four parts, as depicted in
Figure 2. A PWM signal controls the motor shield’s H-
bridge and delivers voltage to the motor armature.

Figure 2. Aeropendulum system diagram: electrical, me-
chanical, and aerodynamic components.

Figure 3 shows photographs of the actual prototype.
Supported by a base made of polystyrene, under the
bearing, there is a rotary magnetic encoder AS5040 that is
used to measure the angular position. The microcontroller
is used to collect, process, and generate the necessary
signals, whilst the motor driver is used to directly control
the DC motor. The motor-propeller set is seen on the left
side of the figure. A USB connection interface transfers
commands and data to the microcomputer.

2.3 Mathematical description

From the free-body diagram and the equivalent circuit
depicted in Figure 3 and 2, respectively, one can derive

dia
dt

= −Ra

La
ia −

Kω

La
ω1 +

1

La
va, (1)

Figure 3. Front and backside photographs of the real
aeropendulum plant. Source: Lucena et al. (2021)

where Ra represents the armature resistance, La the ar-
mature inductance, Kω the electromotive constant, and
va the voltage source. We can also describe

dω1

dt
=

Ki

Jm
ia −

F

Jm
ω1 −

1

Jm
T1, (2)

where Ki represents the torque constant, ω1 the rotational
speed of the motor shaft, T1 is the mechanical torque due
to the gear-propeller set, Jm the moment of inertia of
the rotor, and F the viscous friction constant. Since the
propeller thrust is given by

f = Kqω
2
2 , (3)

where ω2 is the speed of the propeller, and Kq is the thrust
coefficient (Corke, 2017). Since the relationship of ω1 and
ω2 is expressed by

ω2 =
N2

N1
ω1, (4)

where N2 : N1 is the gearbox ratio.

Considering that the armature current can be measured
and that the motor dynamics are fast enough to be ne-
glected regarding the aeropendulum dynamics, the angular
speed ω1 can be rewritten in terms of the input voltage
and armature current ω1 = 1

Kω
va − Ra

Kω
ia. Taking into

consideration that the propeller’s transient response is
assumed to be faster than the speed of the pendulum rod
and neglecting the moment of inertia of the propellers, (3)
can be rewritten as

f = Kq
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(5)

One can describe the pendulum’s rotational dynamics from
the free-body diagram as

dΩ

dt
= −mgd

J
sin(y)− C

J
Ω+

L

J
f (6)

dy

dt
= Ω, (7)

where y is the angular position, Ω is the angular speed of
the aeropendulum.

3. EXPERIMENTAL RESULTS

The previous study Lucena et al. (2021) focused on ac-
quiring position information only and used both the 10-
bit Synchronous Serial Interface and a simulation model



to communicate with the Arduino microcontroller. It hin-
dered the possibility of increasing the sampling rate and
constrained the low-level signal configuration.

Developing an acquisition scheme running solely on the
Arduino board would yield two significant benefits. First,
it would grant greater control over the sampling rate,
enabling the utilization of different acquisition modes, such
as the PWM built-in interface in the position sensor.
Second, it would ease low-level hardware configuration,
empowering the triggering of events based on Arduino
Timers, thereby ensuring regular sampling intervals. More-
over, interrupt-based events would allow for sampling di-
verse signals due to hardware phase correction.

With these considerations in mind, this section proposes
using a timing diagram to collect the effective armature
voltage, armature current, and angular position using
solely the Arduino board.

3.1 Timing diagram

By configuring the Wave Generation Mode bits of the
Timer 1 Counter Control Register, the Arduino board can
be set to operate in the phase-corrected PWM mode. This
configuration enables an oscillator-based counter to func-
tion in a dual-slope manner. Leveraging this capability,
the Timer1 Overflow interruption takes place whenever the
PWM signal is operating at high level. The timing diagram
illustrating the proposed acquisition scheme is presented in
Figure 4.

Figure 4. Data acquisition timing diagram: the signals
of interest are measured in their high level, whose
sampling depends on the triggering of the overflow flag
from Timer 1. The sampling rate is directly related to
the PWM frequency of the Arduino Board (originally
490 R1.1Hz).

Whenever the counter of Arduino’s timer one reaches zero,
an overflow interruption called TOV1OVF is triggered.
During this interruption, the armature current, voltage
data, and filtered position information are gathered. The
sampling rate is directly influenced by the PWM frequency
of the Arduino board, resulting in a sampling time of
Ts = 1

490 = 2, 04 ms. A set of voltage values is applied
to carry out the data acquisition process.

3.2 Position data acquisition

The AS5040 sensor has a PWM interface that generates a
PWM signal. The duty cycle of this signal is proportional
to the angular position detected, while its frequency is
975,6 Hz. To process the position data, a second-order low-
pass filter is employed. This filter effectively smooths the
signal, and the Arduino’s resulting analog output voltage,
which is proportional to the angle, is read by the ADC
(Analog-to-Digital Converter). Figure 5 illustrates the
PWM signal generation, filtering, and conversion process.
To achieve the desired results, R1 ≥ 4K7Ω, C1 ≥ 1µF .

Figure 5. The PWM output provided by the AS5040
and the filtered to yield the angular displacement.
R1 = R2, C1 = C2. Source: adapted from the AS5050
sensor’s datasheet.

3.3 The relationship between the duty cycle and the
armature voltage

Accurate measurement of the armature voltage is crucial
as there are voltage drops across the H-bridge utilized for
DC motor control, and these drops vary non-linearly with
the armature current. However, during the experiments,
it was observed that the differential measurement feature
supported by the Mega microcontroller yielded imprecise
results. Consequently, a curve-fitting relationship between
the duty cycle to the H-bridge and the corresponding
armature voltage value was established. This relationship
is illustrated in Figure 6.

Figure 6. The armature voltage Va as a function of the
duty cycle τ ; acquired and estimated data through
(8).

The duty cycle τ was incrementally increased at a rate of
5% and capped at 70%. This limit ensures the aeropendu-



lum rod does not exceed its maximum allowed displace-
ment of 90 degrees. Through the utilization of a curve-
fitting algorithm, the relationship between τ and the re-
sulting Va is expressed by:

Va = k0 + k1
√

k2τ + k3 (8)

where k0 = −0, 2914, k1 = 6, 8e-4, k2 = 1, 469e7, k3 =
4, 3629e4. This equation makes it feasible to determine the
voltage applied to the DC motor based on the τ applied
to the H-bridge.

3.4 Armature current data collection

The Arduino Rev3 motor shield incorporates a built-
in feature for reading the armature current value. This
functionality uses the SENA pin on the chip, which is
connected to a 0, 15 Ω resistor (R1). The voltage across
R1 is amplified through an operational amplifier (op-amp)
and can be directly measured using the analog pin A0. The
analog pin provides a voltage proportional to the measured
current, and the calibration value is 3,3 V when it delivers
its maximum current of 2 A.

3.5 Acquiring the data

After uploading the programming routine to the board,
we can write a set of PWM values to the DC motor
controller and gather the open-loop information following
the proposed acquisition scheme. The actual data collected
during this process is illustrated in Figure 7.

Figure 7. Open loop acquired signals.

3.6 Motor parameters

To determine Ra, we performed the so-called locked-
rotor test. We calculated the armature resistance by using
Ra = Va

Ia
(steady state). By varying Va, and measuring

Ia, we found out that R̂a = 1, 08 Ω (mean value) and
σR̂a

= 0, 04 Ω (standard deviation). To determine Kω, we
applied different Va values and measured the steady state

values of ω2 by using a stroboscope and Ia by using an
ampere meter. We estimated Kω by using

K̂ω =
Va − R̂aIa

N1

N2
ω2

, (9)

where the mean value was K̂ω = 6, 606e-4 Vs/rad with a
standard deviation of σK̂ω

= 1, 38e-5 Vs/rad.

For the estimation of La, we applied a voltage step (Va)
and recorded Ia (see Figure 8). From the time it took for
Ia to reach 63% of its steady state value, the electrical time
τe =

L
R was found τ̂e = 0, 002 s. Given the value of R̂a, we

estimated L̂a = 2, 2 mH.

Figure 8. Armature current (Ia) time response for a duty
cycle τ = 40% in the armature voltage (Va).

4. SIMULATION MODEL

While the retrieval of the propeller speed is still ongoing,
we use the previously identified electrical and mechanical
parameters to construct a model that accurately repre-
sents the real system. The remaining parameters, such
as the aerodynamic ones, can be determined in an arbi-
trary manner. By implementing this representation of the
aeropendulum platform in a simulated environment, we
can gather the required data and subsequently apply the
SINDy algorithm to model the unknown components.

The parameters of the model are:

Table 1. The parameters used in the simulation
model.

Model Parameters

Electrical Ra = 1, 08Ω, La = 2, 2mH
Kω = 6, 6e-4V s/rad, Kt = 0, 235Nm/A

Mechanical
and

Aerodynamic
Jm = 5, 2e-5Kgm2, Bm = 0, 01Ns/m2

c
J

= 13, 82, mgd
J

= 131, 75, L
J

= 462, 83

N1/N2 = 55/9, Kq = 1e-4

Figure 9. Simulation model.



5. DATA-DRIVEN SYSTEM IDENTIFICATION

One of the most promising methods for extracting dynam-
ical equations from data with a minimal amount of a priori
information is the so-called SINDy (Brunton et al., 2016).
In this paper, we used the weak formulation of SINDy,
denoted as WSINDy (Messenger and Bortz, 2021). The
basic concepts of WSINDy are briefly described in the
section.

5.1 Weak SINDy

The WSINDy is based on the so-called weak formulation in
which the underlying differential equation is transformed
into an integral equation. The weak formulation leads to
robustness and less susceptibility to noise and errors since
one needs to compute time derivatives. Consider a system
described by

dx

dt
= F(x), x(0) = x0 ∈ RD. (10)

One assumes that the state variables measurements are
contaminated with an identically distributed additive noise
source. Thus, the noisy measurement is given by

ymd(t) = x(t) + ϵmd(t), (11)

where ymd(t), x(t) ∈ RM×D, t = [t1, ..., tM ]T , and
ϵmd(t) ∈ RM×D.

For any smooth test function ϕ : R → R supported on the
interval (a, b) ⊂ [0, T ], (10) admits the weak formulation,
when 0 ≤ a ≤ b ≤ T , given by

ϕ(b)x(b)− ϕ(a)x(a)−
∫ b

a

ϕ′(u)x(u)du =

∫ b

a

F(x(u))du,

(12)
which consists of the data-driven version of the Galerkin
method for solving F.

The function mapping Fd : RD → RD extracted from the
noisy measurements is given by

F̂(ymd(t)) =

J∑
j=1

ξJθJ(ymd(t)), (13)

where the library function {θl(·), l = 1, · · · , J} is a set of

candidate basis functions used to represent F̂, an estimate
for F, and it is expressed by

Θ(ymd(t)) = [θ1(ymd(t)) θ2(ymd(t)) . . . θJ(ymd(t)] , (14)

where each of the library function terms represents a
trigonometric, polynomial function, or a product between
each of the terms.

One can include the excitation input when composing the
library of candidate functions Θ. In (12), if ϕ is non-
constant and supported in the interval (a, b), the residual
R(ΞΞΞ, ϕ) is defined with respect to a specific test function
by substituting (13) in (12):

R(ΞΞΞ, ϕ) =

∫ b

a

ϕ′(u)ymd(u)du+∫ b

a

ϕ(u)

J∑
j=1

ξjθJ(ymd(u))du

(15)

The discrete-time version of (15) can be stated as:

R(ΞΞΞ, ϕk) := (GΞΞΞ− b)k ∈ R1xD (16)

The Gram matrix G and the approximate dynamics b are
determined through the use of the integration matrices V
and V’. They can be determined by

Vkm = ∆tϕk(tm), (17)

V′
km = ∆tϕ′

k(tm) (18)

Hence, Eq. 16 can be rewritten as:

R(ΞΞΞ, ϕk) := VΘ(ymd)ΞΞΞ−V′ymd (19)

Defining the covariance matrix as Σ = V ′(V ′)T and using
it as a weighting factor, the solution to the generalized
least-squares problem can be given by:

Ξ̂ΞΞ = argmin
ΞΞΞ

(
(GΞΞΞ− b))TΣ−1 (GΞΞΞ− b) + γ2||ΞΞΞ||22

)
(20)

5.2 Input Signal Design

One crucial aspect of a parameter estimation procedure
is the design of the experiment (DoE). In the context of
nonlinear systems identification, creating an informative
excitation signal that captures the desired dynamics is
essential, as described in Deflorian and Zaglauer (2011).
While this topic is frequently discussed in system identifi-
cation theory, it has received limited attention in relation
to the SINDy algorithm. Previous studies (Fasel et al.
(2021)) suggest the need for further investigation.

Two approaches can be used to gather valuable informa-
tion through DoE: model-based or model-free. In this case,
a suitable model-free DoE method involves utilizing the
Latin Hypercube distribution to generate the excitation
signal. The input space is limited by τ ∈ [τmax, τmin],
Ts ∈ [Tsmin

, Tsmax
], and divided into 10 intervals, which

correspond to the prior information related to the actua-
tion limits and operating characteristics. Figure 10 depicts
the design points of the input space on the left side and
the associated excitation signal on the right side.

Figure 10. The excitation signal, where dn represent the
amplitude of each voltage step, and Th represents the
dwell time. Each point represents a step signal with
amplitude τ and duration time Ts.

We demonstrate the application of the proposed algorithm
using the aeropendulum simulation model. We retrieve
data in silico, and the idea is to verify the performance
of the WSINDy algorithm in obtaining the ODEs that
characterize the system.



6. PARAMETER ESTIMATION USING THE WSINDY
ALGORITHM

In this section, we propose using WSINDy to demonstrate
its capabilities for determining the aerodynamic behavior
of the aeropendulum using in silico data. By utilizing
computer-generated data using the complete model, we
can create a comprehensive dataset for training and testing
purposes that closely mimics the dynamics of the actual
system. This simulated dataset exhibits dynamics com-
patible with those observed in the real-world scenario.
With prior knowledge of the actuator dynamics and the
expected behavior within the simulation, our objective is
to investigate the efficacy of the WSINDy algorithm in ac-
curately identifying the governing equations that describe
the system.

6.1 Design of excitation signal and data generation

Once we have determined the feasible electrical and me-
chanical parameters, we can use the simulation model to
generate data for testing the capabilities of the WSINDy
algorithm in recovering the system’s ODEs. Particularly,
we are interested in evaluating the algorithm’s accuracy
in capturing the aerodynamic behavior. The adapted
WSINDy algorithm was implemented and is publicly avail-
able on GitHub. 1

The simulation data is generated using the model, where
different operating points are determined using the Latin
Hypercube (LHC) input technique. The voltage operating
points range from 0 V to 2, 5 V, and the step duration
time ranges from 0, 6 s to 2 s. The main objective is to
stimulate the model with inputs that provide valuable in-
formation and effectively showcase the system’s nonlinear
behavior. By doing so, the algorithm can identify a sparse
representation within the dataset, capturing the essential
dynamics of the system.

6.2 Noise contamination

Noise is carefully added to achieve a resulting signal with
a PSNR (Peak Signal-to-Noise Ratio) of 50dB, mimicking
real-world conditions with the lowest possible PSNR value
before the algorithm fails. The measured state variables
used in the analysis consist of the armature voltage (Va),
the armature current (Ia), the angular speed of the motor
(ω1), as well as the angular speed (ẏ) and angular position
(y) of the system, as illustrated in Figure 11. These
variables form the input data for the WSINDy algorithm.
Consequently, the variables provided to the WSINDy
algorithm are denoted as X = [Va Ia ω1 y ẏ].

6.3 Composition of the function library

A library function Θ(X) is created, which incorporates
products and second power elements of each state variable
and compositions involving sine and cosine functions. This
selection of terms is based on prior knowledge of the
system’s dynamics. In this case, trigonometric functions
are useful due to the force decomposition, and quadratic

1 https://github.com/dimitriarthur/Data-driven-identification-of-
an-aeropendulum.

Figure 11. Signals used in the training procedure and
the extracted governing equations using the analytical
model and the WSINDy algorithm.

terms are also relevant. The training and testing data
were split, with 80% of the data used for training and
the remaining 20% for testing.

6.4 Evaluating the results

Figure 11 depicts the training data, the expected ODEs,
and the ODEs identified by the WSINDy algorithm. The
algorithm successfully recovered the correct terms and
values to represent the data without explicitly computing
derivatives.

Specifically regarding the thrust force term, the identified
coefficient was L

JKq = 0, 048. Since the mechanical param-

eter L
J is known, we can determine that K̂q = 1, 037e-4,

which almost precisely matches the constant value used to
describe the aerodynamic behavior of the propeller.

With the identified coefficients, we can utilize the test set
to predict the dynamics’ behavior, particularly Fd(ymd(t)),
for these new state variables. Equation 13 demonstrates
the application of the identified coefficients to predict the
dynamics. The predicted trajectories for İa, ω̇2, ẏ, and Ω̇
are depicted in Figure 12. The Mean Squared Error (MSE)
between the ground truth obtained from the simulation
and the predicted dynamics is on the order of 10e− 4.

These results ensure that the WSINDy algorithm, in tan-
dem with the LHC-based signal design, was useful in the
case of the aeropendulum platform to determine the thrust
coefficient and characterize the aerodynamic behavior.
Also, if there are any electrical and mechanical changes in
the parameters, it helps to determine the best fit for the
related ODE. In case the speed of the propeller can be di-
rectly measured during the data collection procedure, this



Figure 12. Dynamics predicted on the test set.

methodology should also be applied to the real scenario
and able to describe the propeller’s thrust.

7. CONCLUSION

In this study, we have taken a comprehensive approach
to address the aeropendulum problem. Previous research
efforts have encountered discrepancies between the sim-
ulated and experimental systems. This disparity arose
from overlooking the actuator’s electrical modeling and
dynamics. We have introduced a non-linear relationship
between the PWM input and the armature voltage while
incorporating the electric model to address this issue.
By incorporating these new component models, we have
improved the system’s overall modeling and conducted
simulations under different operating conditions.

Furthermore, we have devised an acquisition scheme that
captures the angular position and relevant variables associ-
ated with the armature equivalent circuit. This acquisition
scheme plays a crucial role in the proposed estimation
algorithm, as it enables the incorporation of state vari-
ables and enhances parameter estimation. To leverage our
understanding of the plant’s actuation limits, we have
introduced a design of the input space using the LHC
technique. Notably, the design of the input space using
LHC has received limited attention within the WSINDy
framework, making our contribution significant in this
regard.

By adopting the WSINDy algorithm, results have demon-
strated the effectiveness of utilizing it for describing the
aerodynamic behavior of the propeller. The predicted dy-
namics using the WSINDy exhibited an MSE on the order
of 10e-6 compared to the test set. Additionally, the algo-
rithm has shown its capability to adapt to any parametric
changes in the electrical or mechanical components, allow-
ing it to find the correct representation of the system data.

For future research, it would be interesting to collect real-
world data on the propeller’s speed in the actual aeropen-
dulum platform and assess the WSINDy algorithm’s abil-
ity to accurately describe the thrust force behavior. Given

the enhanced model description achieved in this study
compared to previous works, evaluating different control
approaches in a closed-loop setup would also be valuable.
With respect to this matter, ongoing efforts are focused on
refining the plant controller.
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